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Abstract— In this paper we tackle the problem of source originating location of the source [6], [7], [8]. Such
localization by example. We present a methodology that approaches exhibit the advantage of being fairly efficient
allows a user to train a microphone array system using and adequately robust for some real-world applications.
signals from a set of positions and trajectories and subse- Another category of source localization algorithms mea-
quently recall the localization information when presentea sure the likelihood that the input has originated from a

with new input signals. To do so we present a new t of locati instead of inferring the location f
statistical model which is capable of accurately describig Set ol localions Instead of inferring the location from

features from the cross spectra of the microphone signals the input. These algorithms employ a wide variety of
so as to model the room responses from all positions of COmputational techniques which involve subspace meth-

interest. We further extend this model to allow modeling of 0ds [9], cross spectral measures or beamforming and/or
sequences of positions, thereby also enabling the learningprobabilistic formulations [10]. These methods are often
and recognition of trajectories. Because of its learning |ess efficient to compute than the TDOA methods, but
nature this method provides practical advantages in settig they provide an increased robustness and can operate
up a microphone array, by not requiring favorable room g6 reliably in environments with multiple sources.
acoustics, careful element positioning or uniformity of There have also been some formulations using a learning

sensors. It also introduces an approach to localization .
which can be extended to other problems requiring models methodology, but they have been quite ad-hoc [11] and

of transfer functions. We present tests on synthetic and have fallen out of favor. o _ .
real-world data and present the resulting recognition rates Regardless of the localization technique used, it is
for a variety of situations. imperative that the room acoustics are accommodating

S0 as to not exhibit confusing reflections, the positions of
the sensors are known, and the microphones have similar
. INTRODUCTION responses. Non-compliance to any of the above condi-
OURCE localization using microphone arrays itons can result in detrimental accuracy in localization
a subject that has received significant attention @stimates.
the signal processing literature. Such systems are oftenn this paper we address the source localization issue
used, for example, to discover the location of actiieom a different viewpoint. We will examine the case
speakers in a teleconference setting, track vehicles inwahere the positioning and response of the microphones
outdoor environment, steer surveillance cameras towarglsinknown, as is the surrounding acoustic environment.
suspicious sounds, etc. This type of functionality can e will consider the case where strong room reflections
achieved using a variety of techniques depending on thest in addition to constant background sounds. In
constraints and expectations of the system at hand. Qmder to deal with these issues we will use a learning
family of approaches takes advantage of the time diffanethodology.
ence of arrival (TDOA) of a source signal as measuredThe methodology that we propose has two stages, an
across multiple microphones. These time differences camknown array system is trained with sounds emanating
be estimated using a variety of techniques [1], [2], [3from a variety of locations. The response characteristics
[4], [5], and once obtained can be used in conjunctidrom each location are used as training features, and
with the positions of the microphones to estimate threubsequently used for recognition. Using this approach
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spurious reflections, or microphone inconsistencies tatures can be computed simply using one complex
not pose a practical issue since they are learned as pagarithm:
of the process.

Obviously, training for the specific acoustic environ- R, (t) =lo Zo(t) (1)
ment where the system is to be used is the price to pay Yo (t)
for not having to deal with array calibration. Training, This computation places the log of the ratio of the
however, is acceptable in many applications involvingiagnitudes of the inputs in the real part®f and their
fixed arrays and in our experience does not posephase difference in the imaginary part:
significant burden.

The remainder of this paper is divided as follows. In R(R.(t)) = log lﬂé:ggh'
section Il we will introduce the features and the statistica (2)
model we use for training to discriminate positions and S(RL(t) = £Z,(t) - Yo, (0)*

trajectories. Section Il will introduce the training and The information contained across alk.. is usu-
(%)

