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The method of principal component analysis, which is based on second-order statistics~or linear
independence!, has long been used for redundancy reduction of audio data. The more recent
technique of independent component analysis, enforcing much stricter statistical criteria based on
higher-order statistical independence, is introduced and shown to be far superior in separating
independent musical sources. This theory has been applied to piano trills and a database of trill rates
was assembled from experiments with a computer-driven piano, recordings of a professional pianist,
and commercially available compact disks. The method of independent component analysis has thus
been shown to be an outstanding, effective means of automatically extracting interesting musical
information from a sea of redundant data. ©2004 Acoustical Society of America.
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I. INTRODUCTION

As with many fields today the processing of digitize
musical information is inundated with huge masses of d
much of which is redundant. One attempt to reduce this d
uge of data in the musical domain was attempted a dec
ago with principal component analysis or PCA~Stapleton
and Bass, 1988; Sandell and Martens, 1995!. Earlier Kramer
and Mathews~1956! had written an excellent introduction t
data reduction in audio.

Since then the field of information processing has ma
a stride forward with new algorithms, one of particular inte
est to audio being independent component analysis@ICA; see
Hyvarinen~1999! for an excellent introduction#. This method
has been used with success in what is called blind so
separation~Torkkola, 1999! and is a solution under certai
restrictions to the computational statement of the age
cocktail party effect, addressing the question of whethe
machine can emulate a human in picking out a single vo
in the presence of other sources. The solution to this prob
is considered by many to be the holy grail of audio sig
processing. A restriction in the mainstream use of ICA h
been that the number of microphones must be equal to
greater than the number of sources.

Recent reports~Casey and Westner, 2000; Smaragd
2001; Brown and Smaragdis, 2002! have indicated that, if a
signal is preprocessed into frames of magnitude spectral
tures, then independent component analysis can be ap
without the constraint of multiple microphones to extract t
features carrying maximum information. We will develo

a!Portions of these results were first presented at the 143rd ASA Meetin
Pittsburgh, PA~Brown and Smaragdis, 2002!.

b!Electronic mail: brown@media.mit.edu
c!Electronic mail: paris@merl.com
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this method further for the analysis of trills with a twofol
purpose:

~1! Automatic redundancy reduction—We will show th
ICA can be used to obtain musical information quick
easily, and accurately from data recorded with a sin
microphone.

~2! Creation of database—From the calculations with IC
we will assemble a database of information on a la
number of trills obtained from a variety of sources
draw conclusions about trill rates.

II. BACKGROUND

A. Statistics background

Most of the sensory information we receive is high
redundant, and the goal of acoustical signal processin
often to expose the fundamental information and disreg
redundant data. Since this is a common problem in data
cessing, statistical methods have been devised to deal wi
The following sections describe two of the most power
techniques applied to spectral audio data.

1. Principal component analysis

A number of data reduction techniques are based
finding eigenfunctions for the second-order statistics of
data~Therrien, 1989!. These techniques attempt to approx
mate a given data set using the superposition of a se
linearly independent functions, called basis functions, in
manner similar to the approximation of a sound by the
perposition of sinusoids. Using a number of basis functio
that equals the dimensionality of the original data set give
perfect reconstruction. More often, the use of a reduced
of these functions results in efficient data encoding or a m
useful interpretation of the data. The most prominent of th

in
2295295/12/$20.00 © 2004 Acoustical Society of America
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FIG. 1. Synthetic signal simulating a trill and consis
ing of the sum of two complex sounds, each containi
three harmonics and modulated by a low-frequen
sawtooth. The upper two graphs are the individual co
plex sounds, and the bottom graph is the sum.
st
ev

on
se

t
fi

he
rib
ta
uc

on-
the

the

tes.
n-

ese
aw-

u-
re-
approaches is called principal component analysis in the
tistics literature, also referred to as the Karhunen–Lo
transform in the signal processing literature.

