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ABSTRACT

Recently, there has been much interest in automatic pitch
estimation and note tracking of polyphonic music. To date,
however, most techniques produce a representation where
pitch estimates are not associated with any particular in-
strument or voice. Therefore, the actual tracks for each
instrument are not readily accessible. Access to individ-
ual tracks is needed for more complete music transcrip-
tion and additionally will provide a window to the anal-
ysis of higher constructs such as counterpoint and instru-
ment theme imitation during a composition. In this paper,
we present a method for tracking the pitches (F0s) of indi-
vidual instruments in polyphonic music. The system uses
a pre-learned dictionary of spectral basis vectors for each
note for a variety of musical instruments. The method then
formulates the tracking of pitches of individual voices in
a probabilistic manner by attempting to explain the input
spectrum as the most likely combination of musical instru-
ments and notes drawn from the dictionary. The method
has been evaluated on a subset of the MIREX multiple-F0
estimation test dataset, showing promising results.

1. INTRODUCTION

One of the most important classes of information to be re-
trieved from music is its polyphonic pitch content. Re-
cently, many researchers have attempted multiple-F0 esti-
mation (MFE) [11, 14, 18]. (A review of state-of-the-art
MFE systems can be found in [2].) Many current MFE
systems such as [14] restrict themselves to the estimation
of a certain number of F0s for each frame, while ignoring
which instrument/timbre corresponds to each F0. While
approaches for tracking solo melodic voice/timbres exist
[15], the pitch tracking of additional lines and parts in poly-
phonic music opens new possibilities. By exposing the in-
dividual lines produced by each instrument in polyphonic
music, aspects such as counterpoint, the appearance of leit-
motifs across instruments in a piece, and hidden thematic
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references across musical pieces can be uncovered. There-
fore, instruments and their timbres are very important com-
ponents in music and should be tracked along with their
F0s. Moreover, knowing each instrument’s F0 track can
be very beneficial for a variety of MIR user applications,
such as music transcription, score alignment, audio music
similarity, cover song identification, active music listening,
melodic similarity, harmonic analysis, intelligent equaliza-
tion, and F0-guided source separation.

As stated previously, most MFE systems produce low-
level representations of the polyphonic pitch content present
in music audio which report only what fundamental fre-
quencies are present at each given time. However higher-
level representations can attempt to track and link these
fundamental frequencies over time to form notes such as
described in [3]. It is important to note that such tracking
can also improve the accuracy of MFE’s based purely on
individual frames, as reported reported in [18]. In [12] a
classification approach is used to determine singing voice
portions in music audio so as to build the pitch-track corre-
sponding to a vocal melody. In [5, 6], a frame level multi-
F0 estimation method is used followed by a constrained
clustering method that uses harmonic amplitude-based fea-
tures to cluster pitches into pitch tracks. In these cases, to
build instrument or timbre-specific pitch tracks, bottom-up
methods were used that first produced frame-based pitch
estimates and subsequently sometimes attempted to build
note-level representations, which may form solo phrases.

In the method presented in this paper, we use an alter-
native approach. Instead of building timbre tracks from
the pitch content, our proposed approach uses timbre infor-
mation to guide the formation of instrument-specific pitch
tracks. This paper is organized as follows. Section 2 de-
tails the proposed method. Section 3 describes the evalua-
tion datasets, measures, and results. The evaluation results
are discussed in Section 4 and conclusions and future work
covered in Section 5.

2. PROPOSED METHOD

To make a system that tracks pitches attributed to differ-
ent musical instruments, we borrow an idea from the su-
pervised sound source separation domain: using a spectral
library [1, 13]. By training our system on example sounds



from different instruments, we can track them in complex
sound mixtures. The proposed method is based on prob-
abilistic latent component analysis (PLCA) [17]. PLCA
is a variant of non-negative matrix factorization (NMF)
and has been used widely to model sounds in the spec-
tral domain. Its probabilistic interpretation makes it ex-
tensible to using priors and statistical techniques. We use
regular PLCA to build dictionaries of spectra indexed by
F0 and instrument where the spectra are analyzed from
recordings of individual notes of different musical instru-
ments. We extend the model of [16] to represent each
source/instrument not by only one spectral dictionary, but
rather with a collection of dictionaries, each of which is
an ensemble of spectral basis vectors that have the same
F0. We model the input music signal’s spectrum as a sum
of basis vectors from F0-specfic spectrum dictionaries for
different instruments. Update rules are designated to cal-
culate the model parameters, which are estimated proba-
bilities for the occurrence of each spectral basis vector, F0-
spectrum dictionary, and instrument in the input mixture at
a given time. Finally, we perform the Viterbi algorithm [8]
to track the most likely pitch sequence for each instrument.

