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Abstract

An important problem in many fields is the analysis of coumatsido extract mean-
ingful latent components. Methods like Probabilistic lrat&emantic Analysis
(PLSA) and Latent Dirichlet Allocation (LDA) have been paxed for this pur-
pose. However, they are limited in the number of componéetstan extract and
lack an explicit provision to control the “expressiveneskthe extracted compo-
nents. In this paper, we present a learning formulation thiess these limitations
by employing the notion of sparsity. We start with the PLSAnfiework and
use an entropic prior in a maximum a posteriori formulatioehforce sparsity.
We show that this allows the extraction of overcomplete sElstent components
which better characterize the data. We present experifrearntegence of the utility
of such representations.

1 Introduction

A frequently encountered problem in many fields is the anslykhistogram data to extract mean-
ingful latent factors from it. For text analysis where the data represeants of word occurrences
from a collection of documents, popular techniques avhilattiude Probabilistic Latent Semantic
Analysis (PLSA, [6]) and Latent Dirichlet Allocation (LDA2]). These methods extract compo-
nents that can be interpretedtapics characterizing the corpus of documents. Although they are
primarily motivated by the analysis of text, these methasloe applied to analyze arbitrary count
data. For example, images can be interpreted as histogfamgltiple draws of pixels, where each
draw corresponds to a “quantum of intensity”. PLSA allowsaiexpress distributions that underlie
such count data as mixtures of latent components. ExtengdPLSA include methods that attempt
to model how these components co-occur (eg. LDA, Correladpic Model [1]).

One of the main limitations of these models is related to tmalmer of components they can extract.
Realistically, it may be expected that the number of latemhjgonents in the process underlying
any dataset is unrestricted. However, the number of comyerteat can be discovered by LDA
or PLSA is restricted by the cardinality of the dagsgy. by the vocabulary of the documents, or
the number of pixels of the image analyzed. Any analysis #ti@mpts to find amvercomplete
set of a larger number of components encounters the probldndeterminacy and is liable to
result in meaningless or trivial solutions. The secondthtion of the models is related to the
“expressiveness” of the extracted componemsthe information content in them. Although the
methodsaimto find “meaningful” latent components, they do not actualigvide any control over
the information content in the components.

In this paper, we present a learning formulation that ad#®both these limitations by employing
the notion ofsparsity. Sparse coding refers to a representational scheme where, of a set of compo-
nents that may be combined to compose data, only a small mendeombined to represent any
particular instance of the data (although the specific sebofponents may change from instance to



instance). In our problem, this translates to permittirgghnerating process to have an unrestricted
number of latent components, but requiring that only a smathber of them contribute to the com-
position of the histogram represented by any data instalmcether words, the latent components
must be learned such that thixture weights with which they are combined to generate any data
have low entropy — a set with low entropy implies that onlya feixture weight terms are signifi-
cant. This addresses both the limitations. Firstly, itédygliminates the problem of indeterminacy
permitting us to learn an unrestricted number of latent comepts. Secondly, estimation of low
entropy mixture weights forces more information on to thiehcomponents, thereby making them
more expressive.

The basic formulation we use to extract latent componergsndar to PLSA. We use aantropic
prior to manipulate the entropy of the mixture weights. We forrteutae problem in anaximum a
posteriori framework and derive inference algorithms. We use an adifitataset to illustrate the
effects of sparsity on the model. We show through simulatibat sparsity can lead to components
that are more representative of the true nature of the datpaced to conventional maximum like-
lihood learning. We demonstrate through experiments og@nahat the latent components learned
in this manner are more informative enabling us to predictserved data. We also demonstrate
that they are more discriminative than those learned usgglar maximum likelihood methods.
We then present conclusions and avenues for future work.

2 Latent Variable Decomposition

Consider ant” x N count matrixV. We will consider each column &f to be the histogram of an
independent set of draws from an underlying multinomiatrigtion overF’ discrete values. Each
column of V thus represents counts in a unique data 3&t,, the f** row entry ofv,,, then't
column of V, represents the count g¢f (or the f** discrete symbol that may be generated by the
multinomial) in then™ data set. For example, if the columnsdfrepresent word count vectors
for a collection of documentd/;,, would be the count of th¢*" word of the vocabulary in thet®
document in the collection.

