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Abstract

An important problem in many fields is the analysis of counts data to extract mean-
ingful latent components. Methods like Probabilistic Latent Semantic Analysis
(PLSA) and Latent Dirichlet Allocation (LDA) have been proposed for this pur-
pose. However, they are limited in the number of components they can extract and
lack an explicit provision to control the “expressiveness”of the extracted compo-
nents. In this paper, we present a learning formulation to address these limitations
by employing the notion of sparsity. We start with the PLSA framework and
use an entropic prior in a maximum a posteriori formulation to enforce sparsity.
We show that this allows the extraction of overcomplete setsof latent components
which better characterize the data. We present experimental evidence of the utility
of such representations.

1 Introduction

A frequently encountered problem in many fields is the analysis of histogram data to extract mean-
ingful latent factors from it. For text analysis where the data represent counts of word occurrences
from a collection of documents, popular techniques available include Probabilistic Latent Semantic
Analysis (PLSA; [6]) and Latent Dirichlet Allocation (LDA;[2]). These methods extract compo-
nents that can be interpreted astopics characterizing the corpus of documents. Although they are
primarily motivated by the analysis of text, these methods can be applied to analyze arbitrary count
data. For example, images can be interpreted as histograms of multiple draws of pixels, where each
draw corresponds to a “quantum of intensity”. PLSA allows usto express distributions that underlie
such count data as mixtures of latent components. Extensions to PLSA include methods that attempt
to model how these components co-occur (eg. LDA, CorrelatedTopic Model [1]).

One of the main limitations of these models is related to the number of components they can extract.
Realistically, it may be expected that the number of latent components in the process underlying
any dataset is unrestricted. However, the number of components that can be discovered by LDA
or PLSA is restricted by the cardinality of the data,e.g. by the vocabulary of the documents, or
the number of pixels of the image analyzed. Any analysis thatattempts to find anovercomplete
set of a larger number of components encounters the problem of indeterminacy and is liable to
result in meaningless or trivial solutions. The second limitation of the models is related to the
“expressiveness” of the extracted componentsi.e. the information content in them. Although the
methodsaim to find “meaningful” latent components, they do not actuallyprovide any control over
the information content in the components.

In this paper, we present a learning formulation that addresses both these limitations by employing
the notion ofsparsity. Sparse coding refers to a representational scheme where, of a set of compo-
nents that may be combined to compose data, only a small number are combined to represent any
particular instance of the data (although the specific set ofcomponents may change from instance to
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instance). In our problem, this translates to permitting the generating process to have an unrestricted
number of latent components, but requiring that only a smallnumber of them contribute to the com-
position of the histogram represented by any data instance.In other words, the latent components
must be learned such that themixture weights with which they are combined to generate any data
have low entropy – a set with low entropy implies that only a few mixture weight terms are signifi-
cant. This addresses both the limitations. Firstly, it largely eliminates the problem of indeterminacy
permitting us to learn an unrestricted number of latent components. Secondly, estimation of low
entropy mixture weights forces more information on to the latent components, thereby making them
more expressive.

The basic formulation we use to extract latent components issimilar to PLSA. We use anentropic
prior to manipulate the entropy of the mixture weights. We formulate the problem in amaximum a
posteriori framework and derive inference algorithms. We use an artificial dataset to illustrate the
effects of sparsity on the model. We show through simulations that sparsity can lead to components
that are more representative of the true nature of the data compared to conventional maximum like-
lihood learning. We demonstrate through experiments on images that the latent components learned
in this manner are more informative enabling us to predict unobserved data. We also demonstrate
that they are more discriminative than those learned using regular maximum likelihood methods.
We then present conclusions and avenues for future work.

2 Latent Variable Decomposition

Consider anF × N count matrixV. We will consider each column ofV to be the histogram of an
independent set of draws from an underlying multinomial distribution overF discrete values. Each
column ofV thus represents counts in a unique data set.Vfn, thef th row entry ofVn, thenth

column ofV, represents the count off (or thef th discrete symbol that may be generated by the
multinomial) in thenth data set. For example, if the columns ofV represent word count vectors
for a collection of documents,Vfn would be the count of thef th word of the vocabulary in thenth

document in the collection.