A sinusoidal model is used for the time-frequency rep-
resentation because of its compactness and also for rep-
resenting each note independent of the intonation errors or
tuning differences between training and test set performers.
We begin by performing a short-time Fourier transform on
the audio signal. Peaks in the spectrum are then deter-
mined using a frequency-dependent threshold as described
in [7]. We then refine each peak’s amplitude and frequency
using a signal derivative method proposed by [4].

2.1 Model

We model the audio input mixture’s spectrum for each frame
as a sum of instrument tones where each tone is repre-
sented by a dictionary of spectral basis vectors that are
learned in advance.

It is assumed that all instrument tones have harmon-
ically related frequencies which are integer multiples of
an F0 frequency. It turns out that in a mixture of such
tones there is a high probability that harmonics will over-
lap. The input spectrum can be modeled as a distribu-
tion/histogram over a range of frequencies. E.g., each com-
ponent is viewed as the probability of occurrence of that
particular frequency. The magnitude at any particular fre-
quency can be thought as an accumulation of magnitudes
from various instruments due to component overlapping.
The scaled version of the input mixture spectrum is mod-
eled as a discrete distribution. The generative process is
modeled as follows:

Xt(f) ∼= Pt(f) =
I∑
i

Pt(i)
N∑
n∈pi

Pt(p|i)
K∑

z∈zpi
Pt(z|p)Ppi(f |z) (1)

where Xt(fj) is the spectral magnitude of the peak j at
frequency fj for the observed input mixture spectrum at
time t; Pt(f) is an approximation of the input spectrum;
Pt(i) is the estimated probability of occurrence of instru-
ment i at time t, whereas Pt(p|i) is the estimated prob-
ability that pitch p is produced by instrument i; P (f |z)

is the learned spectral basis vector for the pitch p of in-
strument i; and Pt(z|p) is the probability (weight) of that
basis vector. The above model explains the mixture mag-
nitude spectrum hierarchically as the sum of N individual
pitches from I different instruments where the dictionary
corresponding to each pitch/instrument has K elements.
The independence relationships of the model can be repre-
sented by the graph I→P→Z→F. The process that gener-
ates the frequency components in the observed magnitude
spectrum is as follows: First, an individual instrument li-
brary is selected from a group of instrument libraries. Sec-
ond, a spectrum dictionary is drawn for each pitch from
the instrument library. Third, a spectral basis vector is
drawn from a particular F0-spectrum dictionary for the in-
strument. Fourth, a spectral component at a particular fre-
quency is drawn from the spectral basis vector. Although
it is possible that this spectral component will be generated
by only a single instrument, most often it only contributes
a fraction to the magnitude of the observed spectrum at that
frequency.

2.2 Parameter Estimation

Parameters for the model θ = {Pt(z|p), Pt(p|i), Pt(i)}
can be estimated using an expectation-maximization (EM)
algorithm. In the E-step, current parameter values θold are
used to calculate the posterior distribution.

Pt(i, p, z|f, θold) =
Pt(f |i, p, z)Pt(i, p, z)

Pt(f)
(2)

Because of the structure of the model, Pt(f |i, p, z) = Pt(f |z)
and Pt(i, p, z) = Pt(i)Pt(p|i)Pt(z|p). We can write the
posterior as

Pt(i, p, z|f, θold) = P (f |z)Pt(z|p)Pt(p|i)Pt(i)∑
i
Pt(i)

∑
n∈pi

Pt(p|i)
∑

z∈zpi

Pt(z|p)Ppi (f |z)
(3)

The posterior is used to calculate the expectation of the
complete data log likelihood Q

Q(θ, θold) =
∑
f

Xf

∑
i

∑
n∈pi

∑
z∈zpi

P (i, p, z|f, θold)log(P (i, p, z, f |θ) (4)

In the M-step, new parameters are estimated by maximiz-
ing the above function according to θ, resulting in the fol-
lowing update rules:

Pt(z|p)new ←

∑
f

Pt(i, p, z|f)Xt(f)∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)
(5)

Pt(p|i)new ←

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)∑
p∈pi

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)
(6)

Pt(i)
new ←

∑
p∈pi

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)∑
i

∑
p∈pi

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f)
(7)



We then use the new estimates to calculate the posterior in
an iterative manner and repeat until convergence is achieved.

