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Abstract— In this paper we tackle the problem of source
localization by example. We present a methodology that
allows a user to train a microphone array system using
signals from a set of positions and trajectories and subse-
quently recall the localization information when presented
with new input signals. To do so we present a new
statistical model which is capable of accurately describing
features from the cross spectra of the microphone signals
so as to model the room responses from all positions of
interest. We further extend this model to allow modeling of
sequences of positions, thereby also enabling the learning
and recognition of trajectories. Because of its learning
nature this method provides practical advantages in setting
up a microphone array, by not requiring favorable room
acoustics, careful element positioning or uniformity of
sensors. It also introduces an approach to localization
which can be extended to other problems requiring models
of transfer functions. We present tests on synthetic and
real-world data and present the resulting recognition rates
for a variety of situations.

I. INTRODUCTION

SOURCE localization using microphone arrays is
a subject that has received significant attention in

the signal processing literature. Such systems are often
used, for example, to discover the location of active
speakers in a teleconference setting, track vehicles in an
outdoor environment, steer surveillance cameras towards
suspicious sounds, etc. This type of functionality can be
achieved using a variety of techniques depending on the
constraints and expectations of the system at hand. One
family of approaches takes advantage of the time differ-
ence of arrival (TDOA) of a source signal as measured
across multiple microphones. These time differences can
be estimated using a variety of techniques [1], [2], [3],
[4], [5], and once obtained can be used in conjunction
with the positions of the microphones to estimate the

originating location of the source [6], [7], [8]. Such
approaches exhibit the advantage of being fairly efficient
and adequately robust for some real-world applications.
Another category of source localization algorithms mea-
sure the likelihood that the input has originated from a
set of locations instead of inferring the location from
the input. These algorithms employ a wide variety of
computational techniques which involve subspace meth-
ods [9], cross spectral measures or beamforming and/or
probabilistic formulations [10]. These methods are often
less efficient to compute than the TDOA methods, but
they provide an increased robustness and can operate
more reliably in environments with multiple sources.
There have also been some formulations using a learning
methodology, but they have been quite ad-hoc [11] and
have fallen out of favor.

Regardless of the localization technique used, it is
imperative that the room acoustics are accommodating
so as to not exhibit confusing reflections, the positions of
the sensors are known, and the microphones have similar
responses. Non-compliance to any of the above condi-
tions can result in detrimental accuracy in localization
estimates.

In this paper we address the source localization issue
from a different viewpoint. We will examine the case
where the positioning and response of the microphones
is unknown, as is the surrounding acoustic environment.
We will consider the case where strong room reflections
exist in addition to constant background sounds. In
order to deal with these issues we will use a learning
methodology.

The methodology that we propose has two stages, an
unknown array system is trained with sounds emanating
from a variety of locations. The response characteristics
from each location are used as training features, and
subsequently used for recognition. Using this approach
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spurious reflections, or microphone inconsistencies do
not pose a practical issue since they are learned as part
of the process.

Obviously, training for the specific acoustic environ-
ment where the system is to be used is the price to pay
for not having to deal with array calibration. Training,
however, is acceptable in many applications involving
fixed arrays and in our experience does not pose a
significant burden.

The remainder of this paper is divided as follows. In
section II we will introduce the features and the statistical
model we use for training to discriminate positions and
trajectories. Section III will introduce the training and
classification methodology that we propose. Sections IV
and V present results from synthetic and real-world data
experiments under various conditions.

II. L OCATION MODELING

The problem we set forth in this paper is stated
as follows: Given an arbitrary array configuration and
a randomly positioned source, we desire to learn the
source’s position from the observed data, so that when-
ever another source is placed in that position we can
reliably confirm it. We will also consider the dynamic
case where the sources are allowed to constantly change
positions and follow specific trajectories, which must
also be learned and recognized.

In the following sections we will lay out the frame-
work of this work. We will first examine the features
needed to perform this task, and subsequently provide a
statistical model for modeling positions and trajectories
using these features.

