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Abstract

In this paper we present and evaluate factored methods for
recognition of simultaneous speech from multiple speakers
in single-channel recordings. Factored methods decompose
the problem of jointly recognizing the speech from each of
the speakers by separately recognizing the speech from each
speaker. In order to achieve this, the signal components of the
target speaker in each case must be enhanced in some man-
ner. We do this in two ways: using an NMF-based speaker
separation algorithm that generates separated spectra for each
speaker, and a mask estimation method that generates spectral
masks for each speaker that must be used in conjunction with
a missing-feature method that can recognize speech from par-
tial spectral data. Experiments on synthetic mixtures of signals
from the Wall Street Journal corpus show that both approaches
can greatly improve the recognition of the individual signals in
the mixture.

1. Introduction

In this paper we address the problem of recognizing speech
from multiple simultaneous speakers from monaural record-
ings. This is a difficult problem even for human beings - al-
though we are well able to selectively listen to one of many
speakers when hearing the sounds binaurally, our performance
is much worse when we hear with only one ear. Needless to say,
the problem gets immensely more difficult for automatic speech
recognition systems.

Although current scientific literature contains several re-
ports on the separation of the individual signals from monaural
recordings of concurrent speakers, there is surprisingly little on
the recognition of such data. However the statistical framework
required for a solution is readily available. In most current rec-
ognizers, the distribution of the speech signals (or, rather, the
sequences of parameter vectors derived from speech signals) is
modelled by an HMM. By this model, assuming independence
between the signals for the two speakers, the distribution of the
mixed signal can be represented by a large factorial HMM that
includes one state for every combination of states in the HMMs
for the individual signals. Specifically, if the HMMs for the two
speakers have IV and M states respectively, the factorial HMM
for the mixed signal has NV x M states. The state output distri-
bution the (4, 7)™ state of the factorial HMM is obtained from
the state output densities of the 4" state of the HMM for the first
speaker and the 7" state for the second speaker, and the func-
tion that relates the parameters for the mixed signal and those
for the signals for the individual speakers.

Varga and Moore [1] present a recognition algorithm for
decoding such HMMs, that simultaneously retrieves the best
state sequences through both the component HMMs. In ef-
fect, the algorithm simultaneously recognizes the utterances by

both speakers. However, the Varga and Moore algorithm, al-
though theoretically precise, requires the decoding of large fac-
torial HMMs, an extremely difficult proposition for all but rel-
atively small tasks. For instance, in [2] Deoras and Hasegawa-
Johnson report applying the algorithm to the recognition of mul-
tiple speakers, but restrict themselves to a digits task where both
speakers have uttered digit sequences. No results are reported
on the application of this technique to larger recognition tasks.

In this paper we follow a simpler approach: we factor the
problem of recognizing multiple concurrent speakers into mul-
tiple independent recognition procedures, one for each speaker.
In each case, the signal components for the target speaker are
enhanced in the mixed signal in some manner.

A variety of single-channel speaker separation solutions
have been proposed in the literature that can be used to enhance
the target speaker. These methods can largely be categorized as
spectral-decomposition-based methods and mask-based meth-
ods. Spectral-decomposition-based methods learn typical spec-
tral structures, or “bases”, for individual speakers from training
data. Mixed signals are decomposed into linear combinations of
these bases. The signals for individual speakers are obtained by
recombining their bases with the appropriate weights. Jang et.
al. [3] derive the bases for speakers through independent com-
ponent analysis (ICA) of their signals. Smaragdis [4] derives
them through non-negative matrix factorization (NMF) of their
spectra. Other authors have derived bases through vector quan-
tization, Gaussian mixture modelling, etc. The characteristic of
the spectral-decomposition-based approach is that it attempts to
derive entire spectra for each of the speakers.

