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Abstract— In this paper we present a convolutive basis decom-
position method and its application on simultaneous speakers
separation from monophonic recordings. The model we propose
is a convolutive version of the non-negative matrix factorization
algorithm. Due to the non-negativity constraint this type of coding
is very well suited for intuitively and efficiently representing
magnitude spectra. We present results that reveal the nature of
these basis functions and we introduce their utility in separating
monophonic mixtures of known speakers.
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I. I NTRODUCTION

BASIS decompositions have long been an important tool
in signal processing. The use of basis decompositions

spans a wide variety of applications, equally rich as the variety
of approaches to obtain bases. Most basis decomposition
methods are deeply rooted in statistics and transform data
so as to have desirable properties. Well known examples of
these are the Principal Component Analysis (PCA) [4] or the
Independent Component Analysis (ICA) algorithms [3]. Other
types of basis decompositions are more algebraic in nature
such as the Singular Value Decomposition (SVD), various
higher order generalizations of it [5], or the Non-negative
Matrix Factorization [8]. Many of these decompositions have
been used in many ways for source separation tasks. A
particular use of these decompositions is on the magnitude
spectra of monophonic recordings. Results relating this ap-
proach to source separation have been reported in multiple
publications [2][12][1][15] and have been a promising field
of research for some time. The use of basis functions in the
just referenced work has been in the context of unsupervised
learning. Basis decomposition and dimensionality reduction
were used to obtain a small set of components that usually
resembles the various sounds contained in the original input.
The basis functions describe the spectral characters of the
components, whereas their weights provide their temporal
evolution. Although this approach can be successful in specific
contexts it suffers from two problems, a rigid spectral form
and the fact that we often expect results from very little data.
In this paper we propose two extensions to this approach
that address these problems. We extend the expressive power
of basis decompositions by specifying a convolutive model

and we propose a supervised learning approach which can
benefit from knowledge extracted outside the input samples.
The supervised approach to separation has been used in the
past in the context of various types of statistical models
([10][11][9]). Our convolutive model is based on a recently
introduced decomposition [13] based on Non-negative Matrix
Factorization (NMF). We have previously shown how this
decomposition can be used to extract meaningful components
out of spectrograms in an unsupervised manner. In this paper
we introduce the use of this basis decomposition on speech
and show how it discovers meaningful features which are very
useful in the context of supervised source separation.

The remainder of this paper is organized as follows, sec-
tion II introduces the convolutive basis decomposition ap-
proach we will use, section III presents a methodology of
extracting these bases from speech signals and highlights
their nature and some interesting properties. In section IVwe
introduce a methodology to perform speaker separation and we
thoroughly evaluate it in section V. Finally in section VI we
briefly consider some post-processing enhancements to further
boost the quality of separation.

II. CONVOLUTIVE NMF

In this section we describe the basis model we will employ
and the appropriate adaptation procedures. We will start by
reviewing the Non-Negative Matrix Factorization algorithm
and then extend it to a convolutive form which we will employ
for our simulations.

A. Non-negative matrix factorization

Non-Negative Matrix Factorization is a linear basis decom-
position approach that assumes non-negativity on both the
basis and the data to be approximated. We present it briefly
in this section.

NMF was first introduced by Lee and Seung [8]. Simply
stated having a non-negative matrixV ∈ R

≥0,M×N the goal
is to approximate it as a product of two non-negative matrices
W ∈ R

≥0,M×R and H ∈ R
≥0,R×N where R ≤ M . The

objective is to minimize the error of reconstruction ofV by
W · H and to that extent Lee and Seung [6] provided two
cost functions by which we can measure it. One of these cost
functions is the Frobenius norm of the difference between the
input and the reconstruction, and the other, which we will



SUBMITTED TO IEEE TRANSACTIONS OF SPEECH AND AUDIO PROCESSING , VOL. XX, NO. XX, XXX-200X 2

be employing in this paper, is an adaptation of the Kullback-
Leibler divergence which was defined as:

D =

∥

∥

∥

∥

V ⊙ ln

(

V

W ·H

)

− V + W · H

∥

∥

∥

∥

F

(1)

where‖ · ‖F is the Frobenius norm and⊙ is the Hadamard
product (element-wise multiplication). The division between
the matrices is also an element-wise division operation, and
the logarithm is applied on all the matrix elements separately.
Optimizing this function can be pursued by conventional
means using constrained gradient descent, however Lee and
Seung [6] provide multiplicative update rules for the two
factorsW andH which elegantly bypass the need for a non-
negativity constraint (assuming non-negative initial values),
and provide rapid convergence. These updates for the matrices
W andH were defined as:

H = H⊙
W
⊤ · V

W·H

W⊤ · 1
(2a)

W = W ⊙
V

W·H
· H⊤

1 · H⊤
(2b)

where1 is aM×N matrix with all its elements set to 1, and
the matrix divisions are as before performed in an element-
wise manner. Both of these updates are applied iteratively in an
alternating manner until the two factors converge. The variable
R, which is the number of columns ofW and the rows ofH,
determines the rank of the approximation. IfR = M we can
achieve a perfect reconstruction of the input, asR is reduced
we start obtaining low-rank approximations. In the low rank
case if we have some structure in the inputV we notice that
the elements ofW andH start to reveal it. TheR columns of
W tend to reveal the vertical structure of the input, and their
corresponding rows inH reveal their horizontal structure. In
terms of a basis decomposition we can viewW as a set ofR
basis functions andH as their corresponding weights required
to approximateV.