More formally, given a set of data vectors of dimensi
N, the method of principal component analysis can be u
to find new a set ofN8 (N8<N) basis functions which are
uncorrelated~second-order independence! and can be used to
reconstruct the input. These are optimal in the sense tha
other set ofN8 vectors gives a better least mean squares
The new basis functions can be sorted by magnitude of t
variance, which is a measure of their importance in desc
ing the data set. Optionally we can ignore the least impor
bases, and the dimensionality of the data set can be red
with fine detail eliminated.
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As an example applicable to our later sections, we c
sider the matrix of values calculated for the magnitude of
constant-Q transform~Fourier transform with log-frequency
spacing! of a temporal waveform broken up intoN shorter
time segments. The calculation was carried out by
method of Brown~1991; Brown and Puckette, 1992! with a
Q of 17 corresponding to the frequencies of musical no
The time wave is the sum of two synthetic sounds with fu
damental frequencies corresponding to musical notesC6 and
D6 and each containing harmonics two and three. Th
sounds are amplitude modulated by a low-frequency s
tooth simulating alternating notes as found in trills~Fig. 1!.

Figure 2 is a plot of the constant-Q coefficients calc
lated for the input time wave of Fig. 1. Each column rep
-
al
FIG. 2. Magnitude~arbitrary units! of the constant-Q
transform against frequency and time in seconds~wa-
terfall plot! for the complex sound of Fig. 1. Frequen
cies are indicated on the horizontal axis by music
notes.
n and P. Smaragdis: Independent component analysis of musical trills
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FIG. 3. Graphical example of the matrix mulitplicatio
Y5W* X for the first third of the data matrix of Fig. 2
keeping the two most important independent comp
nents. The independent componentsY for this orienta-
tion of the data matrix are the frequency bases. N
that the two basic shapes of the rows ofX have been
extracted. The transformation matrixW displays the
temporal behavior of the two independent compone
~same shape as columns three and five! and are referred
to as time bases.
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sents the values of one spectral coefficient atN times, and
each row consists ofM frequency samples of a single variat
Viewed as a whole, the columns are components of a ran
vector, and each column is a sample of that vector at a
ferent frequency. These data are highly redundant with
basic shape for the spectra of the two notes present diffe
only in their horizontal positions.

It is more common to consider the transpose of this m
trix, which gives samples in time for the rows, but bet
results were obtained as described. This is because
frequency-dependent rows~or samples! are better separate
and hence less correlated for the covariance calculation.

Subtracting the average of each row from the eleme
of that row, and defining a typical element of the covarian
matrix C ~Therrien, 1989! as the expectation value, we hav

Ci j 5^Xi•Xj&, ~1!

where the average is taken over all samples. See Append
for an example of this implementation.

For a finite data set where all samples are available
rows in a matrixX, the covariance matrix can be comput
by

C5^X"XT&, ~2!

whereXT is the transpose ofX. This matrix can be diago
nalized by finding the unitary transformationU such that

UT"C"U5D, ~3!

whereD is diagonal. This is done by solving for the eige
values ofC with the result

UT
•~X"XT!"U5D. ~4!

From Eq.~4! using the associative property of matrices a
the transpose of a product

~UT"X!•~XT"U!5~UT"X!•~UT"X!T. ~5!

Defining a new matrix in Eq.~5!,

Ypca5UT"X. ~6!

Ypca is the matrix of principal components~called scores in
the statistics literature! and has a diagonal covariance mat
with elements equal to the variances of its components.UT is
called the weights matrix in the statistics literature. BothYpca
and the transformation matrixUT can be ordered by magn
tude of the variance. The dimensionality can thus be redu
J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brown and P
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by taking thek rows of each of these matrices correspond
to the largest variances. See Fig. 3 for an example of ma
multiplication keeping two components.

With this orientation of the data matrixX, the rows of
Ypca will be spectra corresponding to the rows with the lar
est variances and will be referred to as frequency bases.
the frequency dependence for the two complex sounds
Fig. 2. The rows ofUT, the unitary transformation matrix
will show the time dependence for thek most important rows
and be referred to as time bases.