clajsmcatlon metholdollogy that \r/lve_propé)se. ISectllcands |a\lfly sufficient to discriminate between various positions
and V present rzsu ts from syntd.e_tlc and real-world dafg, ;4 the array. Although singular cases exist they are
experiments under various conditions. hard to come by in real world setups. The positioning and
directionality response of the microphones, as well as
Il. LOCATION MODELING the acoustic environment response, are the main factors
The problem we set forth in this paper is stated defln_lng the dlscrl_mmatory_ power of.the array. .If
o : . : approprlately chosen it is possible to localize a very wide
as follows: Given an arbitrary array configuration an " . :
" . range of positions using only a few elements (section V).
a randomly positioned source, we desire to learn the . .
, e There are many possible ways to extract equivalent
source’s position from the observed data, so that Whefn— :
. . - eatures for arrays with more than two elements. The
ever another source is placed in that position we can . . . .
most straightforward method is to consider the relative

reliably confirm it. We will also consider the dynamu:ma nitude and phase of all pairs of elements and use all

case where the sources are allowed to constantly chang em simultaneously. This has the effect of increasing

positions and follow specific trajectories, which mus&e dimensionality of our features (and the computational

also be learned and recognized. ) . !
. . . complexity when processing them) b afactor@@L
In the following sections we will lay out the frame-f plexity P g )by 2IV-2)!
or an array of N elements.

work of this work. We will first examine the features
needed to perform this task, and subsequently provide a
statistical model for modeling positions and trajectoridd Location model
using these features. Using the aforementioned features we will now con-
struct a model we can train and then use for recognition.
A first rudimentary model would be to estimate a com-
plex Gaussian distribution for eadR, and use that for

In order to have invariance from the nature of thsubsequent classification. However, this approximation
incoming sources and array characteristics, the featui®snot always appropriate. Although the real part of
that we should employ will have to be relative featuresur features can be adequately modeled by a Gaussian
between the microphone inputs. Using this approadistribution, this is not the case with the imaginary part,
training will not be influenced by the nature of the inputsyhich represents a phase value. Phase is estimated in a
but rather by the cross-microphone relations. To thigrapped form and is bound betweerr and w. Using
end we employ the relative magnitude and phase of theGaussian distribution to model this data can result
spectra of each microphone input. in significant estimation errors. To illustrate this issue

We start considering a two element array setup. Usikgnsider the following example from a real recording of
two microphones, we receive one signal from eadpeech from two microphones. Figure 1 displays on the
denoted byz(¢) and y(t). Assuming local stationarity, left the histogram of relative phase estimates at around
we perform short-time spectral analysis to determir&00 Hz. We can see that they can be described using
the frequency domain counterparts, which we denote a$saussian model. However consider the relative phase
Z,(t) and Y, (t) for each frequencyw at timet. As distribution around 7800 Hz, as shown in in the right
features we will use the log cross-magnitude and tipéot of figure 1. Due to the phase being wrapped around
cross-phase of the two signals at each frequendgoth £ the result is a bimodal distribution that is poorly fit

A. Location features
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Fig. 1. Histograms and corresponding Gaussian fits of velafhases Fig. 2. The wrapped Gaussian model. The dotted line reptesen
from two different frequencies. Due to phase being bounchfror  the Gaussians to be summed and the solid line their additidhe
to 7 a Gaussian model is not sufficient to model the data. [—m, 7] interval.

by a Gaussian model. Even when the wrapping effegns to iteratively update ando:
is not that severe, the mean of the estimated Gaussiarl) Start with initial estimates, = 0 ando = 1

\(,jvilltrli)t?u'[ti)ci)?\sfndo:j?sﬁrrilsyZaerreo, as compared to where the2) Compute the distance of the sample set from the
Therefore we need to consider a different model for unwrapped Gaussians using:

the phase angle so that we can estimate likelihoods with Dy(x) =2 — p+ k2my/—1 4)

better accuracy. To address this we model the distribution

of the relative phase as a Gaussian wrapped arounéi)>

the interval[—=, 7]. This means that the phase data is

) Compute the posterior probabilities of the sample
set for each of the unwrapped Gaussians using:

assumed to be normally distributed had we not had wrap- Qu(z) = %6_%;”2

ping. By looking at the histograms in figure 1, we can see i (5)
that this is a better model. The addition of the wrapping Q@

of the distribution is meant to mirror the wrapping that P(x) = > Qr()

phase undergoes. The resulting distribution is defined asg) Update the variablg as a mean weighted by the

posteriors:
Z ! e_(IW;g%)z x € [—m, ]
Pyr,)(®) = { ez V2m0? ’ poe—pt <ZD/<:($)Pk($)> (6)
0 otherwise k
(3) where(-) denotes sample expectation. Furthermore

