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Abstract— In this paper we present a convolutive basis decom- and we propose a supervised learning approach which can
position method and its application on simultaneous speake penefit from knowledge extracted outside the input samples.
separation from monophonic recordings. The model we prop@& 1nq gynervised approach to separation has been used in the

is a convolutive version of the non-negative matrix factozation tin th text of - ¢ f statistical del
algorithm. Due to the non-negativity constraint this type d coding past in the context of various types ol statistical models

is very well suited for intuitively and efficiently representing ([10][11][9]). Our convolutive model is based on a recently
magnitude spectra. We present results that reveal the natw of introduced decomposition [13] based on Non-negative Matri

these basis functions and we introduce their utility in sepeating  Factorization (NMF). We have previously shown how this
monophonic mixtures of known speakers. decomposition can be used to extract meaningful components
_ out of spectrograms in an unsupervised manner. In this paper
EDICS Categories: SPE-ENHA, SPE-ANLS we introduce the use of this basis decomposition on speech

Index Terms— non-negative matrix factorization, source sepa- and show how it discovers meaningful features which are very
ration, convolutive bases useful in the context of supervised source separation.

The remainder of this paper is organized as follows, sec-
tion Il introduces the convolutive basis decomposition ap-
proach we will use, section Ill presents a methodology of

ASIS decompositions have long been an important toektracting these bases from speech signals and highlights
in signal processing. The use of basis decompositiotigeir nature and some interesting properties. In sectiowéV
spans a wide variety of applications, equally rich as théetar introduce a methodology to perform speaker separation &d w

of approaches to obtain bases. Most basis decompositihoroughly evaluate it in section V. Finally in section VI we
methods are deeply rooted in statistics and transform déatéefly consider some post-processing enhancements teefurt
so as to have desirable properties. Well known examples bfost the quality of separation.

these are the Principal Component Analysis (PCA) [4] or the
Independent Component Analysis (ICA) algorithms [3]. Qthe
types of basis decompositions are more algebraic in nature
such as the Singular Value Decomposition (SVD), various In this section we describe the basis model we will employ
higher order generalizations of it [5], or the Non-negativand the appropriate adaptation procedures. We will start by
Matrix Factorization [8]. Many of these decompositions énaweviewing the Non-Negative Matrix Factorization algonith
been used in many ways for source separation tasks.aAad then extend it to a convolutive form which we will employ
particular use of these decompositions is on the magnituide our simulations.

spectra of monophonic recordings. Results relating this ap
proach to source separation have been reported in multiple . _ o
publications [2][12][1][15] and have been a promising field™ Non-negative matrix factorization

of research for some time. The use of basis functions in theNon-Negative Matrix Factorization is a linear basis decom-
just referenced work has been in the context of unsupervigeakition approach that assumes non-negativity on both the
learning. Basis decomposition and dimensionality reducti basis and the data to be approximated. We present it briefly
were used to obtain a small set of components that usualtythis section.

resembles the various sounds contained in the originatinpu NMF was first introduced by Lee and Seung [8]. Simply
The basis functions describe the spectral characters of #tated having a non-negative matik € R=%M*N the goal
components, whereas their weights provide their tempoisalto approximate it as a product of two non-negative madrice
evolution. Although this approach can be successful inifipecW ¢ R20MxE and H € R2%#*N where R < M. The
contexts it suffers from two problems, a rigid spectral formbjective is to minimize the error of reconstruction 6f by

and the fact that we often expect results from very littleadatW - H and to that extent Lee and Seung [6] provided two
In this paper we propose two extensions to this approacbst functions by which we can measure it. One of these cost
that address these problems. We extend the expressive pdiwactions is the Frobenius norm of the difference between th
of basis decompositions by specifying a convolutive modelput and the reconstruction, and the other, which we will

I. INTRODUCTION

II. CoNvOLUTIVE NMF



SUBMITTED TO IEEE TRANSACTIONS OF SPEECH AND AUDIO PROCE®8S , VOL. XX, NO. XX, XXX-200X 2

be employing in this paper, is an adaptation of the Kullbackvithin bases is a desirable feature. In this section we ihice

Leibler divergence which was defined as: a convolutive extension to NMF which can allow us to extract
cross-column patterns as single bases.
D HV oln ( \% ) _ViW.H (1)  As just described NMF attempts to reconstruct a ma¥ix
W-H F using a matrix product by =~ W - H. In the convolutive

where|| - || » is the Frobenius norm and is the Hadamard Non-Negative Matrix Factorization we extend this exprassi

product (element-wise multiplication). The division beem to:

the matrices is also an element-wise division operatiod, an

the logarithm is applied on all the matrix elements sepfrate vV
Optimizing this function can be pursued by conventional

means using constrained gradient descent, however Lee and

Seung [6] provide multiplicative update rules for the two WhereV e R=0:M>*N s the input we wish to decompose,
factorsW andH which elegantly bypass the need for a nonW (t) € R=%M*% is a set of bases, anH € R=0"*N
negativity constraint (assuming non-negative initial v,  contains their weights. Th%) operator is a shift operator that

and provide rapid convergence. These updates for the ®8itrig, oves the columns of its argument bgpots to the right, and