We model all data as having been generated by a process that ischaracterized by a set oflatent
probability distributions that, although not directly observed, combine to compose the distribution
of any data set. We represent the probability of drawingf from thezth latent distribution byP (f |z),
wherez is a latent variable. To generate any data set, the latent distributionsP (f |z) are combined in
proportions that are specific to that set. Thus, each histogram (column) inV is the outcome of draws
from a distribution that is a column-specific composition ofP (f |z). We can define the distribution
underlying thenth column ofV as

Pn(f) =
∑

z

P (f |z)Pn(z), (1)

wherePn(f) represents the probability of drawingf in the nth data set inV, andPn(z) is the
mixing proportion signifying the contribution ofP (f |z) towardsPn(f).

Equation 1 is functionally identical to that used for Probabilistic Latent Semantic Analysis of text
data [6]1: if the columnsVn of V represent word count vectors for documents,P (f |z) represents
the zth latent topic in the documents. Analogous interpretations may be proposed for other types
of data as well. For example, if each column ofV represents one of a collection of images (each
of which has been unraveled into a column vector), theP (f |z)’s would represent the latent “bases”
that compose all images in the collection. In maintaining this latter analogy, we will henceforth refer
to P (f |z) as thebasis distributions for the process.

Geometrically, thenormalized columns ofV (obtained by scaling the entries ofVn to sum to1.0),
V̄n, which we refer to asdata distributions, may be viewed asF -dimensional vectors that lie in an
(F − 1) simplex. The distributionsPn(f) and basis distributionsP (f |z) are alsoF -dimensional
vectors in the same simplex. The model expressesPn(f) as points within the convex hull formed
by the basis distributionsP (f |z). The aim of the model is to determineP (f |z) such that the model

1PLSA actually represents thejoint distribution ofn andf asP (n, f) = P (n)
P

z
P (f |z)P (z|n). How-

ever the maximum likelihood estimate ofP (n) is simply the fraction of all observations from all data setsthat
occurred in thenth data set and does not affect the estimation ofP (f |z) andP (z|n).
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Figure 1: Illustration of the latent variable model. Panelsshow 3-dimensional data distributions as
points within theStandard 2-Simplex given by{(001), (010), (100)}. The left panel shows a set of
2 Basis distributions (compact code) derived from the 400 data points. The right panel shows a set
of 3 Basis distributions (complete code). The model approximates data distributions as points lying
within the convex hull formed by the basis distributions. Also shown are two data points (marked
by + and×) and their approximations by the model (respectively shownby♦ and�).

Pn(f) for any data distribution̄Vn approximates it closely. SincePn(f) is constrained to lie within
the simplex defined byP (f |z), it can only modelV̄n accurately if the latter also lies within the
hull. Any V̄n that lies outside the hull is modeled with error. Thus, the objective of the model
is to identifyP (f |z) such that they form a convex hull surrounding the data distributions. This is
illustrated in Figure 1 for a synthetic data set of 400 3-dimensional data distributions.

2.1 Parameter Estimation

Given count matrixV, we estimateP (f |z) andPn(z) to maximize the likelihood ofV. This can be
done through iterations of equations derived using the Expectation Maximization (EM) algorithm:

Pn(z|f) =
Pn(z)P (f |z)∑
z Pn(z)P (f |z)

, and (2)

P (f |z) =

∑
n VfnPn(z|f)∑

f

∑
n VfnPn(z|f)

, Pn(z) =

∑
f VfnPn(z|f)

∑
z

∑
f VfnPn(z|f)

(3)

Detailed derivation is shown in supplemental material. TheEM algorithm guarantees that the above
multiplicative updates converge to a local optimum.

