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Abstract: Following the successful use of HMM and GMM models for
classification of a set of 75 calls of northern resident killer whales into call
types [Brown, J. C., and Smaragdis, P, J. Acoust. Soc. Am. 125, 221-224
(2009)], the use of these same methods has been explored for the identifica-
tion of vocalizations from the same call type N2 of four individual killer
whales. With an average of 20 vocalizations from each of the individuals the
pairwise comparisons have an extremely high success rate of 80 to 100% and
the identifications within the entire group yield around 78%.
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1. Introduction

The automatic identification of individual animals from the sounds they produce has been dis-
cussed recently by Adi ef al. (2010) and applied to the Norwegian ortalan bunting for purposes
of acoustic censusing. Previous work on marine mammal sounds was reported by Nousek
(2004) and Nousek et al. (2006) doing pairwise comparisons of killer whale sounds of the same
call type. As features they used the frequency contours of the calls as input to a neural network
(Deecke et al., 1999). Earlier results on marine mammals, also using frequency contours, were
reported by Buck and Tyack (1993) in classifying 15 bottlenose dolphin Zursiops truncatus
signature whistles into five groups using Dynamic Time Warping.

Our calculations report the first use of statistical methods to identify individual marine
mammals from the time frequency decomposition of their sounds. These sounds were previ-
ously classified as belonging to the same call type so this calculation is comparable to the iden-
tification of humans based on the utterance of the same word or short phrase. They are from the
same set of killer whale sounds used in the calculation by Nousek (2004) and Nousek et al.
(2006) making possible a direct comparison of methodologies.

2. Background
2.1 Gaussian mixture models (GMM) and hidden Markov models (HMM)

The GMM method is used to perform classification or identification by evaluating the average
model likelihood of spectra over the entire input utterance. Consequently the temporal structure
of the sound is not taken into account. The HMM calculation detects both spectral and temporal
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sequences, that is the progression of spectral changes in the sound. Thus the GMM should pick
up differences in the spectral qualities of individuals, and the HMM should be sensitive to
temporal changes as well, for example, small frequency variations. Both methods have the ad-
vantage of being applicable directly to the time-frequency decomposition without requiring the
tedious pre-processing step of obtaining the frequency contours. These methods are discussed
more fully in recent work on classification of killer whale vocalizations, which includes a sum-
mary of their use in bioacoustics. (Brown and Smaragdis, 2008, 2009)

The Gaussian mixture model (GMM) is a commonly used estimate of the probability
density function used in statistical classification and identification systems. Gaussian mixture
models (GMM) have found widespread use in speech research, primarily for speaker recogni-
tion (Reynolds and Rose, 1995 and references therein) and have been used in other fields, for
example for musical instrument identification (Brown, 1999 and Brown et al., 2001), and, as
mentioned, by Adi ef al. (2010) for the Norwegian ortolan bunting. They have proven to be well
suited for many and varied identification problems.

The Hidden Markov model treats the data as a sequence of states. The states can be
considered as separate GMM’s with their temporal evolution governed by a fransition matrix.
This matrix is learned from the training data and defines the probabilities of moving from one
state to the next. In sum, the HMM creates a sequence of GMM models to explain the input
data. It takes account of the temporal structure of the sound and uses it as additional information
for identification.

The choice of cepstra as features has been particularly successful in characterizing the
vocal tract resonances which identify individual human speakers, speech, or vowels. The cep-
strum is the Fourier transform of the log magnitude spectrum (Oppenheim and Schafer, 1975);
it involves two transforms which makes it computationally more intensive than FFT based cal-
culations. See Rabiner and Schafer (1978) and Rabiner and Juang (1993) for a discussion of the
use of cepstra for speech applications.