W andH were defined as: —i
consequently-) shifts to the left, such that:
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wherel is aM x N matrix with all its elements set to 1, and 05 6 7] 0 0 5 6]
the matrix divisions are as before performed in an element- V(12 3 4] 4 12 3 40
wise manner. Both of these updates are applied iteratinedyi |5 6 7 877 16 7 8 0]’
alternating manner until the two factors converge. Thealdei —2 3 4 0 0] =3 [4 00
R, which is the number of columns &V and the rows o, A= {7 8 0 0] A= {8 0 O] sete... (4)

determines the rank of the approximation.Hf= M we can

achieve a perfect reconstruction of the input,/ags reduced  The columns that are shifted in fro

we start obtaining low-rank approximations. In the low ranket to zero.

case if we have some structure in the inMitwe notice that ~ Equation 3 is essentially a summation of convolution op-

the elements oW andH start to reveal it. The? columns of erations between corresponding elements from a set of two-

W tend to reveal the vertical structure of the input, and theiimensional bas€® and a set of weightEl. Effectively what

corresponding rows ifH reveal their horizontal structure. Inhappens is that the set &th columns ofW (¢) defines a two-

terms of a basis decomposition we can vi®Was a set o  dimensional structure (one which we will refer to as a basis)

basis functions an#ll as their corresponding weights required his basis will be shifted and scaled by convolution acrbss t

to approximatev. axis of ¢t with theith row of H. The resulting reconstruction
Applications of NMF on audio data are presented in [7]. Iwill be a summation of all the basis convolution results for

these cases a magnitude spectrogram is presented as the i@@eh of theR bases.

V and the resulting basé& end up representing dominant In order to estimate the appropriate set of matri¥¥é$t)

spectral patterns contained in the input whereas theirwgigand H to approximateV we can use the already existing

H correspond to their temporal profiles. framework of NMF. In accordance to the NMF cost function,

we define the convolutive NMF cost function as:

0
0
m

outside the matrix are

B. Convolutive extensions to NMF

A .
NMF provides a useful tool for analyzing data, it is however D= HV ©ln (6) —V+V » ®)
ignoring potential dependencies across successive cglafn R
its input V.. A regularly repeating pattern that spans multiple WhereV is the approximation oV defined as:
columns of V- would have to be represented by NMF using
multiple bases that describe the entire sequence. Thehart t .= t—
V= W) -H (6)

there is a sequence would not be apparent by examination of
the bases, but would be only discovered by tedious analysis
of the basis weights. Since this is a regularly repeatingDue to the linearity we can decompose the above cost
pattern it would be more satisfying if it was represented byfanction to a collection of simultaneous NMF approximason
single basis function that could span the pattern lengtbhSuwne for each value of. Noting this fact we can now optimize
dependencies across columns are very frequently seenen tithe above cost function by optimizing this set Bf NMF
frequency representations when analyzing audio signals approximations. For each NMF approximation we have to
the expressive ability to capture these temporal depeneenapdate the equivaler® (¢) and the appropriately shifteH.

t

Il
=]
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This results into the convolutive NMF update equations Whieelement(w, ¢t) the energy of frequency at timet. Viewing

are: each instance of'(w,¢) as an element of a matrif we
now have a non-negative set of data on which we can apply
—t convolutive NMF.
W) [%} To illustrate the nature of the convolutive NMF bases we
H=HO 7+ (7a) performed this process on a 28 second speech signal from the
W' -1 TIMIT database (speakembt 0) sampled at6kH z. We used
v .tﬁT an L = 1024 point spectrum which resulted into 513 distinct
W(t) =W(t)o X — (7b) frequency magnitudes, was advanced by 256 samples at a
1. tﬁ’ time and before the DFT we applied a hanning window on

o ) the time-domain signal to reduce the presence of sidelobes.
In every updating iteration, for eachwe updateH and \ye extractedR = 40 components with a time spaf = 8,

W(#). Note that for eacti the corresponding NMF problem hich roughly amounts to a 0.17 second time span for the
has its ownW (), but H is shared (albeit shifted) across al55e5. The results after 200 iterations are shown in figure 1.
¢'s. It is possible to updatdV (t) andH for eacht, however — note how the bases are roughly corresponding to speech
this will result in a biased estimate &1 with the update for ,,ne instances. Most bases are representing harmores seri
t = T — 1 dominating over others. Therefore it is best Qi various pitch inflections, and a smaller subset costain
update allW(#) first and then assign tHl the average of all igehand elements that correspond to consonant sounds. Aud

the NMF subproblems: ble reconstructions can be done by modulating the phaseof th
—t original input by the magnitude of a selected a selectecsbasi
WOME {g} Doing so and listening at the results verifies that most bases
H={(Ho 7TV Wt (8) sound like short speech phones. There are some bases left wit
Wi(t)" -1 the burden of representing signal portions that the reshef t

In terms of computational complexity this technique gepases do not r_eflect, .these few usually have some compm_md
nature combining various speech elements occasionally wit

pends mostly off". If T'= 1 then it reduces to standard NMF, . X : .
otherwise it is burdened with extra matrix updates equmalesome noise to approximate background or spurious portions

to one NMF per unit off". of the signal.