A. Location features

In order to have invariance from the nature of the
incoming sources and array characteristics, the features
that we should employ will have to be relative features
between the microphone inputs. Using this approach
training will not be influenced by the nature of the inputs,
but rather by the cross-microphone relations. To this
end we employ the relative magnitude and phase of the
spectra of each microphone input.

We start considering a two element array setup. Using
two microphones, we receive one signal from each
denoted byz(t) and y(t). Assuming local stationarity,
we perform short-time spectral analysis to determine
the frequency domain counterparts, which we denote as
Zω(t) and Yω(t) for each frequencyω at time t. As
features we will use the log cross-magnitude and the
cross-phase of the two signals at each frequencyω. Both

features can be computed simply using one complex
logarithm:

Rω(t) = log
Zω(t)

Yω(t)
(1)

This computation places the log of the ratio of the
magnitudes of the inputs in the real part ofRω and their
phase difference in the imaginary part:

ℜ(Rω(t)) = log
‖Zω(t)‖
‖Yω(t)‖

ℑ(Rω(t)) = ∠Zω(t) · Yω(t)∗
(2)

The information contained across allRω is usu-
ally sufficient to discriminate between various positions
around the array. Although singular cases exist they are
hard to come by in real world setups. The positioning and
directionality response of the microphones, as well as
the acoustic environment response, are the main factors
in defining the discriminatory power of the array. If
appropriately chosen it is possible to localize a very wide
range of positions using only a few elements (section V).

There are many possible ways to extract equivalent
features for arrays with more than two elements. The
most straightforward method is to consider the relative
magnitude and phase of all pairs of elements and use all
of them simultaneously. This has the effect of increasing
the dimensionality of our features (and the computational
complexity when processing them) by a factor ofN !

2(N−2)!
for an array ofN elements.

B. Location model

Using the aforementioned features we will now con-
struct a model we can train and then use for recognition.
A first rudimentary model would be to estimate a com-
plex Gaussian distribution for eachRω and use that for
subsequent classification. However, this approximation
is not always appropriate. Although the real part of
our features can be adequately modeled by a Gaussian
distribution, this is not the case with the imaginary part,
which represents a phase value. Phase is estimated in a
wrapped form and is bound between−π andπ. Using
a Gaussian distribution to model this data can result
in significant estimation errors. To illustrate this issue
consider the following example from a real recording of
speech from two microphones. Figure 1 displays on the
left the histogram of relative phase estimates at around
6300 Hz. We can see that they can be described using
a Gaussian model. However consider the relative phase
distribution around 7800 Hz, as shown in in the right
plot of figure 1. Due to the phase being wrapped around
±π the result is a bimodal distribution that is poorly fit
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Fig. 1. Histograms and corresponding Gaussian fits of relative phases
from two different frequencies. Due to phase being bound from −π

to π a Gaussian model is not sufficient to model the data.

by a Gaussian model. Even when the wrapping effect
is not that severe, the mean of the estimated Gaussian
will be biased towards zero, as compared to where the
distribution modes truly are.

Therefore we need to consider a different model for
the phase angle so that we can estimate likelihoods with
better accuracy. To address this we model the distribution
of the relative phase as a Gaussian wrapped around
the interval[−π, π]. This means that the phase data is
assumed to be normally distributed had we not had wrap-
ping. By looking at the histograms in figure 1, we can see
that this is a better model. The addition of the wrapping
of the distribution is meant to mirror the wrapping that
phase undergoes. The resulting distribution is defined as:

Pℑ(Rω)(x) =







∑

k∈Z

1√
2πσ2

e−
(x−µ+k2π)2

2σ2 x ∈ [−π, π]

0 otherwise
(3)

Although k ranges from−∞ to ∞, in practice a
range from -2 to 2 is often an adequate approximation
(and the one we have used in all our experiments). We
demonstrate how this model works in figure 2. Assuming
the data in the right plot of figure 1 we usek ∈ [−1, 1] to
obtain three Gaussians which are shown with the dashed
lines. The distribution that they approximate, which is
only defined between−π andπ, is shown with the solid
line. We can see that it corresponds to the bimodal nature
of the data much better than a single Gaussian.