Although k& ranges from—oo to oo, in practice a
range from -2 to 2 is often an adequate approximation
(and the one we have used in all our experiments). We
demonstrate how this model works in figure 2. Assuming S(p) — [(S(n) +7) mod (2m)] —m  (7)
the data in the right plot of figure 1 we use= [—1,1] to
obtain three Gaussians which are shown with the dashe
lines. The distribution that they approximate, which is
only defined between 7 and, is shown with the solid o — <Z Dk(w)sz(x)> (8)
line. We can see that it corresponds to the bimodal nature k
of the da_lta much better than a single Gaussia_n. 6) Repeat from step 2 until convergence.

We will now develop an algorithm to estimate a

complex Gaussian model in which the imaginary part ?ofnv&tergencle t'IS rt?plt(:w afgthqfualzy cancIudes tp ?
is wrapped in the interval-=, 7] and the real part is satistactory solution by the lleration. -or numerica

not. as is the case withe .. We can treat the sum of €2SONS it is best if step 3 is performed in the log domain
Gal’Jssians in the imagir:}ary domain as a constrain%)dreduce underflow effects due to the product operation.

Gaussian mixture and adapt the parameters as such [12].
To do so we will find the meam and variances? of

our model using an Expectation-Maximization approach. In this section we will show how we can employ
Therefore having a complex random variablec C, the model we just introduced in order to learn and
with the aforementioned properties, we use the followirgubsequently identify positions and trajectories.

ensure that the imaginary part is wrapped around
[—7, w] by setting:

g,) Likewise update the variable using:

[11. L EARNING TO LOCALIZE
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A. Learning positions loop to learn and recognize sequences of positions as

The methodology for learning to localize a positioQutlined in the steps below.
is fairly straightforward now that we have a model. 1) Define the numbe$ of states to use for describing
During the training phase the features from each location  a training trajectory and assign each time point to
are extracted using estimates &f,(t) by applying a random state.
equation 1 on the short time Fourier transforms of the 2) Train the model of each state using the features of
microphone inputs. For each position we compute the the time points assigned to it using the process in
model we just introduced at eachand obtain a series section IlI-A.
of u, ando,. To localize an unknown input we can 3) Estimate vectoiP of initial probabilities of each
extract the features and evaluate the likelihood of the state and the matrixA of the probabilities of

learned models for each position using: transitions between stateg; is the probability
1 lGusetkany=DI that state: will be the first to appear, andl; ;
P)=1]> . —5e 73 9) is the probability that state will be succeeded
o . . . . . .
k w by statej. Their estimation is performed in a
The position model that provides the highest likeli-  straightforward manner by noting the initial states

hood reveals the most likely position that the input has ~ and then counting the subsequent state transitions.

originated from. This process makes the assumption that) UseA andP for Viterbi decoding in conjunction

each position has a unique set of relative magnitude With the state models to find the most likely state

and phase. Although this is not strictly true for all ~ of each time point in the training data.

configurations, diligent use of microphone directional 5) If most likely state assignments differ from the

responses and environmental reverberation can help in ones we had from before, go to step 2 and repeat.

minimizing any location ambiguities. Otherwise terminate training and retuf, P and
One issue that rises with this approach is the spectral  the state models.

consistency between training and testing sounds. AnOnce we have obtained a set of state models and

estimate ofR, can be unreliable when the source usdtie initial and transition probabilitieP and A, we can

for training has little energy at frequency. If that is use Viterbi decoding on an arbitrary input to estimate

the case then classification will be poor since it will b#s similarity to the trained sequences, thus performing

contrasted with excessively noisy data. To remedy thitassification with respect to trained models.