2.2 Latent Variable Model as Matrix Factorization

We can write the model given by equation (1) in matrix form aspn = Wgn, wherepn is a column
vector indicatingPn(f), gn is a column vector indicatingPn(z), andW is a matrix with the(f, z)-
th element corresponding toP (f |z). If we characterizeV by R basis distributions,W is anF × R
matrix. Concatenating all column vectorspn andgn as matricesP andG respectively, one can
write the model asP = WG, whereG is anR × N matrix. It is easy to show (as demonstrated in
the supplementary material) that the maximum likelihood estimator forP (f |z) andPn(z) attempts
to minimize the Kullback-Leibler (KL) distance between thenormalized data distributionVn and
Pn(f), weighted by the total count inVn. In other words, the model of Equation (1) actually
represents the decomposition

V ≈ WGD = WH (4)

whereD is anN × N diagonal matrix, whosenth diagonal element is the total number of counts
in Vn andH = GD. The astute reader might recognize the decomposition of equation (4) as Non-
negative matrix factorization (NMF; [8]). In fact equations (2) and (3) can be shown to be equivalent
to one of the standard update rules for NMF.

Representing the decomposition in matrix form immediatelyreveals one of the shortcomings of the
basic model. IfR, the number of basis distributions, is equal toF , then a trivial solution exists
that achieves perfect decomposition:W = I; H = V, whereI is the identity matrix (although the
algorithm may not always arrive at this solution). However,this solution is no longer of any utility
to us since our aim is to derive basis distributions that are characteristic of the data, whereas the
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Figure 2: Illustration of the effect of sparsifyingH on the dataset shown in Figure 1. A-G represent
7 basis distributions. The ‘+’ represents a typical data point. It can be accurately represented by
any set of three or more bases that form an enclosing polygon and there are many such polygons.
However, if we restrict the number of bases used to enclose ‘+’ to be minimized, only the 7 enclosing
triangles shown remain as valid solutions. By further imposing the restriction that the entropy of
the mixture weights with which the bases (corners) must be combined to represent ‘+’ must be
minimum, only one triangle is obtained as the unique optimalenclosure.

columns ofW in this trivial solution are not specific to any data, but represent the dimensions of
the space the data lie in. Forovercomplete decompositions whereR > F , the solution becomes
indeterminate – multiple perfect decompositions are possible.

The indeterminacy of the overcomplete decomposition can, however, be greatly reduced by im-
posing a restriction that the approximation for anyV̄n must employ minimum number of basis
distributions required. By further imposing the constraint that theentropy of gn must be minimized,
the indeterminacy of the solution can often be eliminated asillustrated by Figure 2. This principle,
which is related to the concept ofsparse coding [5], is what we will use to derive overcomplete sets
of basis distributions for the data.

3 Sparsity in the Latent Variable Model

Sparse coding refers to a representational scheme where, ofa set of components that may be com-
bined to compose data, only a small number are combined to represent any particular input. In the
context of basis decompositions, the goal of sparse coding is to find a set of bases for any data set
such that the mixture weights with which the bases are combined to compose any data are sparse.
Different metrics have been used to quantify the sparsity ofthe mixture weights in the literature.
Some approaches minimize variants of theLp norm of the mixture weights (eg. [7]) while other
approaches minimize various approximations of the entropyof the mixture weights.

In our approach, we use entropy as a measure of sparsity. We use theentropic prior, which has
been used in themaximum entropy literature (see [9]) to manipulate entropy. Given a probability
distributionθ, the entropic prior is defined asPe(θ) ∝ e−αH(θ), whereH(θ) = −

∑
i θi log θi is the

entropy of the distribution andα is a weighting factor. Positive values ofα favor distributions with
lower entropies while negative values ofα favor distributions with higher entropies. Imposing this
prior duringmaximum a posteriori estimation is a way to manipulate the entropy of the distribution.
The distributionθ could correspond to the basis distributionsP (f |z) or the mixture weightsPn(z)
or both. A sparse code would correspond to having the entropic prior onPn(z) with a positive
value forα. Below, we consider the case where both the basis vectors andmixture weights have the
entropic prior to keep the exposition general.