We will now develop an algorithm to estimate a
complex Gaussian model in which the imaginary part
is wrapped in the interval[−π, π] and the real part is
not, as is the case withRω. We can treat the sum of
Gaussians in the imaginary domain as a constrained
Gaussian mixture and adapt the parameters as such [12].
To do so we will find the meanµ and varianceσ2 of
our model using an Expectation-Maximization approach.
Therefore having a complex random variablex ∈ C,
with the aforementioned properties, we use the following
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0.05

0.1

0.15

0.2

π π π π π π π

Fig. 2. The wrapped Gaussian model. The dotted line represents
the Gaussians to be summed and the solid line their addition in the
[−π, π] interval.

steps to iteratively updateµ andσ:

1) Start with initial estimatesµ = 0 andσ = 1.
2) Compute the distance of the sample set from the

unwrapped Gaussians using:

Dk(x) = x− µ + k2π
√
−1 (4)

3) Compute the posterior probabilities of the sample
set for each of the unwrapped Gaussians using:

Qk(x) = 1
πσ2 e−

Dk(x)2

σ2

Pk(x) = Qk(x)
P

k
Qk(x)

(5)

4) Update the variableµ as a mean weighted by the
posteriors:

µ← µ +

〈

∑

k

Dk(x)Pk(x)

〉

(6)

where〈·〉 denotes sample expectation. Furthermore
ensure that the imaginary part is wrapped around
[−π, π] by setting:

ℑ(µ)← [ (ℑ(µ) + π) mod (2π) ] − π (7)

5) Likewise update the variableσ using:

σ ←

√

√

√

√

〈

∑

k

Dk(x)2Pk(x)

〉

(8)

6) Repeat from step 2 until convergence.

Convergence is rapid and usually concludes to a
satisfactory solution by the 10th iteration. For numerical
reasons it is best if step 3 is performed in the log domain
to reduce underflow effects due to the product operation.

III. L EARNING TO LOCALIZE

In this section we will show how we can employ
the model we just introduced in order to learn and
subsequently identify positions and trajectories.
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A. Learning positions

The methodology for learning to localize a position
is fairly straightforward now that we have a model.
During the training phase the features from each location
are extracted using estimates ofRω(t) by applying
equation 1 on the short time Fourier transforms of the
microphone inputs. For each position we compute the
model we just introduced at eachω and obtain a series
of µω and σω. To localize an unknown input we can
extract the features and evaluate the likelihood of the
learned models for each position using:

P (x) =
∏

ω

∑

k

1

πσ2
ω

e
− ‖(xω−µω+k2π

√−1)‖
σ2

ω (9)

The position model that provides the highest likeli-
hood reveals the most likely position that the input has
originated from. This process makes the assumption that
each position has a unique set of relative magnitude
and phase. Although this is not strictly true for all
configurations, diligent use of microphone directional
responses and environmental reverberation can help in
minimizing any location ambiguities.

One issue that rises with this approach is the spectral
consistency between training and testing sounds. An
estimate ofRω can be unreliable when the source used
for training has little energy at frequencyω. If that is
the case then classification will be poor since it will be
contrasted with excessively noisy data. To remedy this
we can keep track of the frequency content of the training
data and perform classification by evaluating equation 9
on only a few of the most prominent frequenciesω. This
also provides a computational advantage, significantly
reducing the operations required for classification. To
obtain a good classification estimate it is also important
that the training source spectrum and the source to
be classified have non-negligible energy in overlapping
spectral areas. It is easy to satisfy this constraint by
choosing the training source to be either a wideband
signal or of similar type to the source to be classified.

B. Learning trajectories

Learning trajectories is somewhat more complicated.
Identifying a trajectory involves having temporal knowl-
edge of the series of positions that the source has gone
through. A straightforward method to include temporal
information to our training is to employ a Hidden
Markov Model and Viterbi training [13].

As before we will extract the features of each time
point using the features introduced in section II-A and
model each state with the model introduced in section II-
B. This model will be incorporated in a Viterbi training

loop to learn and recognize sequences of positions as
outlined in the steps below.