Applications of NMF on audio data are presented in [7]. In
these cases a magnitude spectrogram is presented as the input
V and the resulting basesW end up representing dominant
spectral patterns contained in the input whereas their weights
H correspond to their temporal profiles.

B. Convolutive extensions to NMF

NMF provides a useful tool for analyzing data, it is however
ignoring potential dependencies across successive columns of
its input V. A regularly repeating pattern that spans multiple
columns ofV would have to be represented by NMF using
multiple bases that describe the entire sequence. The fact that
there is a sequence would not be apparent by examination of
the bases, but would be only discovered by tedious analysis
of the basis weights. Since this is a regularly repeating
pattern it would be more satisfying if it was represented by a
single basis function that could span the pattern length. Such
dependencies across columns are very frequently seen in time-
frequency representations when analyzing audio signals and
the expressive ability to capture these temporal dependencies

within bases is a desirable feature. In this section we introduce
a convolutive extension to NMF which can allow us to extract
cross-column patterns as single bases.

As just described NMF attempts to reconstruct a matrixV

using a matrix product byV ≈ W · H. In the convolutive
Non-Negative Matrix Factorization we extend this expression
to:

V ≈

T−1
∑

t=0

W(t) ·
t→

H (3)

whereV ∈ R
≥0,M×N is the input we wish to decompose,

W(t) ∈ R
≥0,M×R is a set of bases, andH ∈ R

≥0,R×N

contains their weights. The
i→

(·) operator is a shift operator that
moves the columns of its argument byi spots to the right, and

consequently
←i

(·) shifts to the left, such that:

A =

[

1 2 3 4
5 6 7 8

]

,
0→

A =

[

1 2 3 4
5 6 7 8

]

,

1→

A =

[

0 1 2 3
0 5 6 7

]

,
2→

A =

[

0 0 1 2
0 0 5 6

]

,

←0

A =

[

1 2 3 4
5 6 7 8

]

,
←1

A =

[

2 3 4 0
6 7 8 0

]

,

←2

A =

[

3 4 0 0
7 8 0 0

]

,
←3

A =

[

4 0 0 0
8 0 0 0

]

, etc... (4)

The columns that are shifted in from outside the matrix are
set to zero.

Equation 3 is essentially a summation of convolution op-
erations between corresponding elements from a set of two-
dimensional basesW and a set of weightsH. Effectively what
happens is that the set ofith columns ofW(t) defines a two-
dimensional structure (one which we will refer to as a basis).
This basis will be shifted and scaled by convolution across the
axis of t with the ith row of H. The resulting reconstruction
will be a summation of all the basis convolution results for
each of theR bases.

In order to estimate the appropriate set of matricesW(t)
and H to approximateV we can use the already existing
framework of NMF. In accordance to the NMF cost function,
we define the convolutive NMF cost function as:

D =

∥

∥

∥

∥

V ⊙ ln

(

V

V̂

)

− V + V̂

∥

∥

∥

∥

F

(5)

WhereV̂ is the approximation ofV defined as:

V̂ =

T−1
∑

t=0

W(t) ·
t→

H (6)

Due to the linearity we can decompose the above cost
function to a collection of simultaneous NMF approximations,
one for each value oft. Noting this fact we can now optimize
the above cost function by optimizing this set ofT NMF
approximations. For each NMF approximation we have to
update the equivalentW(t) and the appropriately shiftedH.



SUBMITTED TO IEEE TRANSACTIONS OF SPEECH AND AUDIO PROCESSING , VOL. XX, NO. XX, XXX-200X 3

This results into the convolutive NMF update equations which
are:

H = H⊙
W(t)⊤ ·

←t
[

V

V̂

]

W(t)⊤ · 1
(7a)

W(t) = W(t) ⊙

V

V̂
·

t→

H

⊤

1 ·
t→

H

⊤
(7b)

In every updating iteration, for eacht we updateH and
W(t). Note that for eacht the corresponding NMF problem
has its ownW(t), but H is shared (albeit shifted) across all
t’s. It is possible to updateW(t) andH for eacht, however
this will result in a biased estimate ofH with the update for
t = T − 1 dominating over others. Therefore it is best to
update allW(t) first and then assign toH the average of all
the NMF subproblems:

H =

〈

H⊙
W(t)⊤ ·

←t
[

V

V̂

]

W(t)⊤ · 1

〉

, ∀t (8)

In terms of computational complexity this technique de-
pends mostly onT . If T = 1 then it reduces to standard NMF,
otherwise it is burdened with extra matrix updates equivalent
to one NMF per unit ofT .