3.1 Parameter Estimation

We use the EM algorithm to derive the update equations. Let usexamine the case where both
P (f |z) andPn(z) have the entropic prior. The set of parameters to be estimated is given byΛ =
{P (f |z), Pn(z)}. Thea priori distribution over the parameters,P (Λ), corresponds to the entropic
priors. We can writelog P (Λ), the log-prior, as

α
∑

z

∑

f

P (f |z) logP (f |z) + β
∑

n

∑

z

Pn(z) log Pn(z), (5)
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Figure 3: Illustration of the effect of sparsity on the synthetic data set from Figure 1. For visual
clarity, we do not display the data points.
Top panels: Decomposition without sparsity. Sets of 3 (left), 7 (center), and 10 (right) basis dis-
tributions were obtained from the data without employing sparsity. In each case, 20 runs of the
estimation algorithm were performed from different initial values. The convex hulls formed by the
bases from each of these runs are shown in the panels from leftto right. Notice that increasing the
number of bases enlarges the sizes of convex hulls, none of which characterize the distribution of
the data well.
Bottom panels: Decomposition with sparsity. The panels from left to right show the 20 sets of
estimates of 7 basis distributions, for increasing values of the sparsity parameter for the mixture
weights. The convex hulls quickly shrink to compactly enclose the distribution of the data.

whereα andβ are parameters indicating the degree of sparsity desired inP (f |z) andPn(z) respec-
tively. As before, we can write the E-step as

Pn(z|f) =
Pn(z)P (f |z)∑
z Pn(z)P (f |z)

. (6)

The M-step reduces to the equations

ξ

P (f |z)
+ α + α log P (f |z) + ρz = 0,

ω

Pn(z)
+ β + β log Pn(z) + τn = 0 (7)

where we have letξ represent
∑

n VfnPn(z|f), ω represent
∑

f VfnPn(z|f), andρz, τn are La-
grange multipliers. The above M-step equations are systemsof simultaneous transcendental equa-
tions forP (f |z) andPn(z). Brand [3] proposes a method to solve such equations using the Lambert
W function [4]. It can be shown thatP (f |z) andPn(z) can be estimated as

P̂ (f |z) =
−ξ/α

W(−ξe1+ρz/α/α)
, P̂n(z) =

−ω/β

W(−ωe1+τn/β/β)
. (8)

Equations (7), (8) form a set of fixed-point iterations that typically converge in 2-5 iterations [3].

The final update equations are given by equation (6), and the fixed-point equation-pairs (7), (8). De-
tails of the derivation are provided in supplemental material. Notice that the above equations reduce
to the maximum likelihood updates of equations (2) and (3) whenα andβ are set to zero. More
generally, the EM algorithm aims to minimize the KL distancebetween the true distribution of the
data and that of the model,i.e. it attempts to arrive at a model that conserves the entropy ofthe data,
subject to thea priori constraints. Consequently, reducing entropy of the mixture weightsPn(z) to
obtain a sparse code results in increased entropy (information) of basis distributionsP (f |z).

3.2 Illustration of the Effect of Sparsity

The effect and utility of sparse overcomplete representations is demonstrated by Figure 3. In this
example, the data (from Figure 1) have four distinct quadrilaterally located clusters. This structure
cannot be accurately represented by three or fewer basis distributions, since they can, at best specify
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A. Occluded Faces B. Reconstructions C. Original Test Images

Figure 4: Application of latent variable decomposition forreconstructing faces from occluded im-
ages (CBCL Database). (A). Example of a random subset of 36 occluded test images.Four6 × 6
patches were removed from the images in several randomly chosen configurations (corresponding
to the rows). (B). Reconstructed faces from a sparse-overcomplete basis set of 1000 learned compo-
nents (sparsity parameter = 0.1). (C). Original test imagesshown for comparison.

a triangular simplex, as demonstrated by the top left panel in the figure. Simply increasing the num-
ber of bases without constraining the sparsity of the mixture weights does not provide meaningful
solutions. However, increasing the sparsity quickly results in solutions that accurately characterize
the distribution of the data.