Some examples of convolutive NMF analysis are present dAs should be expected these basis functions are reflecting

in [13] and [15]. In these papers the appropriateness oft e acoustical characteristics of the speaker that wayzetl

convolutive model for the analysis of sounds is demons{lrat-efo 'ltlrl]JStritliAﬁ's conilder f|gurkeé1’i eéqun;allllentthbastls .ﬂ?mf
using a variety of audio signals. It is shown that this typ%nO er speaker (speakéaks0). other training

of analysis is good at finding the salient spectral sequen ameters are the same as in the previous example. Thss basi

contained in auditory scenes and can be further employeds%{ is shown in figure 2. Qualitatively the bases are similar,

extract them. In the following section we will examine thgowever afte_r close inspection it is quite evident that they
results of convolutive NMF analysis as applied on spee#\ﬁﬂetCt kteybldlfferences bet\/\t/ﬁenhthe tW.O anaI]}{zed Sf et? Kers.
signals. Unlike previous attempts we will not attempt taast ost notably we can see fhe harmonics in figure €ing

large sequences like words or entire sounds as reportedebefgpaced closer indicating a lower pitched voice, as compared

but rather smaller segments which can represent the bgild the bases in figure 2 where the harmonics are farther apart
blocks of a speech rom each other indicating a higher pitched voice. A keen

observer can also pick up some formant differences between
the two speakers. Noting that the two speakers that were used
were a male and a female speaker, we see that the extracted
In this section we will be presenting some results obases are indeed coding speaker dependent characteristics
speech signals which reveal the nature of the convolutive-NM Due to the linearity of the algorithm and the fact that
components. We will show that the extracted bases are akirthe magnitude spectra are roughly added in the case of
speech phones with various pitch inflections. We will disgrov monophonic mixtures, we should expect to get qualitatively
that qualitatively similar bases are extracted whetheiripat the same results when the input is a mixture of multiple
is a single speaker, or a mixture of multiple speakers (@peakers instead of a single speaker. Unless there ar@spuri
important observation which we will take advantage of lateorrelations between the speakers in a mixture it is nataral
on), and that the bases encode a lot of information about tieorize that the set of bases extracted from the mixture wil
speakers and naturally reflect the speakers’ particulaectpe contain bases describing each isolated speaker.
patterns. We repeat the experiment with a mixture input made by
Due to its non-negative nature this type of basis approgamming the previously used speakers. The results are as
imation is best suited for representing magnitude spectie predicted and are shown in figure 3. We can see some
Therefore to apply this analysis on speech signals we will loé the mixture basis functions resembling the bases of the
operating in the magnitude frequency domain. Starting withale speaker (figure 1), whereas other resemble the bases
a finite length monophonic speech signél) we denote its of the female speaker (figure 2). Naturally our assumption
short-time magnitude spectrum &%w, t), containing at each that magnitude spectra mix linearly is not precisely cdrrec

Ill. CoNVOLUTIVE NMF ON SPEECH SPECTRA
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Fig. 1. Basis functions derived from the magnitude spectra of alesisgeaker. Each basis function resembles phone-like coemt® of the analyzed
magnitude spectrogram.
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Fig. 2. Basis functions derived from the magnitude spectra of alsisgeaker. Unlike the bases in figure 1, these were produoed & female speaker.
Note how the higher fundamental of the female voice is refleirt the bases when compared to the male speaker in figure 1.

but at a more general and qualitative level this assumptionportant in this context. I? is too small then the basis func-

is approximately true for most sound mixtures. As reportdins will be forced to approximate simultaneous clumps of

in [10] a binary mask is often sufficient to maintain sourcepeech phones resulting in worse reconstruction perforenan

information in sound mixtures, and our assumption is a geand a more blurry distinction between the bases. For a large

eralization of that which allows some degree of approximatalue of R we can see certain bases adapting to individual

additivity between the mixed spectra. harmonics as opposed to entire phonemic structures. Ir@ene
The model that this approach imposes on the data is that ¢f &alue between 100 to 500 bases is usually a good estimate

convolutive basis function. In usual basis function exjmms for a rich in phonetic content speech input.

like NMF, we have a set of bases (corresponding to spectra in

our case) being scaled by a set of weights. In the convolutive

case we have a set of bases that correspond to patches IV. SEPARATION OF KNOWN SPEAKERS

of a spectrogram which are convolved along the time axis

according to their weights in order to reconstruct the input In this section we will introduce a way to take advantage of

The underlying assumption is that the inputs can be adelguatie basis functions we just introduced to perform separatio

described by a set of these patches. This is the case in spe&esih monophonic mixtures of known speakers. We will show

where repeating patterns are often reused, but it is also that once the basis functions of a speaker are known they

case for other types of sounds that exhibit a regular tenhpogan be used to reconstruct only that speaker’s signal from a

structure in their spectrograms. monophonic mixture. We will first describe the methodology
The number of baseR that we request is not particularlyand then present results from our experiments.
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Fig. 3. Basis functions derived from the magnitude spectra of asperker mixture. Note how some of the bases seem to fit béstitale speaker whereas
others fit the male.