1) Define the numberS of states to use for describing
a training trajectory and assign each time point to
a random state.

2) Train the model of each state using the features of
the time points assigned to it using the process in
section III-A.

3) Estimate vectorP of initial probabilities of each
state and the matrixA of the probabilities of
transitions between states.Pi is the probability
that statei will be the first to appear, andAi,j

is the probability that statei will be succeeded
by state j. Their estimation is performed in a
straightforward manner by noting the initial states
and then counting the subsequent state transitions.

4) UseA andP for Viterbi decoding in conjunction
with the state models to find the most likely state
of each time point in the training data.

5) If most likely state assignments differ from the
ones we had from before, go to step 2 and repeat.
Otherwise terminate training and returnA, P and
the state models.

Once we have obtained a set of state models and
the initial and transition probabilitiesP andA, we can
use Viterbi decoding on an arbitrary input to estimate
its similarity to the trained sequences, thus performing
classification with respect to trained models.

IV. SYNTHETIC EXPERIMENTS

In this section we will present the results from syn-
thetic simulations. We will examine two cases where
we will learn and identify positions and trajectories. All
examples were generated using a source image model
of a two-dimensional square room [14]. The room size
was 10m × 10m, we estimated the 24 most significant
room reflections and to model the walls we used a
sound absorption coefficient of 0.15. The sampling rate
of the experiments was44100Hz. Two virtual cardioid
microphones were placed in the room, the leftmost
pointing towards the left side of the room, the rightmost
towards the right side. Their magnitude response was
−4dB at ±180◦ and linearly scaled to0dB at 0◦.

To generate training examples we positioned the sound
of a shaker— exhibiting a fairly wideband spectrum from
3500Hz to 13000Hz—to the positions and trajectories
we wanted to learn. To generate the testing examples
we used the sound of a male speaker counting from
one to five, and placed it in slightly different points
as compared with the training positions. Had identical
positions been used the classification results would be
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100%; by introducing this slight deviation we construct
a more realistic scenario and examine the tolerances of
this approach.

A. Synthetic position example

To test the ability of this model to learn static positions
we generated a pool of ten random positions, and then
randomly offset them by up to20cm to generate the
testing positions. The two microphones were positioned
at (4.95m, 5m) and (5.05m, 5m). The entire setup is
shown in figure 3(a). In order to perform feature extrac-
tion we used an FFT size of 1024 points with no overlap
and no zero padding and employed a Blackman window.
Each spectral frame was used to extract a set of features
which were then used to train the relative magnitude
and phase model. In the classification stage each set of
features from each spectral frame was classified by as-
signing it to the position model for which it exhibited the
highest likelihood. Table I presents the confusion table
for the frame level classification. Each row shows how
many frames from each test example were classified as
belonging to each model (each column being a model).
The same data is also displayed in histogram form in
figure 4, where each subplot corresponds to a row in
table I. The position tests are ordered in positions from
1 to 10, so the diagonal elements of the table should
contain the higher numbers, and theith bar in theith
position subplot should be the tallest one. Numbers off
the diagonal of the table contain the misclassified frames.

TABLE I

SYNTHETIC POSITION ESTIMATION CONFUSION TABLE

Estimated Position

A
ct

ua
l

P
os

iti
on

68 0 0 3 0 0 0 0 0 0
0 65 6 0 0 0 0 0 0 0
0 6 65 0 0 0 0 0 0 0
2 0 0 69 0 0 0 0 0 0
0 0 0 0 70 0 0 1 0 0
0 0 0 0 0 68 0 3 0 0
0 0 0 4 0 0 68 0 0 0
0 0 1 0 0 0 0 70 0 0
0 0 0 0 0 0 0 0 63 9
0 0 0 0 0 0 0 0 0 71

Overall recognition at the frame level was 95.3%.
The position model which claimed the most frames
from each sound example was used to deduce the po-
sition that the sound was coming from, in which case
accuracy was 100%. Repeated simulations yielded the
same results so long as two positions did not exhibit
the same relative phase and magnitude features. This
would be the case when positions would be in the
same angle of attack towards the sensors. This problem
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Fig. 3. On the left subfigure (a) are the training, testing and
microphone positions used to synthetically evaluate static position
learning. On the right subfigure (b) is the set of trajectories used
for training to perform trajectory classification. The position of the
microphones in the room is shown by the two× marks around
position (5m, 1.5m).