Mask based methods, on the other hand, are based on the
notion that in a mixed speech signal, any given frequency band
is dominated by only one of the speakers at any time. By this
model, any speaker can be effectively separated from a mix-
ture by identifying the time-frequency components of the mixed
signal in which they dominate and reconstructing a signal from
these components alone. The problem then simply becomes one
of estimating the spectral masks that identify the time-frequency
components within which any speaker dominates. In [5] Roweis
presents the max-VQ algorithm that models the distribution of
the log spectra of individual speakers as Gaussian mixtures. The
time-frequency components to be associated with each speaker
are identified through an efficient branch-and-bound algorithm
that identifies the most likely combination of Gaussians for
each spectral vector. Other authors attempt to segregate time-
frequency components by speaker using perceptual principles
(e.g. [6]), or through the use of automated clustering tech-
niques, e.g. [7].

In this paper we have evaluated one spectral-
decomposition-based method: the NMF-based separation
algorithm of Smaragdis [4], and one mask-based method: the
max-VQ algorithm by Roweis [5]. For the NMF-based method,



recognition was performed with features derived from the
spectra reconstructed by the algorithm for each speaker. For
the mask-based method, on the other hand, we have employed
the missing-feature approach proposed by Cooke et. al. [8] that
aims to perform recognition with partial spectral information
such as might be specified by the spectral masks obtained from
max-VQ, for recognition. The specific missing-feature method
employed in this paper is the cluster-based imputation method
of Raj et. al. [9], although other missing-feature methods are
also applicable. Our recognition results, reported on synthetic
mixtures of signals from the Wall Street Journal corpus,
indicate that both spectral decomposition and mask-based
approaches can be used to significantly enhance recognition
of individual speakers, at least at relatively low levels of
interference from competing speakers.

Before we proceed, we note here that in the rest of this pa-
per we have assumed that a mixed signal comprises speech from
two speakers. However, much of the discussion can be extended
simply to more complex mixtures, although the recognition re-
sults obtained with such mixtures may be expected to worsen
with increasing speakers.

The rest of this paper is arranged as follows: In Section 2
we briefly outline Smaragdis’ NMF-based speaker separation
algorithm. In Section 3 we outline Roweis’ max-VQ algorithm
for generating spectral masks. In Section 4 we briefly describe
the missing feature method employed in conjunction with the
mask estimation method of Section 3. In Section 5 we outline
the entire recognition process. In Section 6 we describe our
experimental results, and finally in Section 7 we present our
observations and plans for future work.

2. NMF-based speaker separation

Matrix factorisation algorithms attempt to decompose a real
M x N matrix V as the product of an M x R matrix W and
an R x N matrix H as:

Vx~WH ey

In such decomposition, the columns of W may be interpreted
as a set of basis vectors and the columns of H as the coordinates
of the column vectors in 'V in terms of these bases.

Conventional factorisation techniques such as principal
component analysis and independent component analysis per-
mit the entries of both W and H to be both negative an posi-
tive. However, for strictly non-negative data, such as data sets
comprising only power spectral vectors of a signal, the resulting
bases and their weights bear no intuitive meaning. In [10], Lee
and Seung present a non-negative factorisation technique that
ensures that the entries of W and H are strictly non-negative.
Briefly, the NMF algorithm initialises the non-negative matri-
ces W and H and iteratively updates them through repeated
application of the updates:

W'Y _
H=HQ # )
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where ® represents a Hadamard (component-wise) product and
all matrix divisions are also per-component.

The bases derived from NMF decomposition of images and
text have empirically been observed to represent perceptually
meaningful parts of faces, characters, etc. In [4] Smaragdis

presents a single-channel speaker separation algorithm that is
based on NMF decomposition of spectra.

In this method, the sequences of power spectral vectors de-
rived from windowed short-time Fourier analysis of the signals
for each speaker are treated as spectral matrices. In a train-
ing step, basis vectors are derived from spectral matrices ob-
tained from training data for each speaker. Let X, represent
an M x Tx spectral matrix comprising the sequence of power
spectral vectors derived from training data for a speaker Sx. M
is the length of the power spectral vectors for the signal (i.e. the
no. of unique FFT points for any analysis window). Let Y, be
an M x Ty spectral matrix for the training data for speaker Sy .
X¢r is decomposed into the product of an M X Rx matrix W x
and a Rx X T'x matrix Hx, by iterations of Equations 2 and
3. Yy, is similarly decomposed into the product of an M x Ry
matrix Wy and an Ry X Ty matrix Hy. Rx and Ry rep-
resent the number of basis vectors for each of the speakers and
must be specified externally to the algorithm.