A. Extracting speaker dependent bases from a mixture speaker sets.

As we showed in the previous section the basis functions we3) Take a mixturey(t) containing the learned speakers
extract from speech are dependent on the timbral characteri  uttering an unknown phragg(t). Obtain its magnitude
tics of the speaker who provided the training data. We would ~ SPectrogramy” and perform convolutive NMF training
expect the learned bases to characterize that speaker best. ON it. During training keep the bases fixed ¥ (¢) and
Furthermore when we analyze a magnitude spectrogram which  learn only their weightd.
is generated from a mixture of speakers the basis functiens a 4) Break upH into V partsH; each corresponding to the
still resembling individual phones from all included speek weights that belong to a single speaker’s bases. This will
Groups of these bases can be attributed to only one speaker 'esultintoN' sets of weights.
respectively. If we could reconstruct the mixture magritud 9) Reconstruct the magnitude spectrograimof the ana-
spectrogram using only the bases that correspond to one lyzed mixture using only an in?iVideﬂ speaker bases and
speaker in the mixture we could be effectively performing  weights:Z; = ;f:—ol Wi(t) - H:(t). EachZ; will be a
separation. Performing this in an unsupervised manner is a magnitude spectrogram containing parts of the mixture
rather complicated process, however if we have a sufficient  that were best explained by bases from speaker
set of learned basis functions from a specific speaker we car) Use the phase data from the original mixture and modu-
use these bases to extract that speaker's voice from sound |ate it by Z; to obtainN spectrograms for each speaker.
mixtures. 7) Using the inverse short-time Fourier transform transfor

Consider a mixture of the male and female speaker we used  the speaker spectrograms to the time domain and obtain
in the preceding section. Based on the observations from the  the extracted speech signaig).
previous section we can assume that learning a set of base§he signalsz(t) will be approximations ofy;(f) since
W (t) from the male speaker and a set of ba¥eés(¢) from they are constructed from bases belonging only to these

lthe fer(??Ie spea_ker W'"f r:u_ghly resirrr:_ble the set of bas?ﬁeakers. This of course presupposes that the speakers have
earned from a mixture of their voices. This means W8, (t) discernible voices and somewhat different timbral chamact

and W(t) can be used to reconstruct the mixture. If thig. hisop inflections, which seemed to be usually the case in
is the case then we can assume that the part of the mixt experience

that is reconstructed bW, (¢) will predominantly rebuild the
male voice andWV ;(¢) the female voice, thereby providing the - )
spectrograms from each speaker that we can easily invekt b& Mixing and evaluating methodology

to time signals. In this section we will describe the steps we took while
So to formalize and generalize fo¥ speakers we take theconducting our experiments on speech separation. We tescri
following steps: the construction of the mixing cases and their evaluation.

1) Obtain training datac;(t) for each speaker and sepa- To test this approach monophonic mixtures were syntheti-
rately derive convolutive NMF basé@’;(¢) from their cally generated by summing two different but roughly equal
magnitude spectrogranX; using the methodology in length sentences from different speakers from the TIMIT
section III. database. These sentences were normalized to unit vagance

2) Construct a union of all the bases by combining therthat when added would produc®@B mixture. The remaining
W) = Wi(t)UWa2(6)J ... UWn(t). This will re- sentences of the two used speakers in the TIMIT database
sult in a basis sefV times bigger than the individual were used as training data from which we derived a basis
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set for each speaker. The training data were in the order ofOne thing to note is that the SNR measurements, although
30 seconds of continuous speech per speaker, whereassihfficient, are not directly indicative of the performanddios
evaluation sentences were 2 to 3 seconds long. As in the abalgorithm. The separation process is very complex and non-
examples the sample rate wh&k H z. linear and the SNR measurement will only provide a standard-
Evaluation of the quality of speech separation algorithsns ized way of evaluating it. More appropriate performance mea
always a very hard task and the non-linear unmixing proaedwgures would be in terms of the cost function being optimized
we propose is especially hard to evaluate reliably. In otder by the convolutive NMF procedure. However interpretingsthe
provide a comparable measure with existing literature wie wimetrics would be obscure at best and would not provide values
be using standard correlation-based measurements. For esmenable to comparisons with other approaches.
separation example we will provide three types of perforcean
indexes, the signal to noise ratio for each extracted speake V. SEPARATION RESULTS

the log correlation of the extracted source with the_ c_)rigina In this section we present some results from speech mixtures
and the amount of unaccounted energy in the original agﬂd shed some light on the importance of various parameters

extracted signals. involved in this process. We averaged the results from afset o