Some examples of convolutive NMF analysis are presented
in [13] and [15]. In these papers the appropriateness of a
convolutive model for the analysis of sounds is demonstrated
using a variety of audio signals. It is shown that this type
of analysis is good at finding the salient spectral sequences
contained in auditory scenes and can be further employed to
extract them. In the following section we will examine the
results of convolutive NMF analysis as applied on speech
signals. Unlike previous attempts we will not attempt to extract
large sequences like words or entire sounds as reported before,
but rather smaller segments which can represent the building
blocks of a speech.

III. C ONVOLUTIVE NMF ON SPEECH SPECTRA

In this section we will be presenting some results on
speech signals which reveal the nature of the convolutive NMF
components. We will show that the extracted bases are akin to
speech phones with various pitch inflections. We will discover
that qualitatively similar bases are extracted whether theinput
is a single speaker, or a mixture of multiple speakers (an
important observation which we will take advantage of later
on), and that the bases encode a lot of information about the
speakers and naturally reflect the speakers’ particular speech
patterns.

Due to its non-negative nature this type of basis approx-
imation is best suited for representing magnitude spectra.
Therefore to apply this analysis on speech signals we will be
operating in the magnitude frequency domain. Starting with
a finite length monophonic speech signals(t) we denote its
short-time magnitude spectrum asF (ω, t), containing at each

element(ω, t) the energy of frequencyω at time t. Viewing
each instance ofF (ω, t) as an element of a matrixF we
now have a non-negative set of data on which we can apply
convolutive NMF.

To illustrate the nature of the convolutive NMF bases we
performed this process on a 28 second speech signal from the
TIMIT database (speakermwbt0) sampled at16kHz. We used
an L = 1024 point spectrum which resulted into 513 distinct
frequency magnitudes,t was advanced by 256 samples at a
time and before the DFT we applied a hanning window on
the time-domain signal to reduce the presence of sidelobes.
We extractedR = 40 components with a time spanT = 8,
which roughly amounts to a 0.17 second time span for the
bases. The results after 200 iterations are shown in figure 1.

Note how the bases are roughly corresponding to speech
phone instances. Most bases are representing harmonic series
with various pitch inflections, and a smaller subset contains
wideband elements that correspond to consonant sounds. Audi-
ble reconstructions can be done by modulating the phase of the
original input by the magnitude of a selected a selected basis.
Doing so and listening at the results verifies that most bases
sound like short speech phones. There are some bases left with
the burden of representing signal portions that the rest of the
bases do not reflect, these few usually have some compound
nature combining various speech elements occasionally with
some noise to approximate background or spurious portions
of the signal.

As should be expected these basis functions are reflecting
the acoustical characteristics of the speaker that was analyzed.
To illustrate this consider figure 1’s equivalent basis set from
another TIMIT speaker (speakerfaks0). All other training
parameters are the same as in the previous example. This basis
set is shown in figure 2. Qualitatively the bases are similar,
however after close inspection it is quite evident that they
reflect key differences between the two analyzed speakers.
Most notably we can see the harmonics in figure 1 being
spaced closer indicating a lower pitched voice, as compared
to the bases in figure 2 where the harmonics are farther apart
from each other indicating a higher pitched voice. A keen
observer can also pick up some formant differences between
the two speakers. Noting that the two speakers that were used
were a male and a female speaker, we see that the extracted
bases are indeed coding speaker dependent characteristics.

Due to the linearity of the algorithm and the fact that
the magnitude spectra are roughly added in the case of
monophonic mixtures, we should expect to get qualitatively
the same results when the input is a mixture of multiple
speakers instead of a single speaker. Unless there are spurious
correlations between the speakers in a mixture it is naturalto
theorize that the set of bases extracted from the mixture will
contain bases describing each isolated speaker.

We repeat the experiment with a mixture input made by
summing the previously used speakers. The results are as
we predicted and are shown in figure 3. We can see some
of the mixture basis functions resembling the bases of the
male speaker (figure 1), whereas other resemble the bases
of the female speaker (figure 2). Naturally our assumption
that magnitude spectra mix linearly is not precisely correct,
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Fig. 1. Basis functions derived from the magnitude spectra of a single speaker. Each basis function resembles phone-like components of the analyzed
magnitude spectrogram.
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Fig. 2. Basis functions derived from the magnitude spectra of a single speaker. Unlike the bases in figure 1, these were produced from a female speaker.
Note how the higher fundamental of the female voice is reflected in the bases when compared to the male speaker in figure 1.

but at a more general and qualitative level this assumption
is approximately true for most sound mixtures. As reported
in [10] a binary mask is often sufficient to maintain source
information in sound mixtures, and our assumption is a gen-
eralization of that which allows some degree of approximate
additivity between the mixed spectra.

The model that this approach imposes on the data is that of a
convolutive basis function. In usual basis function expansions,
like NMF, we have a set of bases (corresponding to spectra in
our case) being scaled by a set of weights. In the convolutive
case we have a set of bases that correspond to patches
of a spectrogram which are convolved along the time axis
according to their weights in order to reconstruct the input.
The underlying assumption is that the inputs can be adequately
described by a set of these patches. This is the case in speech
where repeating patterns are often reused, but it is also the
case for other types of sounds that exhibit a regular temporal
structure in their spectrograms.