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 1

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 2

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 3

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 4

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 5

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 6

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 7

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 8

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 9

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Model #

Position 10

Fig. 4. Classification results for each position. Each plot is a
histogram of the frame-level classification result of each position
tested.

is easily resolved by using more microphones or by
strategically positioning the two microphones and taking
advantage of their directional responses (see section V-
A). Additional simulations with up to 50 positions in
the same virtual environment yielded results no worse
than 90% recognition at the frame level (and 100% at
the entire sound level).

B. Synthetic trajectory example

In this example the training data consisted of a set of
eight different trajectories (shown in figure 3(b)), and
for testing data we generated eight more trajectories
which randomly deviated from the training set by up to
20cm at each point. The microphones were positioned at
(4.95m, 1.5m) and(5.05m, 1.5m). We performed train-
ing using the Viterbi algorithm described in section III-B
and used six states to model the trajectories. The FFT
frames were 1024 points. Figure 5 presents the results
of this classification. Each plot displays the likelihood of
each test trajectory as evaluated by all trained models.
All trajectories are exhibiting a maximum likelihood at
the appropriate model.
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Fig. 5. Likelihoods of each test trajectory from each model.

Fig. 6. Recording apparatus used for the real recordings.

V. REAL-WORLD EXPERIMENTS

In this section we present results that we obtained
using real-world recordings. The recordings were per-
formed in an office measuring3.80m× 2.90m× 2.60m.
The room features many reflective surfaces most im-
portant of which being two glass windows amounting
to about 3m2, and a large whiteboard. The reverber-
ation T60 of the room was estimated to be 0.45 sec.
Background noise, such as air conditioning, and room
ambience amounted to a−12dB noise floor as compared
to the speech levels used in the evaluation recordings.
The recordings were made using a Technics RP-3280E
”ambience microphone”, which is a dummy head bin-
aural recording device (figure 6). Its microphones were
substituted by two Behringer ECM-8000 microphones.
The head-like shape of the enclosure and the pinnae that
are part of the sound path leading to each microphone
ensure that sounds from almost all locations have distinct
relative magnitude and phase values (this is the same
feature that allows humans to localize sounds with little
ambiguity in three dimensions using only two ears [15]).

Just as before we generated training examples by
using the aforementioned shaker in various positions
and trajectories, and then performed classification on
male speech counting numbers. The sampling rate was
44100Hz.

A. Position example

To test position recognition, approximately 3 sec train-
ing examples were generated using the shaker from eight
uniform positions around the microphone at0◦, 45◦,
90◦, 135◦, 180◦, 225◦, 270◦, and315◦. To generate the
testing data, one of the authors counted from one to six
from approximately the same positions. Using analysis
frames of 1024 samples we estimated the likelihoods
of each frame and assigned it to the classifier which
reported the highest likelihood. The results are reported
as a confusion table shown in table II also displayed in
figure 7.

The overall classification for each case is correct.
An interesting observation is that classification for the
fifth position, which corresponds to180◦, is strongly
confused with the first position which corresponds to0◦.
This confusion is a well documented effect in human
localization known as the front/back ambiguity. This
rises due to the fact that the relative magnitude and phase
between two human ears are the same across the0◦ to
180◦ meridian. Since our recording apparatus is modeled
after the human head, it exhibits the same ambiguity
which we find in our results. However the proper classifi-
cation prevails since the room response (which was also
implicitly learned) imposes slightly different responses
in these two positions. Frame level classification is
about 68% (predominantly due to front/back confusion),
classification over an entire testing sound is 100%.

