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The method of principal component analysis, which is based on second-order stétistingear
independence has long been used for redundancy reduction of audio data. The more recent
technigue of independent component analysis, enforcing much stricter statistical criteria based on
higher-order statistical independence, is introduced and shown to be far superior in separating
independent musical sources. This theory has been applied to piano trills and a database of trill rates
was assembled from experiments with a computer-driven piano, recordings of a professional pianist,
and commercially available compact disks. The method of independent component analysis has thus
been shown to be an outstanding, effective means of automatically extracting interesting musical
information from a sea of redundant data. 2004 Acoustical Society of America.

[DOI: 10.1121/1.1698774

PACS numbers: 43.75.St, 43.60.Cg, 43.75.8E&EM)] Pages: 2295-2306

I. INTRODUCTION this method further for the analysis of trills with a twofold
purpose:

As with many fields today the processing of digitized . . .
musical information is inundated with huge masses of data(,l) %J;O(r:;?]t'gerigggcignggt;iidrlilc:gga_lmirvrxgﬁcs)zov:’]iétft
much of which is redundant. One attempt to reduce this del- } N quickly,

; : . easily, and accurately from data recorded with a single
uge of data in the musical domain was attempted a decade microphone
ago with prlncw.)al component analysis or PCFStapIeton (2) Creation of database—From the calculations with ICA,
and Bass, 1988; Sandell and Martens, 19&arlier Kramer . : )

. . . we will assemble a database of information on a large
and Mathewg1956 had written an excellent introduction to number of trills obtained from a variety of sources to
data r_eductlon n au_d|o. . . . draw conclusions about trill rates.

Since then the field of information processing has made
a stride forward with new algorithms, one of particular inter-
est to audio being independent component analyGi4; see  Il. BACKGROUND
Hyvarinen(1999 for an excellent introduction This method 5 giatistics background
has been used with success in what is called blind source . ) o
separation(Torkkola, 1999 and is a solution under certain Most of the sensory information we receive is highly
restrictions to the computational statement of the age olfédundant, and the goal of acoustical signal processing is
cocktail party effect, addressing the question of whether £ftén o expose the fundamental information and disregard
machine can emulate a human in picking out a single voicé&dundant data. Since this is a common problem in data pro-
in the presence of other sources. The solution to this probleri©SSing. statistical methods have been devised to deal with it.
is considered by many to be the holy grail of audio signaIThi fpllowmg slgcélons descrllbe S’YO dOf the most powerful
processing. A restriction in the mainstream use of ICA had€chniques applied to spectral audio data.
been that the number of microphones must be equal to of Principal component analysis
greater than the number of sources. ’ _ _

Recent report§Casey and Westner, 2000; Smaragdis, ~ A nu_mber of _data reduction techniques are _based on
2001; Brown and Smaragdis, 2002ave indicated that, if a finding elg(_anfunctlons for the sec_ond-order statistics of the
signal is preprocessed into frames of magnitude spectral fe&lata(Therrien, 1989 These techniques attempt to approxi-
tures, then independent component analysis can be applid@@te & given data set using the superposition of a set of
without the constraint of multiple microphones to extract thelinéarly independent functions, called basis functions, in a
features carrying maximum information. We will develop Manner similar to the approximation of a sound by the su-

perposition of sinusoids. Using a number of basis functions

that equals the dimensionality of the original data set gives a

dPortions of these results were first presented at the 143rd ASA Meeting "ﬂ)erfect reconstruction. More often. the use of a reduced set
Pittsburgh, PAB ds dis, 20D2 ) o L i

b)E:eit:)EC m;(k L‘;f,”vﬂnag)meg?z_r,‘;‘]?t.;f,u o of thes_e functlon§ results in efficient data encod_mg or a more