The number of basesR that we request is not particularly

important in this context. IfR is too small then the basis func-
tions will be forced to approximate simultaneous clumps of
speech phones resulting in worse reconstruction performance
and a more blurry distinction between the bases. For a large
value of R we can see certain bases adapting to individual
harmonics as opposed to entire phonemic structures. In general
a value between 100 to 500 bases is usually a good estimate
for a rich in phonetic content speech input.

IV. SEPARATION OF KNOWN SPEAKERS

In this section we will introduce a way to take advantage of
the basis functions we just introduced to perform separation
from monophonic mixtures of known speakers. We will show
that once the basis functions of a speaker are known they
can be used to reconstruct only that speaker’s signal from a
monophonic mixture. We will first describe the methodology
and then present results from our experiments.
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Fig. 3. Basis functions derived from the magnitude spectra of a two-speaker mixture. Note how some of the bases seem to fit best thefemale speaker whereas
others fit the male.

A. Extracting speaker dependent bases from a mixture

As we showed in the previous section the basis functions we
extract from speech are dependent on the timbral characteris-
tics of the speaker who provided the training data. We would
expect the learned bases to characterize that speaker best.
Furthermore when we analyze a magnitude spectrogram which
is generated from a mixture of speakers the basis functions are
still resembling individual phones from all included speakers.
Groups of these bases can be attributed to only one speaker
respectively. If we could reconstruct the mixture magnitude
spectrogram using only the bases that correspond to one
speaker in the mixture we could be effectively performing
separation. Performing this in an unsupervised manner is a
rather complicated process, however if we have a sufficient
set of learned basis functions from a specific speaker we can
use these bases to extract that speaker’s voice from sound
mixtures.

Consider a mixture of the male and female speaker we used
in the preceding section. Based on the observations from the
previous section we can assume that learning a set of bases
Wm(t) from the male speaker and a set of basesWf(t) from
the female speaker will roughly resemble the set of bases
learned from a mixture of their voices. This means thatWm(t)
and Wf (t) can be used to reconstruct the mixture. If this
is the case then we can assume that the part of the mixture
that is reconstructed byWm(t) will predominantly rebuild the
male voice andWf (t) the female voice, thereby providing the
spectrograms from each speaker that we can easily invert back
to time signals.

So to formalize and generalize forN speakers we take the
following steps:

1) Obtain training dataxi(t) for each speaker and sepa-
rately derive convolutive NMF basesWi(t) from their
magnitude spectrogramsXi using the methodology in
section III.

2) Construct a union of all the bases by combining them:
W(t) = W1(t)

⋃

W2(t)
⋃

...
⋃

WN (t). This will re-
sult in a basis setN times bigger than the individual

speaker sets.
3) Take a mixturey(t) containing the learned speakers

uttering an unknown phraseyi(t). Obtain its magnitude
spectrogramY and perform convolutive NMF training
on it. During training keep the bases fixed toW(t) and
learn only their weightsH.

4) Break upH into N partsHi each corresponding to the
weights that belong to a single speaker’s bases. This will
result intoN sets of weights.

5) Reconstruct the magnitude spectrogramY of the ana-
lyzed mixture using only an individual speaker bases and

weights:Zi =
∑T−1

t=0
Wi(t) ·

t→

Hi(t). EachZi will be a
magnitude spectrogram containing parts of the mixture
that were best explained by bases from speakeri.

6) Use the phase data from the original mixture and modu-
late it byZi to obtainN spectrograms for each speaker.

7) Using the inverse short-time Fourier transform transform
the speaker spectrograms to the time domain and obtain
the extracted speech signalszi(t).

The signalszi(t) will be approximations ofyi(t) since
they are constructed from bases belonging only to these
speakers. This of course presupposes that the speakers have
discernible voices and somewhat different timbral character
and pitch inflections, which seemed to be usually the case in
our experience.

B. Mixing and evaluating methodology

In this section we will describe the steps we took while
conducting our experiments on speech separation. We describe
the construction of the mixing cases and their evaluation.

To test this approach monophonic mixtures were syntheti-
cally generated by summing two different but roughly equal
length sentences from different speakers from the TIMIT
database. These sentences were normalized to unit varianceso
that when added would produce a0dB mixture. The remaining
sentences of the two used speakers in the TIMIT database
were used as training data from which we derived a basis
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set for each speaker. The training data were in the order of
30 seconds of continuous speech per speaker, whereas the
evaluation sentences were 2 to 3 seconds long. As in the above
examples the sample rate was16kHz.

Evaluation of the quality of speech separation algorithms is
always a very hard task and the non-linear unmixing procedure
we propose is especially hard to evaluate reliably. In orderto
provide a comparable measure with existing literature we will
be using standard correlation-based measurements. For each
separation example we will provide three types of performance
indexes, the signal to noise ratio for each extracted speaker,
the log correlation of the extracted source with the original,
and the amount of unaccounted energy in the original and
extracted signals.