Using the notation introduced in the preceding sectioneong, o \e ryns from each of eight randomly selected male/femal
we have the separated speaker soundy we compare them i of speakers from the TIMIT database and attempted

with the original mixed sourceg;(?) to see how good the sep-ganaration using the aforementioned process. The paramete
aration is. We d_erl_ve three measures to measure pe_n‘ormaqﬁglt were used can be divided in two groups. One group
the speaker ratio "Z_EB' the _S|m|Iar|ty of the outp_ut _W'th the jncluded the parameters relating to the short time Fourier
target, and_ the residual NoIse. The spga_ker ratio Is Compuffansform: the FFT size, the transform hop size, the zero
by comparing the correlations of the original sources whi t padding for the FFT and the analysis window. The other group
extracted sounds: of parameters were the ones relating to the convolutive NMF
training: the number of baseB, their extent in timel’, and
cij = cor (2i(t), yi(t)) 9 the training iterations. Although there are plenty of pagtans
compare, the most important ones were the size of the
?FT used, the number of basis functiaRsand their temporal
xtentT'. At first we will examine these three and then present
ome additional results exhibiting the effect of the resthef

Where cor(-) denotes correlation. We define the speak
ratio for each output as a log ratio of its correlation wit
the desired sentence divided by the correlation with theroth®
sentences, i.e.: S

parameters.
Ci s
SR; =10log Gl (20)
10 Z Ci j A. Most Important Parameters
Vi For this set of results we will assume that the STFT hop

This measure will tell us how much the signals of th&ize was set to one fourth of the FFT size, that zero padding
undesired speakers have been suppressed. Higher vallies W@ not used, before the FFT the data was scaled according

bles the desired output. We measure it by taking the coipelatParameters we used the following values, FFT size = [128
of the extracted source with the desired output: 256 512 1024 2048 4096], Number of Bases = [20 40 80

120 200], Length of Bases = [1 2 4 6 8 10]. The sampling
(11) rate of the inputs was6k H z. We performed separation using

all combinations of these parameter on our data set which
We will have SI; <= 0, with SI; = 0 being the most amounted to 180 experiments for each of the eight speaker
desired case. Lower values indicate that the result is rot tpairs (1440 runs over all speakers, repeated 12 times for a
similar to the desired sentence. Note that this measure aletal of 17280 experiments). We averaged the performance
is influenced by the quality of separation since traits of th@easures for all these experiments and analyzed the effect o

undesired speakers would lower its value. various parameters. We present our findings in this section.
Finally the residual energy is the variance of the diffeeenc Of major importance is the size of the FFT we use to analyze

between the input signal and the sum of the extracted signalsr inputs. If we average the results over all other pararsete
and speakers for each FFT size we can then observe its

RE — var (Z i) — Z%(t)> effect on the speaker energy ratio (figure 4 left). This value

ST; = 101og,, cor (z;(t), yi(t))

(12)  fluctuates from abou?.5dB for an FFT size of 128 points
(8 ms) at worse, to aboutt.8dB for 1024 points (64ms).

RE will reveal how much of the output signal is notFFT sizes outside 1024 points tend to produce progressively
accountable by any of the original sounds, and how muchvigrse results indicating that this is a good value for this
an artifact of the separation procedure. Values closer to zgparameter. The similarity index behaves in a similar wag, th
are best, indicating good accountability of the input sigmal  optimal average comes out for an FFT size of 512 points (32
little or no residual noise. ms) with an approximate value 6£0.7. The similarity index
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Fig. 4. Effects of some parameters to the performance irsdéxach point is the average of all other cases when fixing glesjparameter value. Note that
for readability reasons the value of the residual noiseggnbes been scaled by0*. The left plot displays the effect of the FFT size, the midglet the
effect of the number of basel® and the right one the effect of the length of the bases

progressively deteriorates for diverging FFT sizes witle tHonger bases and still have them precisely fit on the evalnati
recorded worst being 4096 points with a value of abeut2. data. The similarity was at its best around a basis length of 4
Deterioration seems to be more rapid for larger FFT franveith a value of -.9, and tended to fall for greater basis lbagt
values. Residual energy is roughly increasing with the FFIown to -1 for a basis length of 10. Note that when the length
size. This is to be expected, short time windows provide kmaf the bases is 1 then we are essentially performing NMF.
building blocks which can fit the data well without extending Of more importance than the individual parameters is the
their errors to too wide a time window, wider analysis windowinteraction between them. Figure 5 is instrumental in pogt
are extending over larger time periods having to fit mudhis out. We briefly describe some of the major interactions
more information. Using bigger analysis windows results in here. As we pointed out in the previous paragraph, the length
a coarser approximation. Values ranged from an averageaffthe bases was not a parameter that varied the performance
about1.8 x 10~* for 128 point FFTs to about.4 x 10~* for measures significantly. However we can see that its effest wa
4096 point FFTs. heavily dependent on the FFT size. In general for long FFTs