Since the covariance matrix ofYpca is diagonal, off-
diagonal elements

Di j 5^Yi•Yj& ~7!

are zero showing that the components ofY are orthogonal or
linearly independent. From a statistical point of view th
are decorrelated showing

E@YiYj #5E@Yi #•E@Yj #50. ~8!

This form of independence does not, however, mean that
two components are completely uncoupled and that they
statistically independent. For true statistical independe
the joint probability density must factor into the margin
densities

p~Yi ,Yj !5p~Yi !•p~Yj !, ~9!

and for this factorization to hold another method is need

2. Independent component analysis

The goal of independent component analysis is to fin
linear transform

Y5W"X ~10!

such that the variates ofY are maximally independent. State
otherwise, this transform should make the equation

p~Y1 ,...,YM !5)
i 51

M

p~Yi ! ~11!

‘‘as true as possible’’. It is much more difficult to find th
desired transformationW than the corresponding unitar
transformation for PCA. One approach has been to minim
the relative entropy or Kuhlback–Liebler~KL ! divergence
~Deco and Obradovic, 1996!. This is a quantity defined in
information theory to give a measure of the difference in t
2297. Smaragdis: Independent component analysis of musical trills
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FIG. 4. PCA transformation matrix—the two most im
portant rows of the unitary transformation matrixUT of
Eq. ~6! for the complex sound of Fig. 1 with the
constant-Q transform of Fig. 2 as data matrixX.
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probability densities and has been used extensively for
tern classification.

The KL divergence is defined for two probability dens
ties p(x) andq(x)

K~piq!5E p~x!logS p~x!

q~x! Ddx, ~12!

where the integral is taken over allx. The KL divergence can
be easily adapted as a measure of the difference in the
probability and the marginal densities in Eq.~11!. In this
context it is called the mutual information~Deco and Obra-
dovic, 1996! I (Y1 ;...;YM) and is a measure of the statistic
independence of the variates whose densities appear o
right side of Eq.~11!. That is, it tells us to what degree theYi

are statistically independent:
2298 J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brow
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p~Yi !D . ~13!

Several algorithms for ICA solutions have used proc
dures which have the effect of minimizing the mutual info
mation including those of Amari~1996! and Bell and Se-
jnowski ~1995!. These are called infomax and in general se
a transformation matrixW in Eq. ~10! in an interative calcu-
lation.

An alternative approach, which is conceptually close
PCA, is to extend the second-order independence of PC
higher orders using a cumulant-based method. This is
approach taken by Cardoso~1990; Cardoso and Souloumia
1996! in diagonalizing the quadricovariance tensor. Inste
of the termsCi j of the covariance matrix, he considers a
products up to fourth order such as
ts

of
y

o
on.
FIG. 5. The two most important principal componen
Ypca from the transformation equation~6! for the com-
plex sound of Fig. 1 with the constant-Q transform
Fig. 2 as data matrixX. Frequencies are indicated b
musical notes on the horizontal axis. Note that the tw
basic shapes of Fig. 2 are mixed by the transformati
n and P. Smaragdis: Independent component analysis of musical trills
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FIG. 6. ICA Transformation matrix—the two most im
portant rows from the tranformation matrixW of Eq.
~10! for the complex sound graphed in Fig. 1 with th
constant-Q transform of Fig. 2 as data matrixX. This is
also the first third of the matrixW in Fig. 3.
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Ci jkl 5^Xi•Xj•Xk•Xl&. ~14!

The diagonalization of this tensor ensures that no t
dimensions of the data will have a statistical dependence
to and including the fourth order. This is a generalization
the diagonalization of the covariance matrix as done w
PCA, where dependencies are eliminated up to second o
By extending the notion of the covariance matrix and for
ing the quadricovariance tensor~a fourth-order version of
covariance!, we effectively set a more stringent definition
statistical independence.