Using the notation introduced in the preceding section, once
we have the separated speaker soundszi(t) we compare them
with the original mixed sourcesyi(t) to see how good the sep-
aration is. We derive three measures to measure performance,
the speaker ratio indB, the similarity of the output with the
target, and the residual noise. The speaker ratio is computed
by comparing the correlations of the original sources with the
extracted sounds:

ci,j = cor (zi(t), yi(t)) (9)

Where cor(·) denotes correlation. We define the speaker
ratio for each output as a log ratio of its correlation with
the desired sentence divided by the correlation with the other
sentences, i.e.:

SRi = 10 log10

ci,i
∑

∀j 6=i

ci,j

(10)

This measure will tell us how much the signals of the
undesired speakers have been suppressed. Higher values will
reveal better extraction of the desired speaker.

The similarity index measures how much the output resem-
bles the desired output. We measure it by taking the correlation
of the extracted source with the desired output:

SIi = 10 log10 cor (zi(t), yi(t)) (11)

We will have SIi <= 0, with SIi = 0 being the most
desired case. Lower values indicate that the result is not too
similar to the desired sentence. Note that this measure also
is influenced by the quality of separation since traits of the
undesired speakers would lower its value.

Finally the residual energy is the variance of the difference
between the input signal and the sum of the extracted signals:

RE = var

(

∑

i

yi(t) −
∑

i

zi(t)

)

(12)

RE will reveal how much of the output signal is not
accountable by any of the original sounds, and how much is
an artifact of the separation procedure. Values closer to zero
are best, indicating good accountability of the input signal and
little or no residual noise.

One thing to note is that the SNR measurements, although
sufficient, are not directly indicative of the performance of this
algorithm. The separation process is very complex and non-
linear and the SNR measurement will only provide a standard-
ized way of evaluating it. More appropriate performance mea-
sures would be in terms of the cost function being optimized
by the convolutive NMF procedure. However interpreting these
metrics would be obscure at best and would not provide values
amenable to comparisons with other approaches.

V. SEPARATION RESULTS

In this section we present some results from speech mixtures
and shed some light on the importance of various parameters
involved in this process. We averaged the results from a set of
twelve runs from each of eight randomly selected male/female
pairs of speakers from the TIMIT database and attempted
separation using the aforementioned process. The parameters
that were used can be divided in two groups. One group
included the parameters relating to the short time Fourier
transform: the FFT size, the transform hop size, the zero
padding for the FFT and the analysis window. The other group
of parameters were the ones relating to the convolutive NMF
training: the number of basesR, their extent in timeT , and
the training iterations. Although there are plenty of parameters
to compare, the most important ones were the size of the
FFT used, the number of basis functionsR and their temporal
extentT . At first we will examine these three and then present
some additional results exhibiting the effect of the rest ofthe
parameters.

A. Most Important Parameters

For this set of results we will assume that the STFT hop
size was set to one fourth of the FFT size, that zero padding
was not used, before the FFT the data was scaled according
to a Hanning window, and that we estimated the bases and
their weights for two hundred iterations. For the remaining
parameters we used the following values, FFT size = [128
256 512 1024 2048 4096], Number of Bases = [20 40 80
120 200], Length of Bases = [1 2 4 6 8 10]. The sampling
rate of the inputs was16kHz. We performed separation using
all combinations of these parameter on our data set which
amounted to 180 experiments for each of the eight speaker
pairs (1440 runs over all speakers, repeated 12 times for a
total of 17280 experiments). We averaged the performance
measures for all these experiments and analyzed the effect of
various parameters. We present our findings in this section.

Of major importance is the size of the FFT we use to analyze
our inputs. If we average the results over all other parameters
and speakers for each FFT size we can then observe its
effect on the speaker energy ratio (figure 4 left). This value
fluctuates from about2.5dB for an FFT size of 128 points
(8 ms) at worse, to about4.8dB for 1024 points (64ms).
FFT sizes outside 1024 points tend to produce progressively
worse results indicating that this is a good value for this
parameter. The similarity index behaves in a similar way, the
optimal average comes out for an FFT size of 512 points (32
ms) with an approximate value of−0.7. The similarity index
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Fig. 4. Effects of some parameters to the performance indexes. Each point is the average of all other cases when fixing a single parameter value. Note that
for readability reasons the value of the residual noise energy has been scaled by104. The left plot displays the effect of the FFT size, the middleplot the
effect of the number of basesR and the right one the effect of the length of the basesT .

progressively deteriorates for diverging FFT sizes with the
recorded worst being 4096 points with a value of about−1.2.
Deterioration seems to be more rapid for larger FFT frame
values. Residual energy is roughly increasing with the FFT
size. This is to be expected, short time windows provide small
building blocks which can fit the data well without extending
their errors to too wide a time window, wider analysis windows
are extending over larger time periods having to fit much
more information. Using bigger analysis windows results into
a coarser approximation. Values ranged from an average of
about1.8× 10−4 for 128 point FFTs to about3.4× 10−4 for
4096 point FFTs.