®Electronic mail: paris@merl.com useful interpretation of the data. The most prominent of these
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W FIG. 1. Synthetic signal simulating a trill and consist-
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approaches is called principal component analysis in the sta- As an example applicable to our later sections, we con-
tistics literature, also referred to as the Karhunen—Loeveider the matrix of values calculated for the magnitude of the
transform in the signal processing literature. constant-Q transforniFourier transform with log-frequency
More formally, given a set of data vectors of dimensionspacing of a temporal waveform broken up inté shorter
N, the method of principal component analysis can be usetime segments. The calculation was carried out by the
to find new a set oN’ (N’<N) basis functions which are method of Brown(1991; Brown and Puckette, 199®&ith a
uncorrelatedsecond-order independen@and can be used to Q of 17 corresponding to the frequencies of musical notes.
reconstruct the input. These are optimal in the sense that rnibhe time wave is the sum of two synthetic sounds with fun-
other set ofN’ vectors gives a better least mean squares fitdamental frequencies corresponding to musical nGteand
The new basis functions can be sorted by magnitude of theiDg and each containing harmonics two and three. These
variance, which is a measure of their importance in describsounds are amplitude modulated by a low-frequency saw-
ing the data set. Optionally we can ignore the least importantooth simulating alternating notes as found in trilgg. 1).
bases, and the dimensionality of the data set can be reduced Figure 2 is a plot of the constant-Q coefficients calcu-
with fine detail eliminated. lated for the input time wave of Fig. 1. Each column repre-

CONSTANT Q TRANSFORM of TWO SAWTOOTH MODULATED WAVEFORMS

FIG. 2. Magnitude(arbitrary unit$ of the constant-Q
transform against frequency and time in secofwla-
terfall plot) for the complex sound of Fig. 1. Frequen-
cies are indicated on the horizontal axis by musical
notes.
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Y — W * X "g% nents. The independent componeXtsor this orienta-
Ica — §% 50 tion of the data matrix are the frequency bases. Note
N —— that the two basic shapes of the rowsXhave been

60
extracted. The transformation matri%/ displays the

temporal behavior of the two independent components
— 80 (same shape as columns three and)fared are referred
————= .

to as time bases.
———

RNoe—————
=70

P10

MUY

S S 100

sents the values of one spectral coefficienNaimes, and by taking thek rows of each of these matrices corresponding
each row consists ¥ frequency samples of a single variate. to the largest variances. See Fig. 3 for an example of matrix
Viewed as a whole, the columns are components of a randomultiplication keeping two components.
vector, and each column is a sample of that vector at a dif-  With this orientation of the data matriX, the rows of
ferent frequency. These data are highly redundant with on¥ ., will be spectra corresponding to the rows with the larg-
basic shape for the spectra of the two notes present differingst variances and will be referred to as frequency bases. See
only in their horizontal positions. the frequency dependence for the two complex sounds in
It is more common to consider the transpose of this maFig. 2. The rows ofU", the unitary transformation matrix,
trix, which gives samples in time for the rows, but betterwill show the time dependence for tkenost important rows
results were obtained as described. This is because ttend be referred to as time bases.
frequency-dependent rowsr samplep are better separated Since the covariance matrix of ., is diagonal, off-
and hence less correlated for the covariance calculation. diagonal elements
Subtracting the average of each row from the elements Dy =(Y;-Y;) @
of that row, and defining a typical element of the covariance g b
matrix C (Therrien, 1989 as the expectation value, we have are zero showing that the componentsyoére orthogonal or
Cii=(X;- X)) ) linearly independent. From a statistical point of view they
1 e are decorrelated showing
where the average is te_lken over aII.sampIes. See Appendix A E[Y,Y:]=E[Y.]-E[Y,]=0. )
for an example of this implementation. J J
For a finite data set where all samples are available aghis form of independence does not, however, mean that the
rows in a matrixX, the covariance matrix can be computedtwo components are completely uncoupled and that they are

—~
[y

by statistically independent. For true statistical independence
the joint probability density must factor into the marginal
— Rval
C=(X-XT), @) densities

where X" is the transpose oK. This matrix can be diago-
nalized by finding the unitary transformatidhsuch that

u'-c-U=D, 3)

whereD is diagonal. This is done by solving for the eigen- 2. independent component analysis
values ofC with the result

P(Yi,Yj)=p(Yi)-p(Y)), 9
and for this factorization to hold another method is needed.