2.3 Sparsity Prior

At any given time, we expect each instrument active to be
playing a single pitch. Even though the parameter esti-
mation method would allow multiple pitches per frame for
each instrument, in this project our goal is to track a mono-
phonic pitch contour for each instrument. We also expect
that not all instruments are active at the same time.

Enforcing sparsity constraints on note and instrument
probabilities Pt(p|i)’s and Pt(i)’s reinforce this behavior.
We use the following prior (the normalizing constant is
dropped for convenience)

P (φ) =

(∑
φ

(P (φ))
α

)β
(8)

Adding the above prior to the expectation of the complete
data log-likelihood and maximizing it with respect to P (i)
and P (p|i), we arrive at the following update rules

P (p|i)new ←
∑
z∈zpi

∑
f

P (i, p, z|f)Xf +
βp(Pt(p|i))α∑
p∈pi

(Pt(p|i))α (9)

Pt(i)
new ←

∑
p∈pi

∑
z∈zpi

∑
f

Pt(i, p, z|f)Xt(f) +
βp(Pt(i))

α∑
p∈i

(Pt(i))
α (10)

(We have to rescale explicitly so that it sums up to one.)

P (p|i)new ← P (p|i)new∑
p∈pi

P (i)new and P (i)new ← P (i)new∑
i
P (i)new (11)

2.4 Enforcing Continuity

Our goal is to track each instrument’s F0 through time. We
expect the pitch contour to be smooth, not changing drasti-
cally from frame to frame except at note transitions. Using
the Viterbi algorithm, we treat the pitches as hidden states
and pose the instrument tracking problem as one of infer-
ring the most likely pitch state sequence for each instru-
ment. Above estimated pitch distributions (which maxi-
mize the mixture likelihood P (Xt(f)|i, p, z)) for each in-
strument are considered to be the emission probability of
the hidden state in a hidden Markov model (HMM). Tran-
sition probabilities are modeled as normal distributions given
by

P (pt|p
′

t−1) =
1√
2πσ

e−

(
f0t−f

′
0t−1

)2
2σ2 (12)

where pt denotes the hidden pitch state for instrument i
at time t. f0t denotes the F0 associated with the hidden
pitch state for instrument i at time t. Transitions are calcu-
lated within the same instrument. We empirically choose
σ = 7 + f/100Hz. The above distribution enforces the
continuity of the active notes from frame to frame.

3. EVALUATION ON REAL WORLD DATA

We trained a dictionary for each pitch of each instrument
using the RWC musical instrument database [9] using non-
negative matrix factorization with Kullback-Leibler diver-
gence which is numerically equal to the regular PLCA method
in 2 dimensions [17]. For each pitch from the RWC dataset,
20 representative spectra were derived from 27 different
tones corresponding to 3 players, 3 dynamics (piano, mezzo,
forte), and 3 articulations (normal, staccato, vibrato). In
the pitch tracking stage, we limit the number of instrument
libraries to choose from by designating the instruments ex-
pected to be in the input mixture as input to the algorithm.
We also limit the search range for F0 (which F0-spectrum
dictionaries to use) of each instrument by only using the
peaks estimated by the sinusoidal model that are between
50 Hz to 2500 Hz as pitch candidates.

Evaluations are performed at frame level. Multi-F0 track-
ing problem is similar to melody extraction problem ex-
tended to multiple melodies as opposed multi-F0 estima-
tion problem where the estimated number of F0s for each
frame can be different than the ground-truth F0s, which is
not the case in the tracking problem, where the number of
estimated F0s and the reference F0s are simply equal to
total number of frames. That’s why we decided to use the
evaluation metrics from MIREX melody extraction task.
Comparing the voiced (nonzero F0) and unvoiced (zero F0)
values for each frame of the estimated and ground-truth
F0 tracks, the counts for true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) are cal-
culated according to Table 1

Estimated
voiced unvoiced

Ground voiced TP FN
truth unvoiced FP TN

Table 1. Evaluation

TP’s further break down into ones with correct F0 and the
ones with incorrect F0 as TP = TPC + TPI . Estimated
voiced F0 is correct if it is within a quarter tone (+-2.93%)
range of a positive ground-truth F0 for that frame.