This concept can also be extended to an arbitrary o
of independence by forming and diagonalizing even m
complex structures. In this case the complexity of the p
cess unfolds exponentially and can present computationa
sues. Fourth-order independence is a good compromise
J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brown and P
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hibiting a manageable computational burden with go
results.

B. Trill background

Trills were chosen for this study because they are
tremely difficult to analyze. The note rate is very rapid, a
when pedaled there are two temporally overlapping no
present. There is an advantage, however, in that they do
have simultaneous onsets.

The execution of trills has been studied by a number
groups interested either in performance on musical ins
ments or in perception limits of detection of two pure tone
The latter measurements are best summarized by Shonle
Horan ~1976! who varied the frequency difference of tw
sinusoids with a modulation rate~frequency of a trill pair! of
or-

ies
. It
ar-
FIG. 7. Independent components—the two most imp
tant rows of the matrixY of Eq. ~10! for the complex
sound graphed in Fig. 1 with transformation matrixW
from the previous figure. See also Fig. 3. Frequenc
are indicated by musical notes on the horizontal axis
is clear that the calculation has picked up the 2nd h
monic 12 bins~an octave! above the fundamental and
the 3rd harmonic 7 bins~a musical fifth! above that for
each of these independent components.
2299. Smaragdis: Independent component analysis of musical trills
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FIG. 8. ICA transformation matrix—the two most im
portant rows from the matrixW of Eq. ~10! for the
constant-Q transform of the computer-driven Yama
disklavier.
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5 Hz and found that over the range 250–1000 Hz, fus
occurs at a difference frequency of roughly 30 Hz. Note t
the modulation rate corresponds to a note rate of 10 Hz.
terminology ‘‘note rate’’ is used to avoid confusion with fre
quency of trill pairs. They conclude that a whole-tone tr
~12% frequency difference! will be heard as alternating be
tween two notes for frequencies over 400 Hz and as a wa
below 125 Hz. The region between these frequencies is
biguous and depends on the perception of the individual s
ject. See Table I for a comparison of these to other ba
ground studies.

Performance studies are more directly related to our
sults. Palmer~1996! found that the number of trills in an
ornament depends on the tempo, which implies that the
rate changes less than might otherwise be expected.
rates varied from 11 Hz~measurement over 11 trill pairs! in
2300 J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brow
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a slow passage to 13.4 Hz~measurement over 9 trill pairs! in
a fast passage.

Moore ~1992! states that piano trills require one of th
fastest alternating movements of which the hand is capa
He finds the upper limit to be about 12–14 notes/s.

In earlier work, Moore~1988! studied trills performed
on a cello. He concluded that the limit on the trill seems
be derived from both the performer and the instrument.
gives no quantitative data, but his graphical data indicat
note rate of approximately 12 Hz.

III. SOUND DATABASE

The sounds analyzed consisted of two-note trills o
tained from three sources:
or-
FIG. 9. Independent components—the two most imp
tant rows of the matrixY of Eq. ~10! for the computer-
driven Yamaha disklavier with transformation matrixW
from the previous figure.
n and P. Smaragdis: Independent component analysis of musical trills
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FIG. 10. ICA transformation matrix—the two most im
portant rows from the matrixW of Eq. ~10! for the
constant-Q transform of a recorded performance
Charles Fisk. This is an example characterized as ‘‘f
with control’’ by the pianist.
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~1! recordings of a Yamaha Disklavier piano programm
using Miller Puckette’s ‘‘pd’’ program~Puckette, 1996!
to drive the piano,

~2! recordings of pianist Charles Fisk of Wellesley Colle
playing trills on a Steinway S, and

~3! excerpts from compact disks of performances by A
kenazy, Horowitz, Goode, Wilde, and Pollini on pian
and Peter-Lukas Graf on the flute.