—~

The goal of independent component analysis is to find a
uT-(X-x")-U=D. (4) linear transform

From Eq.(4) using the associative property of matrices and  Y=W-X (10

the transpose of a product such that the variates dfare maximally independent. Stated

(UT-X)-(XT-U)=(UT-X)-(UT-X)T. (5)  otherwise, this transform should make the equation
Defining a new matrix in Eq(5), ﬁ
Yi,...,.Yy)= Y; 11
cha: UT'X. (6) p( 1 M) ] p( |) ( )

Y nca IS the matrix of principal componentsalled scores in  “as true as possible”. It is much more difficult to find the
the statistics literatujeand has a diagonal covariance matrix desired transformatiotWW than the corresponding unitary
with elements equal to the variances of its componaiitss  transformation for PCA. One approach has been to minimize
called the weights matrix in the statistics literature. Béth,  the relative entropy or Kuhlback-LiebléKL) divergence
and the transformation matri¥™ can be ordered by magni- (Deco and Obradovic, 1996This is a quantity defined in
tude of the variance. The dimensionality can thus be reduceihformation theory to give a measure of the difference in two
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PCA TRANSFORMATION MATRIX (TIME BASES)

1 FIG. 4. PCA transformation matrix—the two most im-
portant rows of the unitary transformation mattiX of
Eq. (6) for the complex sound of Fig. 1 with the
constant-Q transform of Fig. 2 as data matxix
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probability densities and has been used extensively for pat-

tern classification. [(Yq;3Ym) = K( P(Yq,....Ywm)
The KL divergence is defined for two probability densi-

ties p(x) andq(x)

M
i1]1 p(vo). (13

Several algorithms for ICA solutions have used proce-
%) dures which have the effect of minimizing the mutual infor-
_ px) mation including those of Amari1996 and Bell and Se-
K(plq) f p(x)log( Q(X))dx’ (12 jnowski (1995. These are called infomax and in general seek
a transformation matrixV in Eq. (10) in an interative calcu-
where the integral is taken over allThe KL divergence can lation.
be easily adapted as a measure of the difference in the joint An alternative approach, which is conceptually close to
probability and the marginal densities in E@.1). In this  PCA, is to extend the second-order independence of PCA to
context it is called the mutual informatidiDeco and Obra- higher orders using a cumulant-based method. This is the
dovic, 1996 1(Y;...;Yy) and is a measure of the statistical approach taken by Cardo$b990; Cardoso and Souloumiac,
independence of the variates whose densities appear on th896 in diagonalizing the quadricovariance tensor. Instead
right side of Eq(11). That is, it tells us to what degree th¢  of the termsC;; of the covariance matrix, he considers all

are statistically independent: products up to fourth order such as
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05 FIG. 5. The two most important principal components
0 ! . . L Y oca from the transformation equatia) for the com-
plex sound of Fig. 1 with the constant-Q transform of
4 T T T T Fig. 2 as data matriX. Frequencies are indicated by
musical notes on the horizontal axis. Note that the two
ol i basic shapes of Fig. 2 are mixed by the transformation.
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FIG. 6. ICA Transformation matrix—the two most im-
1 portant rows from the tranformation matri%/ of Eg.
(10) for the complex sound graphed in Fig. 1 with the
constant-Q transform of Fig. 2 as data maXixThis is
also the first third of the matrixV in Fig. 3.
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Cijir =(Xi- X+ Xi- X)) (14) hibiting a manageable computational burden with good

: o . results.
The diagonalization of this tensor ensures that no two

dimensions of the data will have a statistical dependence u
to and including the fourth order. This is a generalization of
the diagonalization of the covariance matrix as done with  Trills were chosen for this study because they are ex-
PCA, where dependencies are eliminated up to second ord@remely difficult to analyze. The note rate is very rapid, and
By extending the notion of the covariance matrix and form-when pedaled there are two temporally overlapping notes
ing the quadricovariance tens¢a fourth-order version of present. There is an advantage, however, in that they do not
covariancg we effectively set a more stringent definition of have simultaneous onsets.
statistical independence. The execution of trills has been studied by a number of
This concept can also be extended to an arbitrary ordegroups interested either in performance on musical instru-
of independence by forming and diagonalizing even morenents or in perception limits of detection of two pure tones.
complex structures. In this case the complexity of the pro-The latter measurements are best summarized by Shonle and
cess unfolds exponentially and can present computational igdoran (1976 who varied the frequency difference of two
sues. Fourth-order independence is a good compromise, eginusoids with a modulation ratéequency of a trill pair of