We model all data as having been generated by a process ttizdracterized by a set dditent
probability distributions that, although not directly eoged, combine to compose the distribution
of any data set. We represent the probability of drawfifiggm thez*" latent distribution byP( f|z),
wherez is a latent variable. To generate any data set, the latenibdisSonsP( f|z) are combined in
proportions that are specific to that set. Thus, each hiatogcolumn) inV is the outcome of draws
from a distribution that is a column-specific compositionRiff|z). We can define the distribution
underlying then'" column of V as

P.(f) = Z P(fl2)Pu(2), (1)

where P, (f) represents the probability of drawinfgin the nt" data set inV, and P, (z) is the
mixing proportion signifying the contribution d?( f|z) towardsP,, (f).

Equation 1 is functionally identical to that used for Proitiatic Latent Semantic Analysis of text
data [6}: if the columnsV,, of V represent word count vectors for documeréf|z) represents
the 2*" latenttopic in the documents. Analogous interpretations may be prapfiseother types

of data as well. For example, if each columnVfrepresents one of a collection of images (each
of which has been unraveled into a column vector),®¢|z)’s would represent the latent “bases”
that compose all images in the collection. In maintaining kitter analogy, we will henceforth refer
to P(f|z) as thebasis distributions for the process.

Geometrically, theormalized columns ofV (obtained by scaling the entries ¥, to sum tol.0),
V.., which we refer to aslata distributions, may be viewed a#’-dimensional vectors that lie in an
(F — 1) simplex. The distribution®,(f) and basis distribution®(f|z) are alsoF-dimensional
vectors in the same simplex. The model expre$3gg’) as points within the convex hull formed
by the basis distributionB(f|z). The aim of the model is to determid f|z) such that the model

'PLSA actually represents theint distribution ofn and f asP(n, f) = P(n) 3", P(f|z)P(z|n). How-
ever the maximum likelihood estimate 8fn) is simply the fraction of all observations from all data sést
occurred in thex™ data set and does not affect the estimatio®¢f |z) and P(z|n).
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Figure 1: lllustration of the latent variable model. Pargisw 3-dimensional data distributions as
points within theStandard 2-Smplex given by{(001), (010), (100)}. The left panel shows a set of

2 Basis distributionsdpmpact code) derived from the 400 data points. The right panel shows a set
of 3 Basis distributionsadpmplete code). The model approximates data distributions as pointglyin
within the convex hull formed by the basis distributionssékhown are two data points (marked
by 4+ and x) and their approximations by the model (respectively shbwiy and).

P, (f) for any data distributioiV ,, approximates it closely. Sinde, (f) is constrained to lie within
the simplex defined by’(f|z), it can only modelV,, accurately if the latter also lies within the
hull. Any V,, that lies outside the hull is modeled with error. Thus, thgecfive of the model
is to identify P(f|z) such that they form a convex hull surrounding the data thstions. This is
illustrated in Figure 1 for a synthetic data set of 400 3-disienal data distributions.

2.1 Parameter Estimation

Given count matri®V, we estimate”( f|z) andP, (z) to maximize the likelihood oV. This can be
done through iterations of equations derived using the Egpen Maximization (EM) algorithm:

Pa(2)P(f12)

Po(z|f) = m, and 2)
z) = Zn anpn(z|f> 2) = Zf Vf"PfL(ZLf)

Detailed derivation is shown in supplemental material. EMealgorithm guarantees that the above
multiplicative updates converge to a local optimum.

2.2 Latent Variable Model as Matrix Factorization

We can write the model given by equation (1) in matrix fornrpas= Wg,,, wherep,, is a column
vector indicatingP, (f), g is a column vector indicating,, (z), andW is a matrix with the(f, z)-
th element corresponding ®( f|z). If we characteriz&/ by R basis distributionsW is anF x R
matrix. Concatenating all column vectgss andg,, as matrice® and G respectively, one can
write the model a® = WG, whereG is anR x N matrix. Itis easy to show (as demonstrated in
the supplementary material) that the maximum likelihoddestor for P(f|z) and P, (z) attempts
to minimize the Kullback-Leibler (KL) distance between th@rmalized data distributioV,, and
P,(f), weighted by the total count iivV,,. In other words, the model of Equation (1) actually
represents the decomposition

V ~ WGD = WH 4)
whereD is anN x N diagonal matrix, whose'" diagonal element is the total number of counts
in V,, andH = GD. The astute reader might recognize the decomposition cftemu(4) as Non-
negative matrix factorization (NMF; [8]). In fact equat®(2) and (3) can be shown to be equivalent
to one of the standard update rules for NMF.