IV. CALCULATIONS AND RESULTS

Principal component analysis calculations were carr
out using Matlab with the functioneig for diagonalization of
a matrix. See Appendix A for details. In our independe
component analysis calculations~Appendix B!, we used the
algorithm Jade1 and assumed that two notes were present
specifying two independent components in the calculation
we assume fewer ICs than there are notes actually pre
J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brown and P
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the independent components will consist of mixtures of
notes. If we assume more ICs than notes actually present
notes will be evenly distributed across components.

A. Synthetic signal

Using known input as a first example, we compare
results using principal component analysis with those of
dependent component analysis for the computer-gener
signal described in Figs. 1 and 2. Figures 4 and 5 show
quantitiesUT, the transformation matrix, andYpca, the prin-
cipal components, calculated from Eq.~6! and keeping the
two most important principal components. The titles of t
figures indicate frequency dependence~frequency basis func-
tions! or time dependence~time basis functions!.

Looking at the frequency bases of Fig. 5, we find th
PCA has picked out the peaks corresponding to the two f
damental frequencies present. These are the dominant
m-

a-
FIG. 11. Independent components—the two most i
portant rows of the matrixY of Eq. ~10! for the re-
corded performance of Charles Fisk with transform
tion matrix W from the previous figure.
2301. Smaragdis: Independent component analysis of musical trills
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FIG. 12. Superposition of the times bases for one of t
‘‘slow’’ trills recorded by Charles Fisk. This shows
clearly the spacing of the notes.
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quencies in these data. But in choosing bases, PCA has
sen linear combinations of these two frequenc
corresponding to the sum and difference of the two sour
rather than separating them. This is a perfectly valid solut
for PCA since these are orthogonal bases and are solutio
the eigenvalue equation Eq.~15!.

Examining the time bases of Fig. 4 corresponding
these two principal components, they do not contain us
information about the temporal behavior of the two musi
notes. The addition and subtraction has effectively remo
the possibility of getting times of single note onsets.

Applying the ICA algorithm Jade to the same input~Fig.
2! to obtainW and Y of Eq. ~10!, the time bases and fre
quency bases seen in Figs. 6 and 7 are obtained. See als
3 for the operation applied to the first third of the file. Abs
2302 J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brow
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Fig.

lute values were plotted in these and other ICA results. T
low-frequency sawtooth modulation of Fig. 6 is an excelle
representation of the two alternating sounds simulating
trill, and the two independent components of Fig. 7 are
near-perfect extraction of the frequencies present in eac
two complex sounds which were mixed. ICA has thus p
formed an excellent separation and yielded the two sou
which are present while discarding redundant information

B. Computer-driven piano

To test this method on real sounds, a Yamaha Disklav
piano was driven by computer at a number of different ra
with whole-tone trills beginning on the notesC5 or C6 . Re-
cordings were made with a Sony TCD-D8 DAT recorder a
ks
ast
FIG. 13. Onset time against peak number for the pea
of one note of the previous figure compared to a le
squares linear fit showing accuracy of note striking.
n and P. Smaragdis: Independent component analysis of musical trills
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FIG. 14. Transformation matrix—the two most impo
tant rows from the matrixW of Eq. ~10! for the
constant-Q transform of the Pollini performance
Beethoven’s Piano Sonata No. 32, Op. 111. This is
cluded as an example of a performance analyzed fr
CD.
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analyzed using the ICA algorithm Jade described previou
The example shown in Fig. 8 has a note rate of 13.5 Hz
is the maximum rate at which this piano could be driv
without dropping notes; even so this example is not per
for the time bases as it is a little beyond the region of relia
operation of the piano. The frequency bases of Fig. 9
clearly separated, again demonstrating that ICA is able
pull out the relevant information while dropping redunda
data.

C. Recordings of live performance

As an example of a live performance, Charles Fiske
professional pianist and member of the performing faculty
the Wellesley College Music Department, generously agr
to do some trills for this study. In order to determine how
performer views trill rates, he was given the instructions
perform the trills slowly, fast with control, and very fas
J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brown and P
y.
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These rates varied from 8.6 for slow to 12.1 notes/s for f
with control ~Table I.! ICA results for the time bases an
frequency bases are given in Figs. 10 and 11 for one of
‘‘fast with control’’ examples.