we can keep track of the frequency content of the training

data and perform classification by evaluating equation 9 IV. SYNTHETIC EXPERIMENTS

on only a few of the most prominent frequencigsThis _ , _

also provides a computational advantage, significant] In_ th'_s sectl_on we will present Fhe results from syn-

reducing the operations required for classification. T etlc_ S|mulat|ons_. We_ wil €xamine two cases where

obtain a good classification estimate it is also importa‘ﬁ’t’a will learn and identify p03|t'|ons and traje_ctorles. Al

that the training source spectrum and the source & amples were generated using a source image m_odel

be classified have non-negligible energy in overlappir? a two-dimensional square room [14]. The room size
s10m x 10m, we estimated the 24 most significant

spectral areas. It is easy to satisfy this constraint focti q gel th I q

choosing the training source to be either a widebaf mdrebectlons an ﬁto. mo fe the Wr? s we lgse a

signal or of similar type to the source to be classified>0und @ sor'pt|on coefficient of 0.15. T € sampiing rate
of the experiments wa$4100H z. Two virtual cardioid

_ . . microphones were placed in the room, the leftmost

B. Learning trajectories pointing towards the left side of the room, the rightmost

Learning trajectories is somewhat more complicatethwards the right side. Their magnitude response was
Identifying a trajectory involves having temporal knowl—4dB at £180° and linearly scaled t0dB at 0°.
edge of the series of positions that the source has gondo generate training examples we positioned the sound
through. A straightforward method to include temporalf a shaker— exhibiting a fairly wideband spectrum from
information to our training is to employ a Hiddem3500H > to 13000H >—to the positions and trajectories
Markov Model and Viterbi training [13]. we wanted to learn. To generate the testing examples

As before we will extract the features of each timeve used the sound of a male speaker counting from
point using the features introduced in section II-A andne to five, and placed it in slightly different points
model each state with the model introduced in section ks compared with the training positions. Had identical
B. This model will be incorporated in a Viterbi trainingpositions been used the classification results would be
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100%; by introducing this slight deviation we construct
a more realistic scenario and examine the tolerances a
this approach. i

Front - Back (mete
Front - Back (meters)

A. Synthetic position example

To test the ability of this model to learn static positions -
we generated a pool of ten random positions, and then
randomly offset them by up t@0cm to generate the = = = woen |
testing positions. The two microphones were positioned (@)

a (4.95m,5m) and (5.05m,5m). The entire setup is Fig. 3. On the left subfigure (a) are the training, testing and

shown in figure 3(a). In order to perform feature eXtr'f?“?'r‘iic.rophone positions used to synthetically evaluate cstatisition
tion we used an FFT size of 1024 points with no overldgarning. On the right subfigure (b) is the set of trajectorised

and no zero padding and employed a Blackman windofgr training to perform trajectory classification. The gasi of the

microphones in the room is shown by the two marks around
Each spectral frame was used to extract a set of featuges;.- (5m,1.5m).
which were then used to train the relative magnitude

r

and phase model. In the classification stage each sei, "« powna oo : rowns L eoun :
features from each spectral frame was classified by 'N « H “ H - N “ H
= ] [l

signing it to the position model for which it exhibited the’

highest likelihood. Table | presents the confusion tab,ll . | [l | |4 | [ | [ [l

for the frame level classification. Each row shows ho o -

many frames from each test example were classified. N N “ N « N
o o Hﬂ

belonging to each model (each column being a mode-
The same data is also displayed in histogram form ~ ;

figure 4, where each subplot corresponds to a row w1 ™ wal e TR T iiyTem Ty
table I. The position tests are ordered in positions frofyy 4. Classification results for each position. Each ptai
1 to 10, so the diagonal elements of the table shouidtogram of the frame-level classification result of eadsion
contain the higher numbers, and tita bar in thesth tested.

position subplot should be the tallest one. Numbers off

the diagonal of the table contain the misclassified frames. . : .
is easily resolved by using more microphones or by

TABLE | strategically positioning the two microphones and taking
SYNTHETIC POSITION ESTIMATION CONFUSION TABLE advantage of their directional responses (see section V-
A). Additional simulations with up to 50 positions in
the same virtual environment yielded results no worse