Representing the decomposition in matrix form immediatelseals one of the shortcomings of the
basic model. IfR, the number of basis distributions, is equalfo then a trivial solution exists
that achieves perfect decompositiolV: = I; H = V, wherel is the identity matrix (although the
algorithm may not always arrive at this solution). Howevbis solution is no longer of any utility
to us since our aim is to derive basis distributions that &eracteristic of the data, whereas the
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Figure 2: lllustration of the effect of sparsifyirld on the dataset shown in Figure 1. A-G represent
7 basis distributions. Thet’ represents a typical data point. It can be accurately spmed by
any set of three or more bases that form an enclosing polygdriteere are many such polygons.
However, if we restrict the number of bases used to encles®‘be minimized, only the 7 enclosing
triangles shown remain as valid solutions. By further imipgghe restriction that the entropy of
the mixture weights with which the bases (corners) must lmebioed to representt’ must be
minimum, only one triangle is obtained as the unique optemalosure.

columns of W in this trivial solution are not specific to any data, but esg@nt the dimensions of
the space the data lie in. Foovercomplete decompositions wher& > F, the solution becomes
indeterminate — multiple perfect decompositions are jbessi

The indeterminacy of the overcomplete decomposition cameler, be greatly reduced by im-
posing a restriction that the approximation for avly, must employ minimum number of basis
distributions required. By further imposing the constt#irat theentropy of g,, must be minimized,
the indeterminacy of the solution can often be eliminateflastrated by Figure 2. This principle,
which is related to the concept gfarse coding [5], is what we will use to derive overcomplete sets
of basis distributions for the data.

3 Sparsity in the Latent Variable Model

Sparse coding refers to a representational scheme wheaesatfof components that may be com-
bined to compose data, only a small number are combined tegept any particular input. In the
context of basis decompositions, the goal of sparse cogditmfind a set of bases for any data set
such that the mixture weights with which the bases are coetbio compose any data are sparse.
Different metrics have been used to quantify the sparsitthefmixture weights in the literature.
Some approaches minimize variants of thgnorm of the mixture weights (eg. [7]) while other
approaches minimize various approximations of the entadplye mixture weights.

In our approach, we use entropy as a measure of sparsity. ¥heentropic prior, which has
been used in thenaximum entropy literature (see [9]) to manipulate entropy. Given a proligbi
distribution®, the entropic prior is defined d& () oc e =9, whereH(0) = — 3", 6; log 0; is the
entropy of the distribution and is a weighting factor. Positive values affavor distributions with
lower entropies while negative values®favor distributions with higher entropies. Imposing this
prior duringmaximuma posteriori estimation is a way to manipulate the entropy of the distidwu
The distributiong could correspond to the basis distributidR&f|z) or the mixture weight$,(2)

or both. A sparse code would correspond to having the emtnoor on P, (z) with a positive
value fora. Below, we consider the case where both the basis vectonnixtdre weights have the
entropic prior to keep the exposition general.

3.1 Parameter Estimation
We use the EM algorithm to derive the update equations. Le#xasnine the case where both
P(f|z) and P, (z) have the entropic prior. The set of parameters to be estihigtgiven byA =

{P(f|2), Pn.(2)}. Theapriori distribution over the parameterB(A), corresponds to the entropic
priors. We can writéog P(A), the log-prior, as

aY > P(fl2)log P(fl2)+ 8D > Pu(2)log Pu(2), 5)
z f n z
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Figure 3: lllustration of the effect of sparsity on the syetih data set from Figure 1. For visual
clarity, we do not display the data points.

Top panels: Decomposition without sparsity. Sets of 3 (left), 7 (center), and 10 (right) basis dis-
tributions were obtained from the data without employingrsly. In each case, 20 runs of the
estimation algorithm were performed from different initralues. The convex hulls formed by the
bases from each of these runs are shown in the panels froto iédtht. Notice that increasing the
number of bases enlarges the sizes of convex hulls, noneiohwharacterize the distribution of
the data well.

Bottom panels: Decomposition with sparsity. The panels from left to right show the 20 sets of
estimates of 7 basis distributions, for increasing valuethe sparsity parameter for the mixture
weights. The convex hulls quickly shrink to compactly eselthe distribution of the data.

wherea andg are parameters indicating the degree of sparsity desired fiz) and P, (=) respec-
tively. As before, we can write the E-step as

Pa(2)P(f12)

S S B2 ©
The M-step reduces to the equations
€ _ w _
BT +a+alog P(f|z) +p. =0, XE) + B+ Blog Po(z) + 7, =0 @)

where we have lef represend Vi, P, (2|f), w represend . Vi, P, (2[f), andp., 7, are La-
grange multipliers. The above M-step equations are systésisnultaneous transcendental equa-
tions for P(f|z) and P, (z). Brand [3] proposes a method to solve such equations usingaimbert
W function [4]. It can be shown tha®(f|z) and P, (z) can be estimated as

—&/a A _ —w/p
Ceervornja) T Wae By

Equations (7), (8) form a set of fixed-point iterations thygii¢ally converge in 2-5 iterations [3].