Further analysis was carried out on one of the ‘‘slow
files and is shown in Figs. 12 and 13. The superposition
the time bases~black for one note, white for the other! is
shown in Fig. 12 in order to demonstrate the precision of
alternating onsets. In a more quantitative graph, Fig.
shows the onset times for one of the two notes plot
against note number in order to obtain the average time
tween trill pairs. This is 0.22 s with a standard deviation
0.01 showing that the trill is very precise.

D. Examples from compact disk

Trills from a number of performances on compact di
were studied since these had not been previously reporte
m-
FIG. 15. Independent components—the two most i
portant rows of the matrixY of Eq. ~10! for the Pollini
performance from CD with transformation matrixW
from the previous figure.
2303. Smaragdis: Independent component analysis of musical trills
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TABLE I. Summary of results on trill rates.

Reference or performer Notes~or frequency! Trill rate~note/s! Comments

Results from Literature
Shonle/Horan 10, 16 from below and from above
Palmer 13.4, 11 fast passage, slow passage
Moore D4 E4 13

12 to 14 upper limit
Michael Hawley 13 upper limit

Computer-driven piano
Yamaha 140 C6-D6 14.3
Yamaha 150 C6-D6 13.5
Yamaha 170 C6-D6 11.7

Recording of live performance
Fisk C5-D5 12.1 fast with control
Fisk C5-D5 8.9 slow
Fisk C6-D6 8.8, 8.6 slow—2 examples

Performances from compact disk
Pollini 13.5
Ashkenazy CE 10 16.3 ornament
Ashkenazy MW A4 B4 11.5
Goode BA1 D5 E5 13.3
Goode BA3 F5 G5 15
Goode BW G5 A5 13.2
Horowitz BA1 D5 E5 11.2
Horowitz BA2 E5f F5 13.8
Horowitz BA3 F5 G5 13.3
Horowitz BW G5 A5 12.6
Horowitz CE 10 C5 D5 15.7 ornament
Wild CE 10 C5 D5 16 ornament
Flute 12.8
en
di
n

’s
1

ar

f

od
ap-
.
Fig.
ex-
some cases difficulties in resolving the two notes were
countered due to pedaling, reverberation, or a significant
ference in amplitudes of the two notes. Graphs of the tra
formation matrix and independent components for
particularly good example by Pollini playing Beethoven
Piano Sonata No. 32, Op. 111 are shown in Figs. 14 and
This is interesting in that the amplitudes of the two notes
st. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brow
-
f-
s-
a

5.
e

almost exactly equal~arbitrary units on the vertical axis o
Fig. 14!, showing great control by the performer.

In order to demonstrate the applicability of this meth
to instruments other than the piano, our calculation was
plied to a flute trill from Mozart’s Flute Concerto No. 1
K313. The notes are extremely well resolved as seen in
16, but the amplitudes are not equal as in the previous
-

g.
FIG. 16. ICA transformation matrix—the two most im
portant rows of transformation matrixW of Eq. ~10! for
the constant-Q transform for the Mozart flute recordin
n and P. Smaragdis: Independent component analysis of musical trills
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FIG. 17. Independent components—the two most i
portant rows of the matrixY of Eq. ~10! for the Mozart
flute recording with transformation matrixW from the
previous figure.
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ample by Pollini. The frequency bases from Fig. 17 sh
little evidence of higher harmonics indicating that in th
frequency range the flute sound is close to a pure tone.

E. Summary of results on trills

Our data on trills is collected in Table I. Most of ou
results, including the flute trill, are in the range 12–
notes/s predicted by Moore~1992! and pianist/computer sci
entist Michael Hawley2 in a discussion with one of the au
thors. Pianist Charles Fisk in the recorded live performa
was given the instructions to play slowly, and then fast w
control. The ‘‘fast with control’’ example at 12.1 notes/s
consistent with Moore’s and Hawley’s predictions. The orn
ments from the Chopin Etude Op. 10, No. 8 played by A
kenazy, Horowitz, and Wild were all very fast at 16 notes
but this was not a sustained trill.