The precision, recall, F-measure, and accuracy for each
input test file is then calculated over all frames and all in-
struments as:

Precision =

∑
i

∑
t
TPCi,t∑

i

∑
t
TPi,t + FPi,t

(13)

Recall =

∑
i

∑
t
TPCi,t∑

i

∑
t
TPi,t + FNi,t

(14)

F-measure =
2× precision× recall

precision + recall
(15)

Acc. =

∑
i

∑
t
TPCi,t+TNi,t∑

i

∑
t
TPi,t+FPi,t+TNi,t+FNi,t

(16)



where t is the frame index and i is the instrument index.
We tested the proposed method on different datasets. The
ground-truths for these datasets were estimated using mono-
phonic pitch estimators (Wavesurfer, Praat and YIN) on the
single-instrument recordings prior to mixing. The results
of the monophonic pitch estimators are manually corrected
where necessary.

For preliminary testing and development, we applied
the method on a 11 second excerpt taken from a real world
performance by bassoon, clarinet and oboe which was taken
from a MIREX multitrack dataset (standard woodwind quin-
tet transcribed from L. van Beethoven ”Variations for String
Quartet”, Op.18, N.5). The three separate tracks were mixed
to monaural. The results can be seen in Table 2. The pro-
posed method scored 0.83 accuracy on average. Figure 1
shows the multiple-F0 tracks for each instrument. Without
tracking, the F0’s would not be connected from frame to
frame.

Bassoon Clarinet Oboe Ave.
Accuracy 0.76 0.85 0.89 0.83
Precision 0.76 0.85 0.89 0.83
Recall 0.82 0.92 0.90 0.88
F-measure 0.79 0.88 0.89 0.86

Table 2. Evaluation performances for a 11-s woodwind
trio excerpt (bassoon, clarinet, oboe).
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Figure 1. Pitch (in midi note numbers) vs. time using
the proposed system on the 11-s woodwind trio excerpt
(bassoon (lower), clarinet (middle), oboe (upper)). Thin
lines represent the ground-truth.

We then tested the proposed method on two datasets
used in the MIREX multiple-F0 task test set [2]. The first
one is a multitrack recording of the woodwind quintet men-
tioned above [2]. The piece is highly contrapuntal as op-
posed to consisting of a lone melodic voice plus accom-
paniment. The predominant melodies alternate between
instruments. The F0 tracks often cross each other. Five

non-overlapping 30-second sections were chosen from the
recording. Isolated instruments were mixed from solo tracks
to polyphonies ranging from 2 (duo) to 5 (quintet), result-
ing in a total of 20 tracks (4 different polyphonies times
five sections). The average pitch-tracking results over all
tracks for polyphony 2 to 5 are shown in Table 3.

Accuracy Precision Recall F-measure
0.52 0.50 0.56 0.53

Table 3. Average performance on the MIREX woodwind
quintet dataset.

Figure 2 shows a bar graph of the performance of the
method for different polyphonies. Figure 3 shows the av-
erage accuracies for different instruments in various poly-
phonies.
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Figure 2. Performance vs. polyphony for the
MIREX woodwind quintet dataset (Five 30-s segments per
polyphony).
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Figure 3. Ave. accuracy of individual instruments for
different polyphonies for the MIREX woodwind quintet
dataset. (Five 30-s segments)

The second dataset we tested our method on is a record-
ing of a four-part J.S. Bach chorales created by [5] consist-



ing of bassoon, clarinet, saxophone, and viola. Four 30
seconds sections were mixed from duo to quartet, resulting
in 12 tracks (2 different polyphonies times 4 sections). The
average results over all tracks in this dataset can be seen in
Table 4.

Accuracy Precision Recall F-measure
0.59 0.55 0.55 0.55

Table 4. Average performance for the MIREX Bach
chorales dataset

Figure 4 shows a bar graph of the performance of the
method for different polyphonies. Figure 5 shows the av-
erage accuracies of different instruments in various poly-
phonies. The RWC dataset of the MIREX multiple-F0 task
was not evaluated because RWC samples were used for
training. Also the piano dataset was not used because our
project’s goal is to track distinct timbres.