P(fl2) = 35 (8)

The final update equations are given by equation (6), andxad-fpoint equation-pairs (7), (8). De-
tails of the derivation are provided in supplemental mateNotice that the above equations reduce
to the maximum likelihood updates of equations (2) and (3¢mda and 8 are set to zero. More
generally, the EM algorithm aims to minimize the KL distateatween the true distribution of the
data and that of the modele. it attempts to arrive at a model that conserves the entrofiyeodata,
subject to thea priori constraints. Consequently, reducing entropy of the méxtueightsP, (z) to
obtain a sparse code results in increased entropy (infamaif basis distribution®( f|z).

3.2 lllustration of the Effect of Sparsity

The effect and utility of sparse overcomplete represemtatis demonstrated by Figure 3. In this
example, the data (from Figure 1) have four distinct quatkiklly located clusters. This structure
cannot be accurately represented by three or fewer basibdi®ns, since they can, at best specify
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Figure 4: Application of latent variable decomposition feconstructing faces from occluded im-
ages CBCL Database). (A). Example of a random subset of 36 occluded test imaBear6 x 6
patches were removed from the images in several randombkechconfigurations (corresponding
to the rows). (B). Reconstructed faces from a sparse-ongstaie basis set of 1000 learned compo-
nents (sparsity parameter = 0.1). (C). Original test imapesvn for comparison.

a triangular simplex, as demonstrated by the top left parible figure. Simply increasing the num-

ber of bases without constraining the sparsity of the m&tweights does not provide meaningful

solutions. However, increasing the sparsity quickly rissinl solutions that accurately characterize
the distribution of the data.

A clearer intuition is obtained when we consider the matobaf of the decomposition in Equation
4. The goal of the decomposition is often to identify a setadéht distributions that characterize
the underlyingprocess that generated the da¥&. When no sparsity is enforced on the solution, the
trivial solutionW = I, H = V is obtained al®? = F'. In this solution, the entire information in
V is borne byH and the baseSV becomes uninformativée. they no longer contain information
about the underlying process.

However, by enforcing sparsity di the informationV is transferred back t&, and non-trivial
solutions are possible fd8 > F. As R increases, howeveW¥y become more and more data-like.
At R = N another trivial solution is obtainedvV = V, andH = D (i.e. G = I). The columns of
‘W now simply represent (scaled versions) of the specific Watather than the underlying process.
For R > N the solutions will now become indeterminate. By enforcipgrsity, we have thus
increased the implicit limit on the number of bases that carestimated without indeterminacy
from the smaller dimension &¥ to the larger one.

4 Experimental Evaluation

We hypothesize that if the learned basis distribution aeratteristic of the process that generates
the data, they must not only generalize to explain new data the process, but also enable predic-
tion of components of the data that were not observed. Ségcdhd bases for a given process must

be worse at explaining data that have been generated by heymbcess. We test both these hy-

potheses below. In both experiments we utilize images, mhiEinterpret as histograms of repeated

draws of pixels, where each draw corresponds to a quantuntesfdity.

4.1 Face Reconstruction

In this experiment we evaluate the ability of the overcortebmses to explain new data and predict
the values of unobserved components of the data. Spegjfigadl use it to reconstruct occluded
portions of images. We used tkBCL database consisting of 2429 frontal view face images hand-
aligned in a19 x 19 grid. We preprocessed the images by linearly scaling thgsgede intensities
so that pixel mean and standard deviation was 0.25, and tigped them to the range [0, 1].
2000 images were randomly chosen as the training set. 10fesrfaom the remaining 429 were
randomly chosen as the test set. To create occluded tesegnag removed x 6 grids in ten
random configurations for 10 test faces each, resultingaob@luded images. We created 4 sets of
testimages, where each set had one, two, three o6faut patches removed. Figure 4A represents
the case where 4 patches were removed from each face.