Estimated Position

%8 605 g g 8 8 8 8 8 8 than 90% recognition at the frame level (and 100% at
=l o 6 65 0 0 0 0 0 0 0 the entire sound level).
212 0o 0 6 0 0 0 O 0 O
8lo 0o O O 70 O 0O 1 0 O
% 0O 0 0O O O 68 0 3 0 0 B. Ynthetic trajectory example
% 8 8 2 g 8 8 %8 7% 8 8 In this example the training data consisted of a set of
< O 0 O O O O O O 63 9 eight different trajectories (shown in figure 3(b)), and
0O 0 O O O O o0 o0 o0 71 for testing data we generated eight more trajectories

which randomly deviated from the training set by up to

Overall recognition at the frame level was 95.3%20cm at each point. The microphones were positioned at
The position model which claimed the most framegl.95m,1.5m) and(5.05m, 1.5m). We performed train-
from each sound example was used to deduce the pwy using the Viterbi algorithm described in section 111-B
sition that the sound was coming from, in which casend used six states to model the trajectories. The FFT
accuracy was 100%. Repeated simulations yielded tih@mes were 1024 points. Figure 5 presents the results
same results so long as two positions did not exhilaf this classification. Each plot displays the likelihood of
the same relative phase and magnitude features. Tééch test trajectory as evaluated by all trained models.
would be the case when positions would be in th&ll trajectories are exhibiting a maximum likelihood at
same angle of attack towards the sensors. This problém appropriate model.
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A. Position example

To test position recognition, approximately 3 sec train-
ing examples were generated using the shaker from eight
uniform positions around the microphone @, 45°,
90°, 135°, 180°, 225°, 270°, and315°. To generate the
testing data, one of the authors counted from one to six
from approximately the same positions. Using analysis
frames of 1024 samples we estimated the likelihoods
of each frame and assigned it to the classifier which
reported the highest likelihood. The results are reported
as a confusion table shown in table Il also displayed in
figure 7.

The overall classification for each case is correct.
An interesting observation is that classification for the
fifth position, which corresponds t®80°, is strongly
confused with the first position which correspond$to
This confusion is a well documented effect in human
localization known as the front/back ambiguity. This
rises due to the fact that the relative magnitude and phase
between two human ears are the same acros§‘the
180° meridian. Since our recording apparatus is modeled
after the human head, it exhibits the same ambiguity
which we find in our results. However the proper classifi-
cation prevails since the room response (which was also
implicitly learned) imposes slightly different responses
in these two positions. Frame level classification is
ais)out 68% (predominantly due to front/back confusion),

Likelihood x10°

ssssssssssssssssssssssssssssssss

‘‘‘‘‘‘‘‘‘‘

12345678 120345678 12345678 12345678

Fig. 5. Likelihoods of each test trajectory from each model.

Fig. 6. Recording apparatus used for the real recordings.

V. REAL-WORLD EXPERIMENTS

In this section we present results that we obtaine e ; . )
. . . classification over an entire testing sound is 100%.
using real-world recordings. The recordings were pefr-
formed in an office measuring}80m x 2.90m x 2.60m.

The room features many reflective surfaces most im-
portant of which being two glass windows amounting

to about3m?, and a large whiteboard. The reverber-

TABLE Il
POSITION ESTIMATION CONFUSION TABLE

Estimated Position

_ : 0° 45° 90° 135° 180° 225° 270° 315°
ation Ty of the room was estimated to be 0.45 sec. 0° [126 5 © 1 17 3 0 5
Background noise, such as air conditioning, and rooms 36) ! 126 125 gj ;‘ g 2 :
ambience amounted to-al2dB noise floorascompared 8 1352 | 9 15 9 93 15 15 7 4
to the speech levels used in the evaluation recordingsﬁ; 180° 149 5 2 11 113 8 2 1

h di q . hni 32808 22X | 2 1 4 10 130 16 24
The recordings were made using a Technics RP- _ el s 2 1 o 6 20 148 41
"ambience microphone”, which is a dummy head bin- ~ 315°| 6 1 1 1 6 32 19 155