The number of bases is obviously also a major parameter.
Regarding its effect on the speaker energy ratio, we generally
observe that fewer bases provide a better result (figure 4
center). The learning of more bases for each speaker allows a
greater expressive power which can model utterances of other
speakers as well. Having too many bases will result in some
reconstruction of the interfering signal which can negatively
affect signal separation. Best results were obtained for 20
bases per speaker with about4.5dB separation, and after a
steady decline the worst value was at3.5dB for 200 bases
per speaker. However using less bases comes at a price since
reconstruction results in a more coarse fit which then exhibits
poor values for the similarity index and residual noise. We see
the residual noise dropped monotonically as we moved from
20 bases to 200 bases per speaker taking values ranging from
3 × 10−4 to 2.4 × 10−4. Inversely the similarity index rose
from about−1 to −.9 So we see a tradeoff, at the expense of
a worsening speaker energy ratio, adding more bases resulted
in an increase in the similarity index and a decrease in the
residual noise.

The length of the bases is another important factor. On
average a value of 4 to 6 produced the best separation results,
although only by a minor margin with worst values at around
3.8dB and best at around4dB (figure 4 right). Residual noise
energy tended to increase with longer basis lengths ranging
from 2.6× 10−4 for a length of 1 to3× 10−4 for a length of
10. That was expected because it will be more difficult to use

longer bases and still have them precisely fit on the evaluation
data. The similarity was at its best around a basis length of 4
with a value of -.9, and tended to fall for greater basis lengths
down to -1 for a basis length of 10. Note that when the length
of the bases is 1 then we are essentially performing NMF.

Of more importance than the individual parameters is the
interaction between them. Figure 5 is instrumental in pointing
this out. We briefly describe some of the major interactions
here. As we pointed out in the previous paragraph, the length
of the bases was not a parameter that varied the performance
measures significantly. However we can see that its effect was
heavily dependent on the FFT size. In general for long FFTs
we saw better separation for short bases regardless of how
many we use, and for shorter FFTs we saw better performance
for few bases regardless of their length. For small FFT sizes
and long bases we obtained better separation and similarity,
however the amount of residual energy increased. As the FFT
size grows, longer bases acted as a detriment to the separation
quality as well as to the similarity index, therefore in thiscase
shorter bases are to be preferred. The residual energy was
heavily dependent on the number of bases. In general more
bases introduced more residual noise, although that effectis
not as pronounced for larger FFT sizes. For larger FFT sizes
though the residual energy increased significantly for longer
bases. Finally as the FFT size increased we noted that the
number of bases become more important to the effect of the
length of the bases with regard to similarity.

The results shown in this section are suppressed due to
averaging with poor parameter selection. In most speaker set
cases boosting up to6dB was achieved for each speaker, and
proper post-processing (section VI), can boost this to double
digit dB improvements.

B. Remaining Parameters

In this section we will examine the remaining parameters,
such the number of iterations for the convolutive NMF train-
ing, the STFT hop, zero padding size and analysis window.
Their interplay is not significant so we examine them inde-
pendently. For our experiments we used an FFT size of 1024
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Fig. 5. Performance measures for combinations of major parameters. Each row of plots is for a different FFT size as denoted over each plot plots. Each
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and 40 basis functions which extended for 4 time points.
The results shown for each parameter are averages over 12
independent runs on each of 8 pairs of speakers.

The performance indexes for various values of these param-
eters are shown in figures 6 and 7. We note that the in general
denser packed FFT windows facilitated better separation. This
is because such denser sampling of time frames helped develop
more time invariance in the basis set, provided a richer
data set and bypassed alignment problems. This seemed to
come at a cost though since it introduced more computational
requirements due to a larger training set and it also resulted
into poor fitting for extreme values. We can see that in the
case where the STFT window hop size was1/8th that of the
FFT size where performance seems to degrade. The excessive
amount of data to learn and fit introduced a computational
complexity which presumably required more training to reach
equal results as larger hop sizes. In the case of zero padding,
we note that in general it is a bad idea since it increased the
dimensionality of the input dramatically and it didn’t seemto
offer any particular performance advantage.

In figure 7 we show the performance effects of the adap-
tation iterations of convolutive NMF. These can be separated
into two groups, the training iterations and the approximation
iterations. Training iterations are the number of iterations we
train on each speaker, whereas approximation iterations are the
number of iterations we perform to adapt the speaker bases
to a mixture. The effect of training iterations displayed an
interesting trend. Early on we got the bestdB improvement
in separation, albeit at a cost of high residual noise. As we
kept iterating the separation index dropped as did the residual
noise whereas the similarity index was more or less stabilized.
We saw that around 100 iterations performance stabilized and
further training was unnecessary (that is on training on 30
seconds of speech, larger training sets would require more
training to reach that state). These effects can be explained by
the fact that due to the rapid convergence of NMF training
the most salient features of each speaker were discovered
very early whereas later on they were refined to include more
generic speech features that all speakers might exhibit (such
as consonants). As training progressed the bases became more
refined so that reconstruction was more effective and that drove
down the amount of residual noise.

The approximation iterations are more predictable in their
performance effect. The more we trained the better the separa-
tion and the less the residual noise. We also note an interesting
trend for the similarity index. We note that it peaked at around
60 iterations (that is on a 3 seconds mixture, lengthier mixtures
would delay this), and then asymptotically decreased. However
the peak of the similarity index didn’t coincide with the peak
in separation quality. The justification for the separationand
residual noise trend is obvious, the more we iterated the better
the fit. The trend of the similarity index can be explained by
the fact that prolonged training would result into more cross-
pollination of speaker bases which can alter the characteristics
of each speaker.