The number of bases is obviously also a major parametée saw better separation for short bases regardless of how
Regarding its effect on the speaker energy ratio, we gdgeranany we use, and for shorter FFTs we saw better performance
observe that fewer bases provide a better result (figurefos few bases regardless of their length. For small FFT sizes
center). The learning of more bases for each speaker allowangl long bases we obtained better separation and simijlarity
greater expressive power which can model utterances of othewever the amount of residual energy increased. As the FFT
speakers as well. Having too many bases will result in sorZe grows, longer bases acted as a detriment to the separati
reconstruction of the interfering signal which can negagiv quality as well as to the similarity index, therefore in thasse
affect signal separation. Best results were obtained for sborter bases are to be preferred. The residual energy was
bases per speaker with aboutbdB separation, and after aheavily dependent on the number of bases. In general more
steady decline the worst value was 3a5dB for 200 bases bases introduced more residual noise, although that effect
per speaker. However using less bases comes at a price siieas pronounced for larger FFT sizes. For larger FFT sizes
reconstruction results in a more coarse fit which then etibthough the residual energy increased significantly for ésng
poor values for the similarity index and residual noise. \&e sbases. Finally as the FFT size increased we noted that the
the residual noise dropped monotonically as we moved fromimber of bases become more important to the effect of the
20 bases to 200 bases per speaker taking values ranging ffeagth of the bases with regard to similarity.
3 x 107* to 2.4 x 10~%. Inversely the similarity index rose The results shown in this section are suppressed due to
from about—1 to —.9 So we see a tradeoff, at the expense @veraging with poor parameter selection. In most speaker se
a worsening speaker energy ratio, adding more bases msut@ses boosting up 5 was achieved for each speaker, and
in an increase in the similarity index and a decrease in tRgoper post-processing (section VI), can boost this to toub
residual noise. digit dB improvements.

The length of the bases is another important factor. On o
average a value of 4 to 6 produced the best separation restfits Rémaining Parameters
although only by a minor margin with worst values at around In this section we will examine the remaining parameters,
3.8dB and best at arountll B (figure 4 right). Residual noise such the number of iterations for the convolutive NMF train-
energy tended to increase with longer basis lengths ranging, the STFT hop, zero padding size and analysis window.
from 2.6 x 10~ for a length of 1 ta3 x 10~* for a length of Their interplay is not significant so we examine them inde-
10. That was expected because it will be more difficult to ugendently. For our experiments we used an FFT size of 1024
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Effect of STFT hop Effect of FFT zero padding

and 40 basis functions which extended for 4 time points. * °
The results shown for each parameter are averages over 115/\‘ ’\@\/
independent runs on each of 8 pairs of speakers.

The performance indexes for various values of these param-"
eters are shown in figures 6 and 7. We note that the in genera
denser packed FFT windows facilitated better separatibis T
is because such denser sampling of time frames helped gevelo

—s— SR —a— SR

—a s —a g

more time invariance in the basis set, provided a richer * —e— react ’ —— ret
data set and bypassed alignment problems. This seemed ti. ~ 0
come at a cost though since it introduced more computational | . — .

-1
4 8 0

2 4 1 3

8 16 2 3 7 0
Hop as ratio of FFT size Zero padding as muptiple of window size

requirements due to a larger training set and it also reskulte
into poor fitting for extreme values. We can see that in thFeig 6. The effect of some FFT parameters on the performahseparation
case where the STFT window hop size wigsth that of the I these plots we examine parameters that do not create e'lfica'gn.
FFT size where performance seems to degrade. The excesgéviermance changes. On the left plot we see the effectseoSTHFT hop
amount of data to learn and fit introduced a computation#®. in the right plot the effects of the FFT zero padding.
complexity which presumably required more training to feac
equal results as larger hop sizes. In the case of zero padding
we note that in general it is a bad idea since it increased the
dimensionality of the input dramatically and it didn’t se¢mn
offer any particular performance advantage. J
In figure 7 we show the performance effects of the adap-
tation iterations of convolutive NMF. These can be sepdrate
into two groups, the training iterations and the approxiorat
iterations. Training iterations are the number of itenagiave
train on each speaker, whereas approximation iteratianthar
number of iterations we perform to adapt the speaker bases
to a mixture. The effect of training iterations displayed an  * *© * fai. ™ B e 2

interesting trend. Early on we got the bedB improvement e effect of 4 e et
; ; ; ; ; ; ig. 7. The effect of training and approximating iterati@msthe performance
in separation, albeit at a cost of high residual noise. As the separation. The left panel displays the effect of thming iterations,