TABLE II

POSITION ESTIMATION CONFUSION TABLE

Estimated Position
0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

A
ct

ua
l

P
os

iti
on

0◦ 126 5 0 1 17 3 0 5
45◦ 7 126 3 23 4 3 0 1
90◦ 4 4 135 24 8 5 1 1
135◦ 9 15 9 93 15 15 7 4
180◦ 49 5 2 11 113 8 2 1
225◦ 19 2 1 4 10 130 16 24
270◦ 8 2 1 0 6 20 148 41
315◦ 6 1 1 1 6 32 19 155

B. Trajectory example

In this example the training data consisted of seven
distinct trajectories within the recording room. The tra-
jectories featured two passes across the long dimension
of the room in each direction, two passes from each end
to the center of the room and back, two passes across
the short dimension of the room in either side of the
microphones and an arching trajectory starting from one
side of the room to the other. The dummy head was
placed in the center of the office close to one of the
walls. Figure 8 graphically displays the trajectories and
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Fig. 7. Results of position classification using a dummy head
microphone. Note how due to symmetry of the head the0◦ and180◦

positions are easily confused (just as in human hearing). Also note
how the directional responses allow us to localize from0◦ to 360◦

with only two elements.
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Fig. 8. The trajectories and microphone positions used for the real-
world trajectory test. The numbers near the end arrows indicate the
numerical designation of each trajectory. Trajectories 1 to 4 were
along the same line on the front-back axis, but are shown slightly
separated in the figure for better legibility.

the microphone placement. As in the previous section the
training examples were generated by an author producing
sound with a shaker along these trajectories, and the
testing examples were generated likewise with the author
counting from one to twenty in English. Using the same
feature settings and training as in the previous section
we obtained the results shown in figure 9. The correct
trajectory was classified for all cases, yielding 100%
classification.

C. Training and testing environment mismatching

Using the trained models from the static positions
experiment in section V-A, we also tested accuracy
under different conditions to evaluate the limits of this
approach.

First we rotated the recording apparatus by90◦ anti-
clockwise, thereby changing the already learned room
characteristics. Since the apparatus was located in the
center of a non-square room the basic structure of the
acoustic environment was severely changed. In addition
to that, since one side of the office had a large whiteboard
and the opposing side contained a cluttered desk and
bookshelves, the reflection characteristics were now sig-
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Fig. 9. Likelihoods of each test trajectory from each model.
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Fig. 10. Results of position classification using a dummy head
microphone rotated90◦ after training to simulate an acoustic envi-
ronment change. Comparing the results with figure 7 we see that
the margin of classification has worsened and that we have two
misclassifications.

nificantly different from the training case. In addition to
the rotation, the blinds covering one of the windows were
drawn to additionally change reflectance properties. The
results are shown in figure 10. Most positions were prop-
erly classified, although by a notably less clear margin as
compared to figure 7. The two misclassifications were off
by 90◦, with the correct answer being the second most
likely model. The models for these positions apparently
relied on the environment’s acoustics more than the
cross-microphone relationship. Less drastic changes in
the room, such as moving furniture around, did not pose
as serious a disruption proving some degree of robustness
against changing conditions between training and testing.

We also placed the recording apparatus in a corner of
the room. It was positioned to face towards the center of
the room which resulted into strong reflections coming
from the rear (especially from the rear-left, since one side
of the corner was a glass window). Due to this placement
we could only evaluate three positions,0◦, 45◦ and
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Fig. 11. Results of position classification using an unknown
noise source. Although the margin of certainty is lower, thecorrect
classification is made for all cases.

315◦. Individual frame classification results are shown
in table III. Note how the frames from the two side
positions resulted, by majority, in proper classification,
but the front position was misclassified. In the case where
the sound was coming from the front there are two
factors that contributed to the misclassification. First we
would expect to have strong reflections from the rear
(and mostly the rear-left where the glass surface was),
second there is the problem of front-rear confusion we
came across in section V-A. These are factors that are
reflected in the results where we see most frames being
classified as coming the the rear or the rear-left.