The effect of the window type is rather negligible, it seemed
best to not use a rectangular window since it resulted into
noisier basis functions and about2dB to 3dB worst separation.
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Fig. 6. The effect of some FFT parameters on the performance of separation.
In these plots we examine parameters that do not create a significant
performance changes. On the left plot we see the effects of the STFT hop
size, in the right plot the effects of the FFT zero padding.
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Fig. 7. The effect of training and approximating iterationson the performance
of the separation. The left panel displays the effect of the training iterations,
whereas the right one displays the effect of the mixture approximation
iterations. Best separation results are achieved early on in training, however at
the expense of high residual noise. Note that the three performance measures
are not drawn on the same scale and the plots are only informative of the
measures progression during iterating.

Aside from this the selection of window type is not an issue
in performance.

C. Denoising Examples

Given that the separation procedure we introduce is based on
finding and extracting sound elements that compose the input
sources, separation between multiple speakers is obviously
a harder example since the sources are very similar. In this
section we briefly consider the case of denoising where the
types of sources are quite distinct and can be seen as composed
from a non-overlapping set of bases. We briefly discuss a
couple of examples in this section.

We generated two mixtures that were composed out of one
speaker (mwbt0) and either ambient street noise or chimes.
For both cases we used an FFT size of 1024 points and
40 bases of length 4. In order to perform the separation we
learned models of both the speaker and the interfering sounds.
In the first example speech was boosted to5.2dB over the
street noise. The noise signal was composed out of back-
ground speech, a street performed playing accordion and high
frequency ambience. The accordion and the ambience were
suppressed to inaudible levels, speech babble was suppressed
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but not as much. This is due to the fact that speech babble
had a lot of common spectral content with the speaker and
some of it could also be explained by the speaker’s bases.
In the second example the separation was up to16.3dB. The
much better result is attributed to the fact that the chimes had
a spectral character that had almost no spectral overlap from
the speaker’s voice which facilitated separation. Although not
a primary objective, for both mixtures the street noise and
the chimes were also well separated with minimal traces of
the speaker. Figure 8 displays the spectrograms of the two
mixtures and the separated speech. In these spectrograms
we can clearly see elements of the street noise as well as
the chimes being suppressed. Audible reconstructions of the
extracted sounds exhibit an excellent degree of separationand
a minimal degradation of quality due to the low rank encoding
of the signal.

D. General remarks

On average the resulting separated sounds sounded very
much like linear mixtures of various mixing proportions.
Depending on the success of the separation these ranged from
slightly perceptible to significant interference. There were no
echo residues or spectral coloring imposed by the algorithm,
and thus the speaker ratio proved to be an adequate indicator
to measure separation performance. Results that were obtained
using too few bases often had missing speech phones (usually
wideband ones) or a muffled quality to them, this was not
the case when using more bases. This effect was measured
effectively by the sound similarity indicator which correlated
well with subjective listening evaluations. The use of too few
bases in addition to a largeT also contributed to some hissing
or scratching noise which is most likely a product of a poor
tapering across frames in the frequency magnitude domain
which in turn produced subtle discontinuities in the time do-
main signal. These were usually reflected in the residual noise
measure. Once again depending to the settings used this effect
ranged from imperceptible to noticeable. These are all the
audible artifacts that we encountered during testing and driven
by that we designed the appropriate performance evaluation
measures. Although there is some correlation between some
of the performance measures, in average (and in our subjective
opinion) they did a fairly good job in describing the audible
result quantitatively.

From figures 4 and 5 one can note that a largerT is not
significantly beneficial. Although that is true in the sense
conveyed by the performance parameters, it is important to
note that the extracted features are much more informative
whenT > 1. Consider the case of a fixed analysis window. In
the case whereT = 1 we lose a lot of temporal information
which is carried by the phase of the spectra. We essentially
represent the data using a single magnitude spectrum. For the
same length window whenT > 1 the previously lost temporal
evolution information is now conveyed by the extracted bases.
The resulting trade-off is that we can obtain a single long
spectrum, or a series of shorter spectra that describes common
patterns of spectral evolutions. Although this is not an impor-
tant factor for separation, it is valuable when we subsequently

need to perform speech or sound recognition and the extracted
features need to be maximally informative and unique. The
value of the extracted bases is of course context specific, but
in extreme cases we can even extract entire words per basis
using similar processing [14].

As mentioned before there needs to be some spectral differ-
ence between the sounds that need to be separated in order to
obtain good performance. In our speech experiments we used
female/male sets of speakers to loosely ensure some spectral
variation. Separation between male/male sets produces in
general slightly worse results since the spectra to be extracted
have more similarity (although that is highly dependent on
the speaker character and does not in general mean that all
male/male pairs will be harder problems than female/male).
To further stress the importance of spectral dissimilaritynote
the dramatic improvement of separation quality when using
non-spectrally similar sounds as we have done in section V-C.

