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ABSTRACT
In this paper, we present a novel technique for the estimation of
the high frequency components (4-8kHz) of speech signals from
narrow-band (0-4 kHz) signals using convolutive Non-Negative
Matrix Factorisation (NMF). The proposed technique utilizes a
brief recording of simultaneous broad band and narrow band sig-
nals from a target speaker to learn a set of broad-band non-nega-
tive "bases" for the speaker. The low-frequency components of
these bases are used to determine how the high-frequency com-
ponents must be combined in order to reconstruct the high-fre-
quency components of new narrow-band signals from the
speaker. Experiments reveal that the technique is able to recon-
struct broadband speech that is perceptually virtually indistin-
guishable from true broadband recordings.

1. INTRODUCTION
Broad-band speech, i.e. speech signals that contain information
up to 7Khz or higher, are naturally better sounding and more
intelligible than narrow-band speech signals, i.e. signals that
have frequencies only upto 4Khz or less, e.g. telephone quality
speech. In this paper we address the problem of bandwidth-
expansion, i.e. imputing high-frequency components of narrow-
band signals, in order to improve their perceptual quality, if not
their intelligibility.

Various solutions have already been proposed for this problem.
Aliasing based methods, e.g. [1], derive high-frequency compo-
nents by aliasing low frequencies into high frequencies by vari-
ous means. Codebook mapping techniques (e.g. [2]) map the
spectrum of the narrow-band signal onto a codeword in a code-
book, and derive the upper frequencies from a corresponding
high-frequency codeword. Statistical approaches utilize the sta-
tistical relationship of lower-band (< 4Khz) and upper-band (>
4Khz) frequency components to derive the latter from the
former. Cheng et. al. [3] model the lower-band and upper-band
components of speech as the outcome of mixtures of random
processes. Mixture weights derived from the narrow-band sig-
nals are applied to the high-frequency processes to generate the
upper-band frequencies in the signal. Other researchers have
modelled the statistical relationships between the lower-band
and upper-band components of the signal through statistical
models such as Gaussian mixture models, HMMs or multi-band
HMMs (e.g. [4]). Finally, linear model approaches (e.g. [5])
attempt to derive upper-band frequency components as linear
combinations of lower-band components.

In this paper we present a new approach to bandwidth-expansion
of narrow-band speech signals based on non-negative matrix fac-
torisation (NMF) [7] of the magnitude spectra of speech that
does not fall into any of the above categories. We represent
sequences of broad-band magnitude spectral vectors as linear
combinations of non-negative "bases". Bases are automatically
learnt from training data. Given any new narrow-band signal, the
combination of the lower-band of these bases that best explains
the narrow-band signal is estimated. Upper-band frequencies are
derived by combining the upper band of the bases in an identical
manner.

The derivation of high-frequency components from the lower-
band frequencies in a signal is a non-trivial problem. This is
because the mutual information between the lower-band and
upper-band frequencies in a speech signal is relatively low
within any frame of speech [6]. It is therefore difficult, if not
impossible to accurately predict the high-frequency components
of several sounds, particularly sibilants and fricatives such as 'f'
and 's'. While the use of cross-frame correlations that might
enable better prediction of high frequencies, these must often be
derived from complex time-series models such as HMMs, or by
explicit interpolation, within the current framework of band-
width expansion techniques.

The NMF based algorithm proposed in this paper, on the other
hand attempts to learn cross-frame contextual dependencies
through the use of Convolutive NMF [8], that actually learns
spectral patches that are several frames wide, rather than spectral
vectors, as bases. Since long-term patterns are more evident in
the envelope of spectra than in the fine detail, we model the two
differently, using wider spectral bases for the envelope and nar-
rower ones for the harmonic structure. Experiments conducted
on narrow-band speech signals derived from wide-band signals
indicate that the proposed method can result in reconstruction of
broad-band signals that sound virtually identical to the original
wide-band signal.

We note that although we have described the NMF-based tech-
nique in opposition to prior methods in this section, we do not
intend to claim supersession over existing techniques. Rather, we
present it as yet another alternative that might potentially avoid
some of the pitfalls of current techniques. The current work has
several shortcomings. The learned spectral bases are speaker-
specific, and hence the reconstruction is effective only for the
specific speaker that the bases have been trained on. Our plans
for future work include the extension of the technique to the
speaker-independent scenario. No allowance has currently been
made for external noise; this remains as future work.