In a training stage, we learned setskofe {50,200, 500, 750, 1000} basis distributions from the
training data. Sparsity was not used in the comp&ct( F') case (50 and 200 bases) and sparsity
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Figure 5: 25 Basis distributions (represented as imagdgard for class “2” from training data

without sparsity on mixture weights (Left Panel, sparsaygmeter = 0) and with sparsity on mixture
weights (Right Panel, sparsity parameter = 0.2). Basis @aa@agmbine in proportion to the mixture
weights shown to result in the pixel images shown.
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Figure 6: 25 basis distributions learned from training dataclass “3” with increasing sparsity
parameters on the mixture weights. The sparsity parameteset to 0, 0.2 and 0.5 respectively. In-
creasing the sparsity parameter of mixture weights proglhases which are holistic representations
of the input (histogram) data instead of parts-like feagure

was imposed (parameter = 0.1) on the mixture weights in teecmmplete cases (500, 750 and 1000
basis vectors).

The procedure for estimating the occluded regions of thetarteage has two steps. In the first step,
we estimate the distribution underlying the image as a ficgeabination of the basis distributions.
This is done by iterations of Equations 2 and 3 to estinfate:) (the based(f|z), being already
known, stay fixed) based only on the pixels that are obselivedye marginalize out the occluded
pixels). The combination of the basB§f|z) and the estimatef, (z) give us the overall distribution
P,(f) for the image. The occluded pixel values at any pjké estimated as thexpected number

of counts at the pixels, given b, ()X ey Vi) /(X preqr,y Pu(f')) whereVy represents
the value of the image at thg" pixel and{F,} is the set of observed pixels. Figure 4B shows the
reconstructed faces for the sparse-overcomplete cased6flddksis vectors. Figure 7A summarizes
the results for all cases. Performance is measured by memalSd-Noise-Ratio (SNR), where
SNR for an image was computed as the ratio of the sum of sqpacetintensities of the original
image to the sum of squared error between the original imagdspand the reconstruction.

4.2 Handwritten Digit Classification

In this experiment we evaluate the specificity of the baséised@rocess represented by the training
data set, through a simple example of handwritten digitsifiaation. We used the USPS Handwrit-
ten Digits database which has 1100 examples for each digis cMWe randomly chose 100 examples
from each class and separated them as the test set. The igr@iamples were used for training.
During training, separate sets of basis distributié¥igf|~) were learned for each class, whére
represents the index of the class. Figure 5 shows 25 basgesextracted for the digit “2”. To
classify any test image, we attempted to compute the distribution underlying thagmusing the
bases for each class (by estimating the mixture weigfits), keeping the bases fixed, as before).
The “match” of the bases to the test instance was indicatetélikelihoodL* of the image com-
puted usingP*(f) = 3=, P*(f|2)P;(2) asL* = 3~ ; vy log P*(f). Since we expect the bases for
the true class of the image to best compose it, we expectkbkhlbod for the correct class to be
maximum. Hence, the imagewas assigned to the class for which likelihood was the highes
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Figure 7: (A). Results of the face Reconstruction experimbtean SNR of the reconstructions is
shown as a function of the number of basis vectors and the#sst (number of deleted patches,
shown in the legend). Notice that the sparse-overcomptetesconsistently perform better than
the compact codes. (B). Results of the classification empmri. The legend shows number of
basis distributions used. Notice that imposing sparsityoskt always leads to better classification
performance. In the case of 100 bases, error rate comes dpwinost 50% when a sparsity

parameter of 0.3 is imposed.

Results are shown in Figure 7B. As one can see, imposingigpanproves classification perfor-
mance in almost all cases. Figure 6 shows three sets of hasibutions learned for class “3” with
different sparsity values on the mixture weights. As thesipaparameter is increased, bases tend
to be holistic representations of the input histogramss ihtonsistent with improved classification
performance - as the representation of basis distributiets more holistic, the monanlike they
become when compared to bases of other classes. Thus, dhetesser chance that the bases of
one class can compose an image in another class, therebgimgperformance.

5 Conclusions

In this paper, we have presented an algorithm for sparsaaiin of overcomplete sets of latent
distributions from histogram data. We have used entropy m®easure of sparsity and employed
the entropic prior to manipulate the entropy of the estimhgtarameters. We showed that sparse-
overcomplete components can lead to an improved charzatien of data and can be used in appli-
cations such as classification and inference of missing Weégebelieve further improved characteri-
zation may be achieved by the imposition of additional grityat represent known or hypothesized
structure in the data, and will be the focus of future redearc
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