The issue of spectral similarity between sources is an
important one which needs to be studied in more depth. The
side effect of dealing with spectrally similar sounds is that their
resulting bases are most likely linearly dependent and thereby
inhibit good separation. Various ad-hoc steps can be taken
to reduce that effect, such as discarding very similar bases
across the different sounds, or reassignment of bases to remove
dependencies, which can result in better sounding results but
are not satisfying solutions. The fact that the bases need tobe
non-negative complicates any straightforward processingthat
can to be done to ensure maximal linear independence and
points to a non-trivial solution. Employing longer bases so
that T > 1 provides a minor relief in this respect since the
issue becomes one of a ‘spectral sequence similarity’ which
is a less likely possibility between two sounds.

Finally a note about reverberation. Because of this type
of analysis, factors such as echoes can be safely ignored
since their effect will be undone by the implicit deconvolution
in training (long echoes will result in repeating sections of
the magnitude spectrogram which is what this algorithm is
designed to discover). Shorter echoes will not be as presentin
the magnitude spectrum, but more so in the phase spectrum
which we discard, and thus does not pose an issue. If these
echoes are strong enough to color the magnitude spectrum
then they will be learned as part of the characteristics of the
input sound, but will not interfere with the learning. In extreme
cases we can have an unnatural amount of spectral smearing
due to reverberation which can make separation impossible.
Such cases are rarely encountered though and even then the
most acute listeners or systems can have a hard time telling
different sounds apart.

VI. POST-PROCESSING

Although the process described so far can obtain reasonable
results in separating sounds, it does not need to be the end of
the separating process. We can use various post-processing
techniques on the outputs to boost the quality of the results
even more. In this section we briefly describe a couple of
possible approaches.

A trivial step that we can employ to improve the quality of
the results is to modify the reconstruction step to account for
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Fig. 8. Spectrograms of the denoising examples. The two leftspectrograms display the two mixtures, the top one with chimes and the bottom one with the
street noise. The two right spectrograms show the respective speech separation. On the top spectrogram one can see the chimes harmonics being virtually
non-existent. On the bottom separation spectrogram one cansee much of the ambience and the accordion harmonics being suppressed.

all the energy in our testing signals. Recall that we used the
phase of the mixture and modulated it with the magnitudes
dictated by the basis approximation. Energy from the mixture
that was not approximated well will be missing from the
reconstructions resulting in a choppy sounding output. This
can be remedied by longer training in the approximation step,
but we have observed that this can sometimes be a detriment
in separation quality and also a computationally intensive
process. Instead we can compute the spectrogram of each
speaker as:

Fi = (∠H) ·
Zi

∑

j Zj

(13)

where∠H is the phase of the mixture spectrogram andZi is
the approximated magnitude spectrogram of each speaker. This
is essentially a spectral filter that ensures that the unaccounted
energy in the input mixture is redistributed to the resulting
speakers’ spectrograms in proportion. This results in definitely
better sounding reconstructions in terms of quality, something
we can note in the performance indexes. The separation quality
remained the same, however the similarity was improved a lot
and residual energy was not only reduced but also stabilized
to a fixed low value for all other parameters.

A notable point of this approach is that it starts with a mono-
phonic mixture and results into a multi-channel output. Had
the separation been perfect there would be no need for post-
processing, however the separation is not always satisfactory

and in that case we can view the outputs as a multi-channel
mixture. This transition from monophonic to multi-channel
opens the possibility of employing multi-channel separation
techniques to further separate the sources. Although this is not
a linear mixture anymore, an application of straightforward
unmixing algorithms like Independent Component Analysis
can be applied to it and can provide on average a boost of
about5dB to 7dB (we employed the JADE algorithm [16]
in our simulations). Given the non-linear relationship of the
two resulting sources this is not necessarily as notable an
improvement as the numbers indicate, it is however noticeable,
and could be improved with a specialized unmixing approach
based on this type of mixture. It should be pointed that this
is quite an ad-hoc step and there is no guarantee that an
application of ICA will work at all, since the resulting mixtures
will be non-linearly mixed.

Either of the above approaches are fairly straightforward
and generic and are not meant as ultimate solutions. They
show however that there can be a considerable improvement
of results after the convolutive NMF approximation and opens
up an interesting avenue of research.

VII. C ONCLUSIONS

In this paper we have presented a supervised method for
separating known types of sounds from monophonic mixtures.
We introduced the concept of a convolutive non-negative basis
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set, demonstrated how it maps to meaningful features in the
case of audio spectra and demonstrated how we can use it in
the context of supervised source separation. We also provided
simulation material which can provide some intuition about
the importance of various parameters and suggested a couple
of ways this process can be enhanced using post-processing.
Depending on the nature of the inputs and the post-processing
employed we obtained interference suppression ranging from
5dB in the worst cases to up to20dB. As described there
are numerous options to trade separation performance for
better audio quality results, and this is a choice which to our
experience has been application dependent. There seem to be
many ways this approach can be enhanced and this article only
attempted to present a basic implementation and its operational
characteristics, it is our hope that future work will address
additional performance enhancing extensions.
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