The rest of the paper is arranged as follows: In Section 2 we
briefly describe convolutive NMF. In Section 3 we describe the
proposed bandwidth-expansion technique in detail. In Section 4
we present experimental results, and finally in Section 5 we
present our conclusions

2. CONVOLUTIVE NON-NEGATIVE MATRIX 
FACTORISATION

Matrix factorisation algorithms try to decompose an 
matrix V into two matrices W and H as 

(1)

where W is an  matrix, H is an  matrix, and ,
such that the error of reconstruction of V is minimized. In such
decomposition, the columns of the matrix W may be interpreted
as a set of basis vectors and the columns of H as the coordinates
of the columns of V in terms of these bases. Alternately, the col-
umns of H represent weights with which the basis vectors in W
must be combined to obtain the closest approximation to the col-
umns of V.
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Conventional factorization techniques such as principal compo-
nent analysis (PCA) and independent component analysis (ICA),
etc., allow the bases vectors to comprise both positive and nega-
tive terms, and the interaction between them as specified by the
components of H to be both positive and negative. In strictly
non-negative data sets such as matrices that represent sequences
of magnitude spectral vectors, neither the allowance for negative
components in the bases nor that of negative interaction between
them carries any physical meaning - magnitude cannot be nega-
tive. 

In [7] Lee and Seung present a Non-negative matrix factoriza-
tion (NMF) algorithm that constrains the elements of W and H to
be strictly non-negative. Empirically, the basis vectors derived
by NMF are often found to be physically meaningful. E.g. they
are often found to represent parts of faces and text [7], or indi-
vidual notes in musical pieces [8].

The NMF algorithm of Lee and Seung treats all column vectors
in V as a combination of R vectors, implicitly assuming that it is
sufficient to explain the structure within individual vectors to
explain the entire data set. This effectively assumes that the
order in which the vectors are arranged within V is irrelevant.
However, these assumptions are clearly invalid in data sets such
as sequences of magnitude spectral vectors, where there struc-
tural patterns are evident across multiple vectors, and the order
in which the vectors are arranged is clearly important.

In [8] Smaragdis presents a convolutive version of the NMF
algorithm (CNMF), wherein the bases used to explain any
matrix V are not merely vectors, but actually comprise short
sequences of vectors. This operation can be symbolically repre-
sented as:

(2)

where each  is a non-negative  matrix, H is a non-neg-
ative  matrix as before, and the ( ) operator represents
a right shift operator that shifts the columns of H t positions to
the right. The T in the superscript of Equation 2 represents a
transposition operator. The size of H is maintained by introduc-
ing zero valued columns at the leftmost position to account for
columns that have been shifted out of the matrix.

If we represent the jth vector in  as , each of the sets of
vectors  forms a sequence of spectral vec-
tors, or a spectral patch. These spectral patches form the bases
that are used to explain the data in V. Equation 2 approximates V
as the superposition of the convolution of these patches with the
corresponding rows of H (i.e. the contribution of jth spectral
patch to the approximation of V is obtained by convolving it
with the jth row of H). Note that if  this reduces to con-
ventional NMF. In order to estimate the appropriate matrices 
and H to estimate V, we can use the already existing framework
of NMD. We define a cost function as:

(3)

where the norm on the right side is a Froebinus norm.  rep-
resents a Hadmard component by component multiplication, the
matrix division to the right is also per-component, and  is the
approximation to V given by the right hand side of Equation 2.
The cost function of Equation 3 is identical to the modified Kull-
back-Leibler cost function described by Lee and Seung, with the
variation that the approximation   is given by the convolutive
NMF decomposition of Equation 2, instead of the linear decom-
position of Equation 1. 

Equation 2 can also be viewed as a set of NMF operations that
are being summed to produce the final result. From this perspec-
tive, the chief distinction between Equations 1 and 2 is that the
latter decomposes V in to a combination of  matrices,
while the former uses only 2. This interpretation permits us to
obtain an iterative procedure for the estimation of the  and H
matrices through a simple modification of the NMF update
equations of Lee and Seung The resulting update equations are
given by:

 (4)

(5)

where  represents a Hadamard (component-by-component)
multiplication, and the division operations are also component-
into-component. The ( ) operator represents a left shift oper-
ator akin to the right shift operator in Equation 2. The overall
procedure for estimating the  and H matrices is thus as fol-
lows: Initialize all matrices somehow (random initialization is
effective); thereafter iteratively update all terms using Equations
4 and 5.