It is interesting to compare performances of the sa
trill by different performers. The first trill in Beethoven’
Sonata Op. 57~Appassionata! was played at 13.3 notes/s b
Goode compared to 11.2 for Horowitz, which is significan
faster. The third trill in this piece was also significantly fas
in the performance by Goode. And finally, a trill from th
Beethoven’s Sonata Op. 53~Waldstein! offers a similar ex-
ample. Thus there appears to be a consistent difference i
interpretations of these two performers. This opens a fe
area for further research in musical performance.

V. CONCLUSIONS

In this paper we have introduced a new method of m
sical analysis and applied it to musical trills. Redundanc
inherent in the magnitude spectra of trills were identifie
and statistical methods were employed to take advantag
this characteristic so as to reveal their basic structure.

The method of independent component analysis
simplify the description of trills as a set of note pairs d
scribed by their spectra and corresponding time envelo
By examination of these pairs we can easily deduce the p
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and the timing of each note present in the trill. We have a
noted how ICA, by employing higher-order statistics a
forcing independence, improves the estimate compared
straightforward application of principal component analys

The analysis itself is bootstrapped only to the data p
sented and devoid of any musical knowledge. In fact, it i
derivative of methods used for auditory scene analy
which do not assume any previous auditory knowledg3

This fact allows us to analyze a wide variety of trills and n
be constrained or biased by instrument selection, per
mance, or scale tuning issues. By avoiding the necessit
preprocessing for the extraction of semantically meaning
features, for example pitch or loudness, another advantag
found in a lower burden of computation and complexity.

Finally, we would like to stress the value of redundan
reduction for more complex musical analysis. We ha
shown how powerful this concept can be for trills; howev
it is also applicable to more complex musical segments
our future work we plan to expand upon this theme a
demonstrate how this method can be applied to musical t
scription.

APPENDIX A: IMPLEMENTATION OF PRINCIPAL
COMPONENT ANALYSIS IN MATLAB

We take as input the matrixX, anN by M matrix in the
orientation of Fig. 2. Using the functioneig to find the uni-
tary transformationU to diagonalizeX,

@U,D#5eig~X* X8/M !, ~A1!

where M is the number of columns ofX. The eigenvalue
matrix D is ordered by magnitude of its elements from low
high, and U is ordered correspondingly. If two principa
components are desired, the last two columns ofU will be
taken and called the reduced matrixUr . In matlab notation,
Ur 5U(:,N21:N). The transpose ofUr is plotted in the
figures, and referred to as row 1 and row 2 in order of i
portance.
2305. Smaragdis: Independent component analysis of musical trills
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The functionYpca is called the principal components i
the figures and defined in Eq.~5! as

Ypca5Ur 8* X. ~A2!

APPENDIX B: IMPLEMENTATION OF INDEPENDENT
COMPONENT ANALYSIS IN MATLAB

The algorithmjade was used for the independent com
ponent analyses in the form

@A,Yica#5 jade~X,nc!, ~B1!

whereX is the matrix defined in Appendix A andnc is the
number of components desired.nc52 in the calculations
reported.

A is the inverse of the ICA transformation matrix so

W5pinv~A! ~B2!

and

Yica5W* X ~B3!

were plotted.

1A number of algorithms for performing independent component anal
are freely available on the internet, such as Jade, Amari, FastICA, and
They can be found using an internet search engine, or more easily
links from Paris Smaragdis’ home page. One file was checked with sev
of these algorithms to ensure that the results were independent of the
rithm used.

2Michael Hawley, personal communication.
3Because of this lack of knowledge many ICA-based algorithms are ca
‘‘blind.’’ Knowledge accumulated from previous passes is not used
every example is treated as the first and only set of data the algorithm
encountered.
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