Given a new mixed recording from both speakers, the bases
computed for each of them are used to separate their signals.
Let Z represent an M x T’z spectral matrix obtained from the
mixed signal. An extended M X (Rx + Ry) basis matrix
W = [WxWy] is created by concatenating the basis ma-
trices for the two speakers. Z is decomposed into the product
of W and an (Rx + Ry) x Tz matrix Hz through iterations
of Equation 2. The separated power spectral matrices for the
individual speakers are reconstructed as

X = Wx.Ux.Hz )

X = Wy.Uy.Hz ©)

where Ux is an Rx x (Rx + Ry ) matrix such that leading Rx
diagonal elements are 1 and the rest of the terms are 0, and Uy
isand Ry X (Rx + Ry ) matrix such that the trailing (rightmost)
Ry diagonal elements are one and the rest of the elements are
0.

Equation 4 essentially reconstructs the power spectrum for
each of the speakers by recombining their bases with their re-
spective weights from the Hz matrix. The signals for the indi-
vidual speakers are then reconstructed by combining Xand Y
with the phase of the short-time Fourier transform of the mixed
signal and performing an inverse short-time Fourier transform.

3. Estimating Spectral Masks with Max-VQ

Let Z;(w) represent the logarithm of the power spectrum of
the mixed speech signal within the ¢ analysis window. Let
Xt(w) and Yi(w) represent the log spectra (i.e. the log of the
power spectra) respectively of the component signals from the
two speakers, within the same analysis window. The max-VQ
algorithm makes the assumption that:

Zy(w) = max(X¢(w), Ye(w)) (6)

The goal of algorithm is to determine, for every analysis
window, a binary spectrographic mask Sy (w) such that Sy (w) =
1if X¢(w) > Yi(w), 0 otherwise. The mask S¢(w) identifies
which of the two speakers is actually represented in Z;(w).

In order to estimate S(w), it is assumed that the log-
spectral vectors for each speaker are drawn from speaker-
specific codebooks of vectors. The log spectral vector for the
observed mixed signal is the element-wise maximum of the
codewords for the individual speakers, plus some zero-mean ad-
ditive estimation noise. Let {X} represent the set of codewords



in the codebook for the first speaker, and X} the k™ codeword
in the codebook. Similarly, let {Y} represent the codebook for
the second speaker and ); the 7 codeword in the codebook.
We have dropped the w in this notation, for brevity. {X} and
{Y} are learnt from training data for the two speakers. Let X
represent the variance of the estimation noise. The probability
that a log spectral vector Z; for the mixed signal was generated
from the codewords X} and Y); for the two speakers is given by

P(Z4, X, Vi) = mr,j N (Ze; max(Xg, V5), ) (D)

where NV'(Z; p, ) represents the value of a Gaussian density
with mean g and variance ¥ at Z. max(.) in Equation 7 is an
element-wise maximum, and 7y,; is the a priori probability of
the pair of codewords X} and V;. Max-VQ identifies the most
likely pair of codewords to have generated Z as:

Xy, Ve = argmaxy e xy ye P26, X)) ®)

Roweis presents a highly efficient branch-and-bound algo-
rithm to solve Equation 8. The spectrographic mask for the
vector Z; is obtained as S; = step(/?t - j)t), where step(.)
takes the value 1 if its argument is positive and O otherwise.

4. Missing feature methods: Cluster-based
Reconstruction of Spectra

Consider a log-spectral vector Z derived from one analysis
frame of the mixed signal obtained from speakers Sx and Sy.
Let X and Y represent the log spectral vectors for the signals
from Sx and Sy that sum up to compose the mixed signal
within the window. Let S represent the spectral mask that iden-
tifies the components of Z that belong to X . By definition, then

. =Z[i] if S[i]=1
X[l]{ <Z B} else . ©)

where X[i], Z[i] and S[i] represent the i*" component of X, Z
and S respectively. The inequality for S # 1 results directly
from Equation 6.