The spectral patches  (comprising the jth columns of all the
s) learnt through CNMF are observed to capture salient spec-

trographic structures in the signal [8]. As we show in Section 4,
when applied to speech, the learned bases often represent rele-
vant phonemic or sub-phonetic structures. 

3. RECONSTRUCTING HIGH FREQUENCY 
STRUCTURES OF A BAND LIMITED SIGNAL
The procedure for reconstructing upper-band frequencies of a
narrow-band signal has three components: (i) a signal processing
component where we derive separate representations for the
low- and high-resolution spectra of the signal (which we refer to
as the envelope and harmonic spectra respectively in the rest of
this paper), (ii) a learning component, where we learn non-nega-
tive spectral bases for both the envelope and harmonic spectra,
and finally (iii) a reconstruction component that performs the
actual reconstruction of upper-band frequencies for narrowband
signals.

3.1. Signal Processing
We assume generically that the sampling frequency for all sig-
nals is sufficient to capture both lower and upper band frequen-
cies. Test data that have been sampled at lower frequencies must
be upsampled to this rate. In this paper we have assumed a sam-
pling frequency of 16 Khz, and all window sizes etc. are given
with reference to this number.

We compute a short-time Fourier transform of the signal using a
Hanning window of 512 samples (32ms) with an overlap of 256
samples between adjacent frames. Let S represent the sequence
of complex Fourier spectra for a speech signal. Let  represent
the phase and V the component-wise magnitude of S. V thus rep-
resents the magnitude spectrogram of the signal.  and V may
be viewed as matrices, where each column represents the phase
and magnitude spectra of a single 32ms frame of speech. If there
are M unique points in the Fourier spectrum for any frame, and
there are N frames in the signal, V and  are  matrices.
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We compute the envelope and harmonic spectra of the signal by
liftering V. Let  represent the sequence of envelope spectra
derived from V, and  the sequence of corresponding harmonic
spectra.  and  are  matrices derived from V as:

(6)

(7)

where  is an  matrix such that the lower K components
of each row are set to 1 and the rest of the components are set to
0.  is similar to  except that the upper  components
are set to 1 and the rest to 0, i.e. . The DCT and
IDCT operations in Equations 6 and 7 are applied separately to
each row of their matrix arguments.

By appropriate selection of the ,  and  can be set to
model the envelope and fine-detailed harmonic structure of the
spectrum of the signal. In our work we have found  to
be an effective setting. Figure 1 shows typical envelope and har-
monic spectrograms derived with this setting for K. 

The first stage of the processing scheme is to train various
parameters from a corpus of training data. We compute , 
and  from a corpus of training data. In practice, these matrices
are obtained in a two step process: In the first step, the training
signals are filtered to the frequency band expected in the narrow-
band test data, downsampled to the expected sampling rate of
the narrow-band test data, and finally upsampled again to the
sampling frequency of the full-bandwidth data. This results in
signals that are a close approximation to the signals that will be
obtained by upsampling narrow-band test data. Harmonic, enve-
lope and phase spectral matrices ,  and  are obtained
from the upsampled narrow band training data. Parallely, enve-
lope, harmonic and phase spectral matrices ,  and  are
also derived from the original wide-band signals in the training
data. The final ,  and  matrices are formed from lower
frequency components (below a cutoff ) from the spectral
matrices for the narrow band signal and the higher frequency
components of the matrices derived from the broadband data as:

(8)

where  is a square matrix where the first  diagonal ele-
ments are 1 and the rest of the elements are 0, and  is similar
matrix where the last  diagonal elements are 1 and the rest
of the elements are 0.  is set at the frequency index that corre-
sponds to the cutoff frequency .

3.2. Learning Spectral Bases
Spectral patch bases  are derived for  using
the iterative algorithm specified by Equations 4 and 5. The 
matrix also derived from this procedure is discarded. A set of
lower-band spectral envelope bases, , are derived from 
are obtained by truncating all the matrices at the Lth row, such
that each of the resulting matrices is of size :

(9)

where  is an  matrix where the L leading diagonal
terms are 1 and the rest of the terms are 0. A set of lower-band
spectral harmonic bases,  are also similarly obtained. The
set of matrices, , ,  and  matrices form the
spectral patch bases to be used for reconstruction.