B. Trill background
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FIG. 7. Independent components—the two most impor-
tant rows of the matrixy of Eq. (10) for the complex
sound graphed in Fig. 1 with transformation matvik
from the previous figure. See also Fig. 3. Frequencies
5 . . . . are indicated by musical notes on the horizontal axis. It
is clear that the calculation has picked up the 2nd har-
4k 4 monic 12 bins(an octave above the fundamental and
the 3rd harmonic 7 bing& musical fifth above that for

3r g each of these independent components.
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TRANSFORMATION MATRIX (TIME BASES)
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portant rows from the matriV of Eq. (10) for the
constant-Q transform of the computer-driven Yamaha
disklavier.
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5 Hz and found that over the range 250—1000 Hz, fusiora slow passage to 13.4 Hmeasurement over 9 trill pajrin
occurs at a difference frequency of roughly 30 Hz. Note that fast passage.
the modulation rate corresponds to a note rate of 10 Hz. The Moore (1992 states that piano trills require one of the
terminology “note rate” is used to avoid confusion with fre- fastest alternating movements of which the hand is capable.
quency of trill pairs. They conclude that a whole-tone trill He finds the upper limit to be about 12—14 notes/s.
(12% frequency differengewill be heard as alternating be- In earlier work, Moore(1988 studied trills performed
tween two notes for frequencies over 400 Hz and as a warblen a cello. He concluded that the limit on the trill seems to
below 125 Hz. The region between these frequencies is anbe derived from both the performer and the instrument. He
biguous and depends on the perception of the individual sulgives no quantitative data, but his graphical data indicate a
ject. See Table | for a comparison of these to other backnote rate of approximately 12 Hz.
ground studies.

Performance studies are more directly related to our re-
sults. Palmer(1996 found that the number of trills in an ||, soUND DATABASE
ornament depends on the tempo, which implies that the trill
rate changes less than might otherwise be expected. Note The sounds analyzed consisted of two-note trills ob-
rates varied from 11 Hgmeasurement over 11 trill pajr tained from three sources:
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0 1000 1500 2000 3000 FIG. 9. Independent pomponents—the two most impor-
tant rows of the matrix of Eq. (10) for the computer-
5 driven Yamaha disklavier with transformation matvik
' ' ' from the previous figure.
4+ B
«
z 3r d
@)
T
|2 4
S8
1+ d

o

1
1000 1500 2000 3000
FREQUENCY (Hz)

2300 J. Acoust. Soc. Am., Vol. 115, No. 5, Pt. 1, May 2004 J. C. Brown and P. Smaragdis: Independent component analysis of musical trills
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(1) recordings of a Yamaha Disklavier piano programmedthe independent components will consist of mixtures of the
using Miller Puckette’'s “pd” program(Puckette, 1996  notes. If we assume more ICs than notes actually present, the

to drive the piano, notes will be evenly distributed across components.
(2) recordings of pianist Charles Fisk of Wellesley College

playing trills on a Steinway S, and
(3) excerpts from compact disks of performances by Ash-  Using known input as a first example, we compare the
kenazy, Horowitz, Goode, Wilde, and Pollini on piano, results using principal component analysis with those of in-

A. Synthetic signal

and Peter-Lukas Graf on the flute. dependent component analysis for the computer-generated
signal described in Figs. 1 and 2. Figures 4 and 5 show the
IV. CALCULATIONS AND RESULTS guantitiesU™, the transformation matrix, and,,, the prin-