kept iterating the separation index dropped as did the wabidwhereas the right one displays the effect of the mixture @pipration
noise whereas the similarity index was more or less stailiz iterations. Best separation results are achieved early mining, however at
We saw that around 100 iterations performance stabilized aiﬁ %‘;eé‘;ivﬁf g:}g?h;ess'g;a; nole: Q'n?ﬁé';aﬁ,ﬁ?é tg:geom%:‘nﬁstﬂfs
further training was unnecessary (that is on training on 3fkasures progression during iterating.
seconds of speech, larger training sets would require more
training to reach that state). These effects can be expldipe
the fact that due to the rapid convergence of NMF trainingside from this the selection of window type is not an issue
the most salient features of each speaker were discoveiregherformance.
very early whereas later on they were refined to include more
generic speech features that all speakers might exhibih(su
as consonants). As training progressed the bases becarae rﬁor
refined so that reconstruction was more effective and thwatedr ~ Given that the separation procedure we introduce is based on
down the amount of residual noise. finding and extracting sound elements that compose the input
The approximation iterations are more predictable in thedources, separation between multiple speakers is obyiousl
performance effect. The more we trained the better the aepaa harder example since the sources are very similar. In this
tion and the less the residual noise. We also note an initegesisection we briefly consider the case of denoising where the
trend for the similarity index. We note that it peaked at abu types of sources are quite distinct and can be seen as cothpose
60 iterations (that is on a 3 seconds mixture, lengthiermea from a non-overlapping set of bases. We briefly discuss a
would delay this), and then asymptotically decreased. Wewe couple of examples in this section.
the peak of the similarity index didn't coincide with the fea We generated two mixtures that were composed out of one
in separation quality. The justification for the separatiod speaker fwbt 0) and either ambient street noise or chimes.
residual noise trend is obvious, the more we iterated thetbet-or both cases we used an FFT size of 1024 points and
the fit. The trend of the similarity index can be explained b#0 bases of length 4. In order to perform the separation we
the fact that prolonged training would result into more sroslearned models of both the speaker and the interfering sound
pollination of speaker bases which can alter the charatiesi In the first example speech was boosted5t2dB over the
of each speaker. street noise. The noise signal was composed out of back-
The effect of the window type is rather negligible, it seemeground speech, a street performed playing accordion arfd hig
best to not use a rectangular window since it resulted intieequency ambience. The accordion and the ambience were
noisier basis functions and abQutB to 3d B worst separation. suppressed to inaudible levels, speech babble was supgress

Effect of training iterations Effect of approximating iterations

Denoising Examples
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but not as much. This is due to the fact that speech babbieed to perform speech or sound recognition and the extracte
had a lot of common spectral content with the speaker afehtures need to be maximally informative and unique. The
some of it could also be explained by the speaker’s basealue of the extracted bases is of course context speciftc, bu
In the second example the separation was up6t8dB. The in extreme cases we can even extract entire words per basis
much better result is attributed to the fact that the chinaas husing similar processing [14].
a spectral character that had almost no spectral overlap fro As mentioned before there needs to be some spectral differ-
the speaker’s voice which facilitated separation. Althomgt ence between the sounds that need to be separated in order to
a primary objective, for both mixtures the street noise arabtain good performance. In our speech experiments we used
the chimes were also well separated with minimal traces f@male/male sets of speakers to loosely ensure some dpectra
the speaker. Figure 8 displays the spectrograms of the twariation. Separation between male/male sets produces in
mixtures and the separated speech. In these spectrogrgerseral slightly worse results since the spectra to be eetla
we can clearly see elements of the street noise as well tere more similarity (although that is highly dependent on
the chimes being suppressed. Audible reconstructionseof the speaker character and does not in general mean that all
extracted sounds exhibit an excellent degree of separatidn male/male pairs will be harder problems than female/male).
a minimal degradation of quality due to the low rank encodintp further stress the importance of spectral dissimilanibye
of the signal. the dramatic improvement of separation quality when using
non-spectrally similar sounds as we have done in section V-C
The issue of spectral similarity between sources is an
important one which needs to be studied in more depth. The
On average the resulting separated sounds sounded \&dg effect of dealing with spectrally similar sounds i their
much like linear mixtures of various mixing proportionsresulting bases are most likely linearly dependent ancether
Depending on the success of the separation these ranged fionibit good separation. Various ad-hoc steps can be taken
slightly perceptible to significant interference. Thererevao to reduce that effect, such as discarding very similar bases
echo residues or spectral coloring imposed by the algorithacross the different sounds, or reassignment of bases toveem
and thus the speaker ratio proved to be an adequate indicatependencies, which can result in better sounding resutts b
to measure separation performance. Results that werenebtaiare not satisfying solutions. The fact that the bases neéé to
using too few bases often had missing speech phones (usuatip-negative complicates any straightforward processiag
wideband ones) or a muffled quality to them, this was noain to be done to ensure maximal linear independence and
the case when using more bases. This effect was measysenhts to a non-trivial solution. Employing longer bases so
effectively by the sound similarity indicator which come&td that7 > 1 provides a minor relief in this respect since the
well with subjective listening evaluations. The use of tewf issue becomes one of a ‘spectral sequence similarity’ which
bases in addition to a large also contributed to some hissingis a less likely possibility between two sounds.
or scratching noise which is most likely a product of a poor Finally a note about reverberation. Because of this type
tapering across frames in the frequency magnitude domaih analysis, factors such as echoes can be safely ignored
which in turn produced subtle discontinuities in the time daince their effect will be undone by the implicit deconvadut
main signal. These were usually reflected in the residuaenoin training (long echoes will result in repeating sectiorfs o
measure. Once again depending to the settings used this effee magnitude spectrogram which is what this algorithm is
ranged from imperceptible to noticeable. These are all thesigned to discover). Shorter echoes will not be as présent
audible artifacts that we encountered during testing aivédr the magnitude spectrum, but more so in the phase spectrum
by that we designed the appropriate performance evaluatishich we discard, and thus does not pose an issue. If these
measures. Although there is some correlation between soeofoes are strong enough to color the magnitude spectrum
of the performance measures, in average (and in our sulgecthen they will be learned as part of the characteristics ef th
opinion) they did a fairly good job in describing the audiblénput sound, but will not interfere with the learning. In exthe
result quantitatively. cases we can have an unnatural amount of spectral smearing
From figures 4 and 5 one can note that a largeis not due to reverberation which can make separation impossible.
significantly beneficial. Although that is true in the sens8uch cases are rarely encountered though and even then the
conveyed by the performance parameters, it is important most acute listeners or systems can have a hard time telling
note that the extracted features are much more informatgifferent sounds apart.
whenT > 1. Consider the case of a fixed analysis window. In
the case wher@ = 1 we lose a lot of temporal information VI. POST-PROCESSING
which is carried by the phase of the spectra. We essentiallyAlthough the process described so far can obtain reasonable
represent the data using a single magnitude spectrum. Eor fibsults in separating sounds, it does not need to be the end of
same length window whef > 1 the previously lost temporal the separating process. We can use various post-processing
evolution information is now conveyed by the extracted basaechniques on the outputs to boost the quality of the results
The resulting trade-off is that we can obtain a single longven more. In this section we briefly describe a couple of
spectrum, or a series of shorter spectra that describes oomrpossible approaches.
patterns of spectral evolutions. Although this is not anamp A trivial step that we can employ to improve the quality of
tant factor for separation, it is valuable when we subsetiypenthe results is to modify the reconstruction step to accoant f