The matrix  is similarly separated into an  low-fre-
quency matrix  and an  high-frequency matrix

. A linear regression  between them is obtained as:

(10)

3.3. Reconstructing broadband signals

A narrow-band test signal is first upsampled to the sampling fre-
quency of the broadband training signal, and phase, envelope
and harmonic spectral matrices ,  and  are derived from
it. The lower frequency components of the matrices are sepa-
rated out as  and .

CNMF approximations are obtained for  and  based on the
 and  bases obtained from the training data. This

approximates  and  as:

(11)

The  and  matrices are obtained through iterations of
Equation 4.

Complete wide-band spectrograms are reconstructed by apply-
ing the estimated  and  matrices to the complete bases

 and  learned during training:

(12)

The upper-band frequencies of  and  are overlaid onto 
and  as 

(13)

The complete magnitude spectrum for the signal is obtained as
. The phase for the reconstructed signal is:

(14)

where  is an  matrix whose (M-L) leading diagonal
elements are 1 and the rest of the elements are 0. Note that the
lower frequency components of both  and  are identical to
the corresponding components of the original Fourier spectral
matrix obtained from the test signal. The complete broadband
signal is obtained by computing the inverse short-time Fourier
transform of .

4. EXPERIMENTAL RESULTS
Experiments were conducted on two sets of signals, the first
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Figure 1.  (a) Envelope spectrum of a typical broadband utterance. Note
the formant structures. (b) Harmonic spectrum of the same utterance.
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consisting of all the recordings from one of the speakers in the
“speaker dependent” component of the Wall street journal cor-
pus, and the second on open-mic recordings obtained from a
male speaker. All signals were sampled at 16Khz. In each set,
five minutes of full-bandwidth recordings from the speakers
were utilized as training data; the rest of the speech was used as
test data. The test data were filtered and downsampled to 4Khz.

All signals were analyzed with 32ms windows, both for training
and testing, resulting in a 512 point Fourier spectrum with 257
unique points. Envelope and harmonic spectra were obtained by
utilizing a K value of 85 in Equations 5 and 6. 50 spectral patch
bases of width  were obtained for the envelope spectra.
100 spectral bases with  were obtained for the harmonic
spectra. Figure 2 shows a number of the envelope bases. Several
of them are observed to capture spectral trajectories of phoneme
segments. In particular, some are seen to capture fricatives.

On the wall street journal data, it was assumed that the narrow-
band signals extended until 4000 Hz (i.e. the cutoff frequency F
was assumed to be 4Khz). For the bandwidth expansion, all fre-
quencies from 4-8 Khz were reconstructed. Figure 3a shows the
spectrum of a signal reconstructed in this manner. On the second
data set, the cutoff frequency below which reliable low-fre-
quency components could be obtained from the narrowband sig-
nal was set to a more realistic 3.7Khz. Bandwidth expansion
only reconstructed frequencies upto 6500Hz in this case. Figure
3b shows and example of a signal reconstructed in this manner.
Additional audio samples may be downloaded from http://
www.cs.cmu.edu/~bhiksha/audio

5. Observations and Conclusions
As can be observed from Figure 3, the bandwidth expansion
technique proposed in this paper is able to reconstruct higher fre-
quencies of the signal very accurately. As the audio samples
demonstrate, the reconstructed signals are perceptually indistin-
guishable from the original wide-band signals that the test data
were derived from. The proposed method thus promises to be
highly effective for bandwidth expansion of narrowband speech.

However, the algorithm as presented here can only be consid-
ered preliminary. The current implementation is speaker-spe-
cific: CNMF bases were derived from speaker specific training
data. It remains to be determined if the technique will work in a
speaker independent manner. Encouragingly, excellent results
have been obtained even though the training data used for the
speakers in all of our experiments was typically less than 5 min-
utes. This leads us to speculate that reliable speaker-independent
bases can be obtained from multi-speaker corpora, since the
characteristics of any speaker or group of speakers can be cap-
tured from relatively small amounts of data. 

It must also be determined if speaker-independent bases so
obtained are language independent since the bases appear to cap-
ture spectral trajectories that resemble phonemes. The test data
in our experiments were relatively noise free. The effect of noise
on the proposed technique remains to be evaluated. Finally, all
test recordings were obtained by downsampling broadband

speech. The effectiveness of the algorithm on real telephone
recordings remains to be evaluated. We expect to cover all these
aspects in future work.
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