Principal component analysis calculations were carrieiPal components, calculated from E@) and keeping the
out using Matlab with the functioaig for diagonalization of WO most important principal components. The titles of the
a matrix. See Appendix A for details. In our independentfigures indicate frequency dependeiitequency basis func-
component analysis calculatioféppendix B, we used the tions) or time dependencéime basis functions
algorithm Jadkand assumed that two notes were present by ~ Looking at the frequency bases of Fig. 5, we find that
specifying two independent components in the calculation. PCA has picked out the peaks corresponding to the two fun-
we assume fewer ICs than there are notes actually presemtamental frequencies present. These are the dominant fre-
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' tion matrix W from the previous figure.
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guencies in these data. But in choosing bases, PCA has chlate values were plotted in these and other ICA results. The
sen linear combinations of these two frequenciedow-frequency sawtooth modulation of Fig. 6 is an excellent
corresponding to the sum and difference of the two sourcesepresentation of the two alternating sounds simulating a
rather than separating them. This is a perfectly valid solutiortrill, and the two independent components of Fig. 7 are a
for PCA since these are orthogonal bases and are solutions tear-perfect extraction of the frequencies present in each of
the eigenvalue equation E€L5). two complex sounds which were mixed. ICA has thus per-
Examining the time bases of Fig. 4 corresponding toformed an excellent separation and yielded the two sources
these two principal components, they do not contain usefulvhich are present while discarding redundant information.
information about the temporal behavior of the two musical
notes. The addition and subtraction has effectively remove
the possibility of getting times of single note onsets.
Applying the ICA algorithm Jade to the same injbig. To test this method on real sounds, a Yamaha Disklavier
2) to obtainW andY of Eq. (10), the time bases and fre- piano was driven by computer at a number of different rates
guency bases seen in Figs. 6 and 7 are obtained. See also Rigth whole-tone trills beginning on the not€s or Cs. Re-
3 for the operation applied to the first third of the file. Abso- cordings were made with a Sony TCD-D8 DAT recorder and

FIG. 12. Superposition of the times bases for one of the
“slow” trills recorded by Charles Fisk. This shows
clearly the spacing of the notes.
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E FIG. 13. Onset time against peak number for the peaks
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= squares linear fit showing accuracy of note striking.
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analyzed using the ICA algorithm Jade described previouslyThese rates varied from 8.6 for slow to 12.1 notes/s for fast
The example shown in Fig. 8 has a note rate of 13.5 Hz andvith control (Table 1) ICA results for the time bases and
is the maximum rate at which this piano could be drivenfrequency bases are given in Figs. 10 and 11 for one of the
without dropping notes; even so this example is not perfectfast with control” examples.

for the time bases as it is a little beyond the region of reliable  Further analysis was carried out on one of the “slow”
operation of the piano. The frequency bases of Fig. 9 aréiles and is shown in Figs. 12 and 13. The superposition of
clearly separated, again demonstrating that ICA is able tthe time basegblack for one note, white for the otheis

pull out the relevant information while dropping redundantshown in Fig. 12 in order to demonstrate the precision of the

data. alternating onsets. In a more quantitative graph, Fig. 13
shows the onset times for one of the two notes plotted
C. Recordings of live performance against note number in order to obtain the average time be-

A le of ali ; Charles Fisk tween trill pairs. This is 0.22 s with a standard deviation of
S an exampie of a five periormance, .haries FIsxe, ?).01 showing that the ftrill is very precise.

professional pianist and member of the performing faculty o
the Wellesley College Music Department, generously agree
to do some trills for this study. In order to determine how a
performer views trill rates, he was given the instructions to  Trills from a number of performances on compact disk

perform the trills slowly, fast with control, and very fast. were studied since these had not been previously reported. In

9). Examples from compact disk
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from the previous figure.
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TABLE I. Summary of results on trill rates.

Reference or performer

Notésr frequency Trill rate(note/s

Comments

Shonle/Horan
Palmer
Moore

Michael Hawley

Yamaha 140
Yamaha 150
Yamaha 170

Fisk
Fisk
Fisk

Pollini
Ashkenazy CE 10
Ashkenazy MW
Goode BA1
Goode BA3
Goode BW
Horowitz BA1
Horowitz BA2
Horowitz BA3
Horowitz BW
Horowitz CE 10
Wild CE 10
Flute

Results from Literature

10, 16
134,11
D4 E4 13
12 to 14
13
Computer-driven piano
C6-D6 14.3
C6-D6 135
C6-D6 11.7
Recording of live performance
C5-D5 121
C5-D5 8.9
C6-D6 8.8, 8.6
Performances from compact disk
135
16.3
A4 B4 115
D5 E5 13.3
F5 G5 15
G5 A5 13.2
D5 E5 11.2
E5f F5 13.8
F5 G5 13.3
G5 A5 12.6
C5 D5 15.7
C5 D5 16
12.8

from below and from above
fast passage, slow passage

upper limit
upper limit

fast with control
slow
slow—2 examples

ornament

ornament
ornament

some cases difficulties in resolving the two notes were enalmost exactly equalarbitrary units on the vertical axis of
countered due to pedaling, reverberation, or a significant difFig. 14), showing great control by the performer.