2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Polyphony

 

 

Accuracy

Precision

Recall

F−measure

Figure 4. Ave. Performance vs. polyphony for the
MIREX Bach chorales dataset. (Four 30-s segments)
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Figure 5. Ave. accuracy of instruments in differ-
ent polyphonies for the MIREX Bach chorales quintet
dataset.(Four 30-s segments)

4. DISCUSSION

The proposed method on average performed with 84% ac-
curacy on identifying the instrument tracks for the trio case
(Figure 1) which was used for the development of the al-
gorithm. Accuracies were 52% and 59% for the MIREX
woodwind quintet and Bach chorales quartet datasets. By
examining the MIREX dataset results, we see that most
problems are caused by an inactive instrument following
the dominant instrument’s F0 track. Some instruments in
this dataset are inactive during 70-80% of the entire dura-
tion of the input. Accuracy-vs.-instrument results for the
MIREX woodwind quintet (Figure 3), indicate that instru-
ments horn and clarinet have lower performance in the 4
and 5 polyphony cases, due to their F0 tracks being highly
sparse. In addition to remaining silent much of the time,
they often play soft notes when they are active.

The tracking system reports note probabilities for every
non-silent frame, which are then used in an HMM to es-
timate the F0 tracks. Voicing decisions are based strictly
on the rms amplitude of the mixture input signal to de-
cide whether the signal is silent. This results in a high
number of false positives when an individual instrument
is silent in parts of a track, a condition which happens of-
ten in the MIREX dataset. This behavior also results in a
very low number of true and false negatives (since the sys-
tem reports very few negatives) resulting in a higher recall
than lower precision which can be seen in Figures 2 and
4. In the future, we would like to explore methods to infer
whether instruments are active or not at any given point in
time.

Another kind of error that frequently occurs is when a
less dominant instrument tracks a more dominant one that
has a similar timbre. This is probably caused by the instru-
ment spectra having significant correlation with each other.
Looking at the performance-vs.-polyphony results for each
instrument in Figure 5, we see that instruments like violin,
which have a unique timbre, have better average accuracy.

Possible solutions include training the instrument spec-
trum dictionaries not in isolation but in combination with
other instrument spectra, which may assist the basis vec-
tors behaving in a more discriminant way. Methods for dis-
criminant non-negative tensor factorizations are explored
in [19]. This issue can also be addressed in the testing part.
Pitch probabilities in EM iterations can be estimated to be
as maximally different as possible, while still explaining
the overall mixture by appropriate use of priors. Another
method that might improve this issue would be to use a
factorial HMM to jointly estimate the pitch tracks.

On average, the proposed method scored 0.53 for Ac-
curacy on the MIREX dataset, which is an improvement
over the only past result (0.21) for the multiple-F0 track-
ing task evaluated at MIREX [10]. However, we note that
the MIREX multiple-F0 task did not offer the opportunity
to utilize instrument names for the mixture input test files.

One reason the proposed method works comparatively
well for the trio and the Bach chorales case (see Table 1
and Figure 1) is that most instruments were active most of
the time. The encouraging results from this case lead us to



believe that the pitch tracking problems can be improved
effectively by addressing the issues discussed above.

Finally, we note that the restriction that sounds must
consist soley of harmonic partials can be relaxed. E.g.,
pitch estimates for instruments like xylophone, which do
not have strict harmonic structures but do have predictable
inharmonic structures, can be determined.

5. CONCLUSION

A new method for pitch and instrument tracking of indi-
vidual instruments in polyphonic music has been designed
and evaluated on an established dataset that has previously
been used for multiple-F0 estimation under MIREX. Cur-
rent results are encouraging, but several problems need to
be resolved (as described in the Discussion section) for the
method to be an effective tool.

As mentioned in the Introduction, knowing the F0 tracks
can be very beneficial for a variety of MIR tasks. In the fu-
ture, we would like to explore the use of voicing detection
to determine which instruments are active. We would also
like to perform instrument identification in the front-end
so the method does not require prior knowledge of the in-
strumentation. We also plan to experiment with different
discriminant learning methods and to re-infer the dictio-
naries based on the input mixture. Finally, we propose to
explore using an automatic key detection algorithm and a
more musicologically informed pitch transition matrix for
the hidden Markov model.
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