aural recording device (figure 6). Its microphones were
substituted by two Behringer ECM-8000 microphones.
The head-like shape of the enclosure and the pinnae tBatTrajectory example

are part of the sound path leading to each microphon€y, this example the training data consisted of seven
ensure that sounds from almost all locations have distingttinct trajectories within the recording room. The tra-
relative magnitude and phase values (this is the sajpgrories featured two passes across the long dimension
feature that allows humans to localize sounds with littlg; the room in each direction. two passes from each end

ambiguity in three dimensions using only two ears [15])O the center of the room and back, two passes across
Just as before we generated training examples the short dimension of the room in either side of the
using the aforementioned shaker in various positionsicrophones and an arching trajectory starting from one
and trajectories, and then performed classification side of the room to the other. The dummy head was
male speech counting numbers. The sampling rate walaced in the center of the office close to one of the
44100H z. walls. Figure 8 graphically displays the trajectories and
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Fig. 7. Results of position classification using a dummy heax :
microphone. Note how due to symmetry of the headthand 180° ERN
positions are easily confused (just as in human hearingyo Abte Model #
how the directional responses allow us to localize fré@mto 360° L x10° Trajectory 7
with only two elements.

Likelihood
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Likelihood
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Model #

Likelihood
iR
o
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5 Dummy head 6 1 2 3 4 5 6 7
25 mlcrophones\ /7 Model #
oo
o Fig. 9. Likelihoods of each test trajectory from each model.

Front - Back (meters)
-
o

il - - - -
. . H - H - H
[P I ——— s T -0 -0 20 10 H
% 05 T 5 2 25 3 35 ° Hr‘\ ° ) 1’: r—\ﬂ [N z ml -0
2 - Right ‘meters TiaassTE T23aeTE Teeaes7E isaaEee
Fig. 8. The trajectories and microphone positions usedhferréal- .. o o o
world trajectory test. The numbers near the end arrows atelithe .o 20 o 0
numerical designation of each trajectory. Trajectorieo M4twere = > H 20 20
along the same line on the front-back axis, but are showrtslig - TZBMHTB VA Tha oll—=la 123426”D

7 7
odel # odel # Model # Model #

separated in the figure for better legibility.

Fig. 10. Results of position classification using a dummydhea
microphone rotate@0° after training to simulate an acoustic envi-

the microphone placement. As in the previous section tif@ment change. Comparing the results with figure 7 we see tha
training examples were generated by an author producfﬂg st a‘t’izrffss'f'ca“on has worsened and that we have two
sound with a shaker along these trajectories, and the

testing examples were generated likewise with the author

counting fro_m one 1o twgn_ty n Er.]g“Sh' Usmg the San?l"?ificantly different from the training case. In addition to
feature settings and training as in the previous secti

. L rotation, the blinds covering one of the windows were
we obtained the results shown in figure 9. The corregt

: - - Jrawn to additionally change reflectance properties. The
tcrf;]::i:c?crgﬁzvss classified for all cases, yielding 100 fesults are shown in figure 10. Most positions were prop-

erly classified, although by a notably less clear margin as
compared to figure 7. The two misclassifications were off
C. Training and testing environment mismatching by 90°, with the correct answer being the second most
Using the trained models from the static position&ely model. The models for these positions apparently
experiment in section V-A, we also tested accurad¢glied on the environment's acoustics more than the
under different conditions to evaluate the limits of thi§ross-microphone relationship. Less drastic changes in
approach. the room, such as moving furniture around, did not pose
First we rotated the recording apparatusd9y anti- as serious a disruption proving some degree of robustness
clockwise, thereby changing the already learned roorgainst changing conditions between training and testing.
characteristics. Since the apparatus was located in th&Ve also placed the recording apparatus in a corner of
center of a non-square room the basic structure of ttiee room. It was positioned to face towards the center of
acoustic environment was severely changed. In addititite room which resulted into strong reflections coming
to that, since one side of the office had a large whitebodrdm the rear (especially from the rear-left, since one side
and the opposing side contained a cluttered desk awfdhe corner was a glass window). Due to this placement
bookshelves, the reflection characteristics were now sige could only evaluate three positiong;, 45° and
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Position 1 Position 2 Position 3 Position 4