D. General remarks
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Fig. 8. Spectrograms of the denoising examples. The twesfettrograms display the two mixtures, the top one with ekimnd the bottom one with the
street noise. The two right spectrograms show the respestieech separation. On the top spectrogram one can seeirties dimrmonics being virtually
non-existent. On the bottom separation spectrogram ones@amuch of the ambience and the accordion harmonics bepmgessed.

all the energy in our testing signals. Recall that we used thad in that case we can view the outputs as a multi-channel
phase of the mixture and modulated it with the magnitudesixture. This transition from monophonic to multi-channel
dictated by the basis approximation. Energy from the metuppens the possibility of employing multi-channel separati
that was not approximated well will be missing from théechniques to further separate the sources. Althoughghisti
reconstructions resulting in a choppy sounding outputsTha linear mixture anymore, an application of straightfomvar
can be remedied by longer training in the approximation,stegnmixing algorithms like Independent Component Analysis
but we have observed that this can sometimes be a detrimesm be applied to it and can provide on average a boost of
in separation quality and also a computationally intensiabout5dB to 7dB (we employed the JADE algorithm [16]
process. Instead we can compute the spectrogram of eatlour simulations). Given the non-linear relationship bé t

speaker as: two resulting sources this is not necessarily as notable an
7 improvement as the numbers indicate, it is however notieeab

F;, = (ZH) - v (13) and could be improved with a specialized unmixing approach

Zj Z; based on this type of mixture. It should be pointed that this

where/H is the phase of the mixture spectrogram @ds is quite an ad-hoc step and there is no guarantee that an
the approximated magnitude spectrogram of each speaksr. Tapplication of ICA will work at all, since the resulting mixtes
is essentially a spectral filter that ensures that the unaxted will be non-linearly mixed.
energy in the input mixture is redistributed to the resgltin Either of the above approaches are fairly straightforward
speakers’ spectrograms in proportion. This results in defjn  and generic and are not meant as ultimate solutions. They
better sounding reconstructions in terms of quality, sbingt show however that there can be a considerable improvement
we can note in the performance indexes. The separatiortyjuadif results after the convolutive NMF approximation and apen
remained the same, however the similarity was improved a lmp an interesting avenue of research.
and residual energy was not only reduced but also stabilized
to a fixed low value for all other parameters.

A notable point of this approach is that it starts with a mono-
phonic mixture and results into a multi-channel output. Had In this paper we have presented a supervised method for
the separation been perfect there would be no need for pastparating known types of sounds from monophonic mixtures.
processing, however the separation is not always satisfactWe introduced the concept of a convolutive non-negativésbas

VII. CONCLUSIONS
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set, demonstrated how it maps to meaningful features in the
case of audio spectra and demonstrated how we can use it in
the context of supervised source separation. We also prdvid
simulation material which can provide some intuition about
the importance of various parameters and suggested a couple
of ways this process can be enhanced using post-processing.
Depending on the nature of the inputs and the post-proagssin
employed we obtained interference suppression rangimg fro
5dB in the worst cases to up t20dB. As described there

are numerous options to trade separation performance for
better audio quality results, and this is a choice which to ou
experience has been application dependent. There seem to be
many ways this approach can be enhanced and this article only
attempted to present a basic implementation and its opesdti
characteristics, it is our hope that future work will addres
additional performance enhancing extensions.
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