3. Calculations and results

Sounds from call type N2 were chosen for this calculation as they offered the advantage of 4
individuals with over 10 calls of each in the database. The features chosen for all of the calcu-
lations were cepstral coefficients and their temporal derivatives. These were calculated with the
program melcepst available with the MATLAB toolbox VOICEBOX.' The number of cepstral
coefficients was varied from 12 to 30 with best results for 24 and over so results are reported for
24 cepstra. The sample rate was 48000 samples/s with each sound divided into overlapping 10
ms segments for the calculations of both GMM and HMM models. The GMM/HMM compu-
tations were carried out with custom software written in MATLAB for this task. The training set
for all classifications consisted of all the sounds except the one being classified, called the
“leave one out” method.

3.1 Sounds

Killer whale sounds were recorded in 1998 and 1999 in Johnstone Strait, British Columbia,
using methodology developed by Miller and Tyack (1998). Sounds of four individuals from the
A clan previously classified as belonging to call type N2 were chosen for this calculation. See
examples of spectrograms in Fig. 1. The individuals were A32 (16 sounds), A46 (14 sounds),
A12 (11 sounds), and A8 (39 sounds). See Nousek (2004), Ford (1987), Miller and Bain (2000),
and Brown (2008) for notation, examples and a mathematical discussion of spectra. Individuals
A32 and A46 were members of the same matriline (A36) with A12 from the same pod (A1) but
a different matriline (A12). Individual A8 was from a different pod (A5) and matriline (AS).
Thus one might expect A32 and A46 to have the most similar sounds and those of A8 to be the
most distinguishable from the other three.

3.2 GMM results

Results for the GMM calculations on the vocalizations of all four individuals together (“ALL”)
and for the six pairwise comparisons are given in Fig. 2 with the number of Gaussians in the
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Fig. 1. (Color online) Examples of the spectrograms of N2 calls by killer whales A12, A8, A32, and A46, included
in this study.

probability distributions varying from 1 to 8. Results are best for 6 or more Gaussians and range
from 85 to 100% correct for the pairwise comparisons. The identification from all four individu-
als was over 75% which is excellent, noting that random selection would give 25%.

3.3 HMM results

For the HMM classification, a left-to-right model was used; and there were three variable pa-
rameters rather than two. The number of Gaussians in the probability function was varied from
1 to 3 with the results slightly better for two. The number of states was varied from 5 to 11 (Fig.
3), and with one exception there is less than a 5% variation depending on number of classes.
This indicates a highly robust calculation.
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GMM RESULTS VARYING the NUMBER of GAUSSIANS
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Fig. 2. (Color online) Gaussian mixture model results showing the dependence on the number of Gaussians in the
model. Twenty four cepstral coefficients were used as features.

3.4 Discussion

Results are summarized in Fig. 4. The pairwise comparisons with both members from the same
matriline (for example A32-A46) were indeed the lowest, indicating greater similarity of calls
than pairwise comparisons with members of different matrilines. Comparing individual A8
with A32 (different pods) had the greatest discrimination (98% correctly assigned), but the
comparisons of A8 with the other two members of the second pod were not as exceptional in
discrimination.

Also included in Fig. 4 are the Neural Network (NN) results of Nousek ef al. (2000).
While there was little difference in results between the GMM and HMM calculations, both were
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Fig. 3. (Color online) Hidden Markov model results showing the dependence on the number of states in the model.
Two Gaussians and 24 cepstral coefficients were used in the calculations
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Fig. 4. (Color online) Neural Net (NN) calculation compared to the Gaussian mixture model with 7 Gaussians and
the hidden Markov model with two Gaussians and 5 classes. The “ALL” calculation was not carried out with the NN.

better by around 10% or more than the NN calculations. They offer the additional advantage of
simpler calculation of the features as was discussed.

4. Conclusion

These results demonstrate that both GMM’s and HMM’s are highly successful in the task of
automatic identification of individual killer whales from a sample of known individuals. This is
particularly impressive since it is doubtful that humans could listen to these four groups of
sounds and then identify the appropriate group for an unknown sound. This method shows
promise for tracking trajectories of individual killer whales.
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