— 25 25 Position 1 Position 2
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=0 i H 10 H 10 I 4 Mics I 4 Mics
10 s s s 60 60
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Moot Mbes Mbes 0 0
50 - hd 80 - ZZ 80 ~ 20 20
30 - @ - 0 [ 0
o a0 30 4o 1 2 3 4 1 2 3 4
o H H -0 20 -0 Model # Model #
SIECSRE R = N P e N P Y= R R P«
Model # Model # Model # Model # 100 Y™ 80 T
g0 | EEEEE 3 Mics [ 3 Mics
. oy apr . . I 4 Mi I 4
Fig. 11. Results of position classification using an unknown e
. . . . 60
noise source. Although the margin of certainty is lower, toerect "
classification is made for all cases. 40
20 20
0 0

1 2 3 4 1

315°. Individual frame classification results are shown Mool # “odel #
in table Ill. Note how the frames from the two side
positions result(-.t-(‘tl, by majquty, m. proper CIaSSIflcatlorFOur microphones. The frame-based classification resuéisshown
but the front position was misclassified. In the case Whefige by side for each position, white bars are for two micomes,
the sound was coming from the front there are twgey bars are for three microphones, and black bars are far fo
factors that contributed to the misclassification. First wgicrophones.

would expect to have strong reflections from the rear

(and mostly the rear-left where the glass surface w

second there is the problem of front-rear confusion

ig. 12.  Results of position classification using two, thmae

as), e
vﬁm overall frame-level classification results were 81.5%

came across in section V-A. These are factors that HaT€ct for using two microphones, 89.5% for three

reflected in the results where we see most frames be[fifroPhones and 91.5% for all four microphones (taking
classified as coming the the rear or the rear-left. N frame majority vote all testing sounds were properly
classified in all cases). We note that each time we added

TABLE I an extra microphone we observed an improvement in
ROOM CORNER POSITION ESTIMATION CONFUSION TABLE classification accuracy, which was expected since the

. . additional information in training helps disambiguate
Estimated Position

0°  45°  90° 135° 180° 925° 270° 315° cases in which two microphones would be inadequate.
= 5 0° 7 7 14 16 29 5 4 5
Ei‘g 45° 1 64 25 1 5 1 1 3
g 353 o o 1 0 19 73 12 VI. CONCLUSIONS

_ ) . In this paper we developed a statistical model which
Finally to test noise tolerance we evaluated class@én model magnitude and phase responses and can be
cation under the same positioning as the_tramed_da&@ed to classify transfer functions. We have employed
but performed the speech recordings with music glic mogel for the task of sound localization using
_SdB, relatlve_t_o the speech levels and coming from ar‘ﬁicrophone arrays. We have tested this model on both
untrained position. The re_s_ults_ are shown in figure 1%ynthetic and real-world situations under a variety of
We see the correct classification for all cases but ats@fttings and obtained satisfactory classification results

tighter margin. This is a different paradigm from the one usually
employed on arrays and it comes with its own set of
D. Use of additional array elements advantages and disadvantages. The main differences are
In this section we consider the case where we have t#iat there needs to be a training stage, that we recognize a
array of more than two elements and see how that cdiscrete set of positions, and that the system is somewhat
change the localization results. For this setting we useed to the acoustical environment during training.
a four microphone linear array with the microphones The existence of training complicates an installation
spacedlOcm apart. We trained localization models foby requiring that initial stage. However it frees the
four distinct positions. The training and testing methoaray designer from having to ensure meticulous setup
ology was the same as in the preceding sections. \Afed array uniformity that traditional approaches require.
evaluated the results using only two, three or all foBince locations are learned from cross-element responses
microphones by extracting the appropriate features as ded not deduced from propagation hypotheses, there is
scribed in section Il. The results are shown in figure 180 need to have a system that is well approximated
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localization, this work can be extended to model transfer
functions in general and potentially be employed for
other system modeling tasks where wrapping is an issue.
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