Cluster-based reconstruction attempts to reconstruct the
components of X for which only the bound X[i] < Z[4] is
known. The distribution of the X is modelled by a mixture of
Gaussians with diagonal covariance matrices:

P(X) =Y e [ [N(XI]; g, o) (10)
k i

where ¢y, is the mixture weight of the k™ Gaussian in the mix-
ture, and pg,; and oy ; are the mean and variance respectively
of the §*h component of X, for the k'™ Gaussian in the mixture.
All ¢k, px,; and og,; values are trained from corpus of training
speech from Sx.

P(k|X,S), the a posteriori probability of the k", given
the vector X and its mask .S is given by

P(k,X,S) = Hi:S[i]=1N§X[i]§Hk,iafflc,i)-
Hj:S[j];él f_o[? N (@; i, o5 )d
an
Pk, X,S)
P(KIX,S) = < (12)
> PG, X, S)

The unknown components of X are computed as
X[ Ispre~ Y P(kIX, S)min(Z[i], pe,d)  (13)
2

The outcome of the reconstruction process is a complete spec-
tral vector X, where some of the components are derived di-
rectly from Z[4] and the rest are estimated by Equation 13.

5. Factored recognition of multiple
concurrent speakers

Factored recognition of the multiple speakers in a mixed signal
is performed using one of the following procedures:

e The signals for the individual speakers are obtained by
the NMF-based speaker separation procedure described
in Section 2. Cepstral features are derived from these
signals and recognition is performed with them.

e Spectral masks are derived for mel log spectral vectors of
the mixed signal by the max-VQ algorithm. These spec-
tral masks are used to reconstruct complete log spectral
vectors for each of the speakers, by the procedure out-
lined in Section 5. Cepstral vectors derived from the re-
constructed vectors are used for recognition.

6. Recognition Experiments

Recognition experiments were conducted on synthetic mixtures
of signals from two male and two female speakers, selected
from the speaker dependent portion of the Wall Street Journal
corpus distributed by LDC. A set of 400 utterances (approxi-
mately 50 minutes) were used as test data for each speaker. A
separate half hour of data from each speaker was set aside as
training data. The test utterances were digitally added to simu-
late mixed single channel recordings at speaker-to-speaker en-
ergy ratios (SSR) of -10, -5, 0, 5 and 10 dB. Note that a mixed
signal for two speakers Sx and Sy that has a SSR of 10dB for
Sx has an SSR of -10dB for Sy . In all mixtures, the length of
the mixed signal was set to that of the longer of the two compo-
nent signals. Separate mixtures were created for the combina-
tion of two male, a male and a female, and two female speakers.

For the NMF-based method, signals were analyzed using
64 ms windows (corresponding to an FFT size of 1024). 100
NMF bases were trained for each speaker (a number empiri-
cally determined to be optimal for such training set sizes). The
signals for the individual speakers were separated from each of
the mixtures and 13-dimensional mel-cepstral vectors derived
from them for recognition. For the mask-based method, 40-
dimensional log spectral vectors were computed for each 25 ms
segment of speech. Adjacent segments overlapped by 15ms.
1024 component Gaussian mixture densities were trained from
the training data for each speaker, to be used both by max-VQ
and cluster-based reconstruction. For each mixed signal spec-
tral masks were obtained using max-VQ and used to perform
cluster-based reconstruction of complete mel-log-spectral vec-
tors for each speaker, from which 13-dimensional cepstral vec-
tors were derived for recognition.

The CMU Sphinx-III continuous density speech recogni-
tion system, trained using the speaker-independent component
of the training set in the WSJO corpus, was used for all exper-
iments. The feature set used included cepstra, difference and
double-difference cepstra. Cepstral mean normalization was
also performed. The models were further adapted to the train-
ing data for each of the four speakers by supervised maximum-
likelihood linear regression. In all experiments recognition of
any speaker was performed using the specific models adapted
to them. The baseline recognition errors on the unmixed signals
for the four speakers, identified as “malel”, “male2”, “femalel”
and “female2”, were 11.5%, 7.8%, 4.6% and 8%, respectively.