TABLE III

ROOM CORNER POSITION ESTIMATION CONFUSION TABLE

Estimated Position
0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

A
ct

ua
l

P
os

iti
on 0◦ 7 7 14 16 29 5 4 5

45◦ 1 64 25 1 5 1 1 3
315◦ 3 0 0 1 0 19 73 12

Finally to test noise tolerance we evaluated classifi-
cation under the same positioning as the trained data,
but performed the speech recordings with music at
−8dB relative to the speech levels and coming from an
untrained position. The results are shown in figure 11.
We see the correct classification for all cases but at a
tighter margin.

D. Use of additional array elements

In this section we consider the case where we have an
array of more than two elements and see how that can
change the localization results. For this setting we used
a four microphone linear array with the microphones
spaced10cm apart. We trained localization models for
four distinct positions. The training and testing method-
ology was the same as in the preceding sections. We
evaluated the results using only two, three or all four
microphones by extracting the appropriate features as de-
scribed in section II. The results are shown in figure 12.
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Fig. 12. Results of position classification using two, threeor
four microphones. The frame-based classification results are shown
side by side for each position, white bars are for two microphones,
grey bars are for three microphones, and black bars are for four
microphones.

The overall frame-level classification results were 81.5%
correct for using two microphones, 89.5% for three
microphones and 91.5% for all four microphones (taking
the frame majority vote all testing sounds were properly
classified in all cases). We note that each time we added
an extra microphone we observed an improvement in
classification accuracy, which was expected since the
additional information in training helps disambiguate
cases in which two microphones would be inadequate.

VI. CONCLUSIONS

In this paper we developed a statistical model which
can model magnitude and phase responses and can be
used to classify transfer functions. We have employed
this model for the task of sound localization using
microphone arrays. We have tested this model on both
synthetic and real-world situations under a variety of
settings and obtained satisfactory classification results.

This is a different paradigm from the one usually
employed on arrays and it comes with its own set of
advantages and disadvantages. The main differences are
that there needs to be a training stage, that we recognize a
discrete set of positions, and that the system is somewhat
tied to the acoustical environment during training.

The existence of training complicates an installation
by requiring that initial stage. However it frees the
array designer from having to ensure meticulous setup
and array uniformity that traditional approaches require.
Since locations are learned from cross-element responses
and not deduced from propagation hypotheses, there is
no need to have a system that is well approximated
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by theory. The learning part also takes care of adverse
acoustic conditions. This frees the array designer from
reverberation considerations, since any acoustic envi-
ronment peculiarities can be absorbed by the learning
process. The only requirement is that each learned posi-
tion exhibits a unique transfer function relating pairs of
microphones. Although this is a difficult requirement to
ensure, it is most often the case in reasonable acoustical
settings. An added advantage to this feature is that
otherwise ambiguous positions can now be discernible
due to unique reverberation patterns even though their
direct path features are the same (unless of course the
acoustic environment mirrors the response symmetry of
the array).

The downside is that we might end up learning so
much of the acoustic environment that an environmental
change might require relearning. Like all learning-based
methods, this is a highly context dependent issue. If the
room response is a dominant element in discriminating
locations, then this will be an issue and a change in
the acoustic environment would be detrimental to per-
formance. However, if this is the case, a more traditional
localization approach would have failed before we even
changed the environment, given that reverberation would
provide more location information than the direct signal.
In section V-C we explored the tolerance of training and
deployment environment mismatch and noted that our
approach would start to fail under severe mismatching.
Minor environmental changes such as moving furniture,
slightly displacing the array elements and adding noise,
did not have a particularly adverse effect in classification.

Finally the fact that this is a system that is not rec-
ognizing a continuum of positions, but rather a discrete
set also provides a level of robustness by eliminating
certain ambiguities we often see in localization systems.
If ambiguous positions are not simultaneously part of
the training set, then there is no difficulty in recognizing
them.

These differences place our approach not as a com-
petitor to other localization approaches, but rather as
an alternative. Depending on the limitations and re-
quirements of an array deployment one approach can
be better than the other. The solution we present is
geared towards scenarios which require the surveillance
of a specific set of locations/trajectories under adverse
acoustical conditions and array morphology.

Although we only presented this in the context of
localization, this work can be extended to model transfer
functions in general and potentially be employed for
other system modeling tasks where wrapping is an issue.
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