ference in amplitudes of the two notes. Graphs of the trans-

formation matrix and

In order to demonstrate the applicability of this method
independent components for ato instruments other than the piano, our calculation was ap-

particularly good example by Pollini playing Beethoven’s plied to a flute trill from Mozart's Flute Concerto No. 1.
Piano Sonata No. 32, Op. 111 are shown in Figs. 14 and 1%313. The notes are extremely well resolved as seen in Fig.
This is interesting in that the amplitudes of the two notes arel6, but the amplitudes are not equal as in the previous ex-

ICA TRANSFORMATION MATRIX (TIME BASES)
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FIG. 16. ICA transformation matrix—the two most im-
portant rows of transformation matri%¢ of Eq. (10) for
the constant-Q transform for the Mozart flute recording.
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INDEPENDENT COMPONENTS (FREQUENCY BASES)
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ample by Pollini. The frequency bases from Fig. 17 showand the timing of each note present in the trill. We have also
little evidence of higher harmonics indicating that in this noted how ICA, by employing higher-order statistics and
frequency range the flute sound is close to a pure tone.  forcing independence, improves the estimate compared to a
straightforward application of principal component analysis.
E. Summary of results on trills The analysis itself is bootstrapped only to the data pre-
- . sented and devoid of any musical knowledge. In fact, it is a
Our data on trills is collected in Table I. Most of our yejative of methods used for auditory scene analysis,

results, inclqding the flute trill, are ?n fthe range 12_,14which do not assume any previous auditory knowledige.
notes/s predicted by Mooid992 and pianist/computer sci- This fact allows us to analyze a wide variety of trills and not

entist Michael Hawley/in a discussion with one of the au- be constrained or biased by instrument selection, perfor-

thors. Pianist Charles Fisk in the recorded live performancgnance or scale tuning issues. By avoiding the necessity of
was given the instructions to play slowly, and then fast with, e rocessing for the extraction of semantically meaningful

control. The *fast with control” example at 12.1 notes/s is foa1res, for example pitch or loudness, another advantage is
consistent with Moore’s and Hawley’s predictions. The Ora-,nd in a lower burden of computation and complexity.

ments from the Chopin Etude Op. 10, No. 8 played by Ash- ki1 \ve would like to stress the value of redundancy
kenazy, Horowitz, and Wild were all very fast at 16 nOteS/S'reduction for more complex musical analysis. We have

but this was not a sustained trill. shown how powerful this concept can be for trills; however,

. Itis .mterestmg to compare pgrforman_ces of the Sam&; is also applicable to more complex musical segments. In
trill by different performers. The first trill in Beethoven'’s our future work we plan to expand upon this theme and

Sonata Op. 5TAppassionatawas played at 13.3 notes/s by yomanstrate how this method can be applied to musical tran-
Goode compared to 11.2 for Horowitz, which is significantly scription

faster. The third trill in this piece was also significantly faster
in the performance by Goode. And finally, a trill from the
Beethoven's Sonata Op. §8Valdstein offers a similar ex- APPENDIX A: IMPLEMENTATION OF PRINCIPAL
ample. Thus there appears to be a consistent difference in tifPMPONENT ANALYSIS IN MATLAB
interpretations of these two performers. This opens a fertile  \ve take as input the matriX, anN by M matrix in the
area for further research in musical performance. orientation of Fig. 2. Using the functiogig to find the uni-
tary transformatiort to diagonalizeX,
V. CONCLUSIONS [U.D]=eig(X*X'IM). (A1)
In this paper we have introduced a new method of mu-
sical analysis and applied it to musical trills. Redundanciesvhere M is the number of columns oX. The eigenvalue
inherent in the magnitude spectra of trills were identified,matrix D is ordered by magnitude of its elements from low to
and statistical methods were employed to take advantage digh, andU is ordered correspondingly. If two principal
this characteristic so as to reveal their basic structure. components are desired, the last two column&Jakill be
The method of independent component analysis cataken and called the reduced mattix. In matlab notation,
simplify the description of trills as a set of note pairs de-Ur=U(:,N—1:N). The transpose obr is plotted in the
scribed by their spectra and corresponding time envelope$igures, and referred to as row 1 and row 2 in order of im-
By examination of these pairs we can easily deduce the pitchortance.
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