Tables 1, 2 and 3 show the recognition errors obtained
for each of the three mixtures (male-male, male-female, and
female-female), for both NMF-based and mask-based recogni-



Table 1: Recognition error(%) on a mixture of two male speak-
ers. “None” refers to recognition of unprocessed mixed signals.

method spkr | -10dB | -5dB | 0dB | 5dB | 10dB

None malel 113.3 | 111.7 | 103.9 | 86.7 | 66.4
male2 | 1152 | 1159 | 109.4 | 92.5 | 72.5

NMF malel | 112.6 | 109.8 | 1024 | 86.3 | 67.5
male2 | 1189 | 116.0 | 107.4 | 90.8 | 69.3

Max-VQ | malel 94.3 93.4 8.9 | 813 | 70.4
male2 | 97.1 96.4 88.7 | 56.8 | 353

Table 2: Error(%) on a mixture a male and a female speaker.

method spkr -10dB | -5dB 0dB | 5dB | 10dB

None male 1155 | 116.8 | 111.1 | 91.9 | 71.4
female | 120.8 | 119.8 | 110.2 | 93.3 | 72.9

NMF male 1149 | 1093 | 958 | 76.8 | 58.6
female | 121.8 | 115.6 | 100.7 | 80.4 | 61.9

Max-VQ | male 98.7 99.7 953 | 81.2 | 654
female | 92.4 88.9 75.4 | 48.6 | 25.8

Table 3: Error(%) on a mixture of two female speakers.

method spkr -10dB | -5dB 0dB | 5dB | 10dB

None femalel | 120.8 | 120.0 | 108.5 | 84.0 | 57.2
female2 | 114.1 | 117.3 | 112.6 | 95.2 | 67.5

NMF femalel | 119.5 | 117.0 | 106.5 | 85.0 | 61.9
female2 | 100.2 | 115.6 | 109.6 | 95.1 | 74.7

Max-VQ | femalel 95.8 90.7 813 | 51.2 | 259
female2 95.0 99.6 92.4 89.6 | 88.2

tion. Baseline recognition obtained with the unprocessed sig-
nals is also shown. Note that the reported error includes inser-
tion errors. Error rates greater than 100 imply that in addition to
substitution errors the recognizer has also inserted a large num-
ber of spurious words. The recognition error rates reported in
the tables are extremely high, exceeding 100% in many cases as
aresult. An alternate performance metric that might have been
reported is the recognition accuracy (recall), which measures
the percentage of uttered words that were correctly recognized.
This number was relatively high, lying between 30% and 90%
in all cases. However, since insertion errors are an important
phenomenon in the recognition of speech-over-speech data, we
have preferred to report the error rate over the recall.

7. Observations and Conclusion

It is clear from the tables that recognition of speech-over-speech
data is extremely difficult, even at the modest SSR of 10dB.
Encouragingly however, recognition error can be significantly
improved by the methods applied in this paper. Though the
error remains poor in most cases, in others the improvement
is significant, reducing by over 50% at 10dB for femalel.

However, improvements are not obtained in all cases - they
are much greater for some speakers than others. For instance,
the greatest improvements have been obtained for femalel, both
in the male-female and female-female combinations. Greater
improvements have been obtained for male2 than for malel.
The techniques appear to be ineffective for female2. Also, NMF
based separation is effective only for the male-female combina-
tion, failing to register any improvement for same-gender mix-
tures. This is possibly because NMF bases for people of the
same gender tend to be very similar.

Several issues remain to be investigated. The curious
speaker-dependent phenomenon needs investigation: although
the separation methods simultaneously separate the signals (or
masks) for both speakers, greater improvement is obtained for
one speaker than the other in any mixture. Also, it remains to
be determined if superior recognition may be obtained by mod-
ifying the manner in which signals have been analyzed, e.g. by
the inclusion of perceptual weighting schemes for NMF or by
modifying the number of MEL filters etc. for the mask-based
methods. Finally, the choice of missing feature methods is an
issue: we have only tested one method. The marginalisation
based method proposed by Cooke performs optimal classifica-
tion, and may result in superior recognition performance. Fur-
ther, the masks used in this paper are binary: frequency compo-
nents are uniquely associated with a speaker. In [11] a soft-mask
technique is proposed that associates each frequency compo-
nent with every speaker with a probability. The use of this such
masks with the soft marginalisation approach of Morris et. al.
[12] may be expected to result in even greater improvements.
All of this remains future work to be reported in a future paper.
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