A clearer intuition is obtained when we consider the matrix form of the decomposition in Equation
4. The goal of the decomposition is often to identify a set of latent distributions that characterize
the underlyingprocess that generated the dataV. When no sparsity is enforced on the solution, the
trivial solutionW = I, H = V is obtained atR = F . In this solution, the entire information in
V is borne byH and the basesW becomes uninformative,i.e. they no longer contain information
about the underlying process.

However, by enforcing sparsity onH the informationV is transferred back toW, and non-trivial
solutions are possible forR > F . As R increases, however,W become more and more data-like.
At R = N another trivial solution is obtained:W = V, andH = D (i.e. G = I). The columns of
W now simply represent (scaled versions) of the specific dataV rather than the underlying process.
For R > N the solutions will now become indeterminate. By enforcing sparsity, we have thus
increased the implicit limit on the number of bases that can be estimated without indeterminacy
from the smaller dimension ofV to the larger one.

4 Experimental Evaluation

We hypothesize that if the learned basis distribution are characteristic of the process that generates
the data, they must not only generalize to explain new data from the process, but also enable predic-
tion of components of the data that were not observed. Secondly, the bases for a given process must
be worse at explaining data that have been generated by any other process. We test both these hy-
potheses below. In both experiments we utilize images, which we interpret as histograms of repeated
draws of pixels, where each draw corresponds to a quantum of intensity.

4.1 Face Reconstruction

In this experiment we evaluate the ability of the overcomplete bases to explain new data and predict
the values of unobserved components of the data. Specifically, we use it to reconstruct occluded
portions of images. We used theCBCL database consisting of 2429 frontal view face images hand-
aligned in a19 × 19 grid. We preprocessed the images by linearly scaling the grayscale intensities
so that pixel mean and standard deviation was 0.25, and then clipped them to the range [0, 1].
2000 images were randomly chosen as the training set. 100 images from the remaining 429 were
randomly chosen as the test set. To create occluded test images, we removed6 × 6 grids in ten
random configurations for 10 test faces each, resulting in 100 occluded images. We created 4 sets of
test images, where each set had one, two, three or four6× 6 patches removed. Figure 4A represents
the case where 4 patches were removed from each face.

In a training stage, we learned sets ofK ∈ {50, 200, 500, 750, 1000} basis distributions from the
training data. Sparsity was not used in the compact (R < F ) case (50 and 200 bases) and sparsity
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Figure 5: 25 Basis distributions (represented as images) extracted for class “2” from training data
without sparsity on mixture weights (Left Panel, sparsity parameter = 0) and with sparsity on mixture
weights (Right Panel, sparsity parameter = 0.2). Basis images combine in proportion to the mixture
weights shown to result in the pixel images shown.

β = 0 β = 0.2 β = 0.5

Figure 6: 25 basis distributions learned from training datafor class “3” with increasing sparsity
parameters on the mixture weights. The sparsity parameter was set to 0, 0.2 and 0.5 respectively. In-
creasing the sparsity parameter of mixture weights produces bases which are holistic representations
of the input (histogram) data instead of parts-like features.

was imposed (parameter = 0.1) on the mixture weights in the overcomplete cases (500, 750 and 1000
basis vectors).

The procedure for estimating the occluded regions of the a test image has two steps. In the first step,
we estimate the distribution underlying the image as a linear combination of the basis distributions.
This is done by iterations of Equations 2 and 3 to estimatePn(z) (the basesP (f |z), being already
known, stay fixed) based only on the pixels that are observed (i.e. we marginalize out the occluded
pixels). The combination of the basesP (f |z) and the estimatedPn(z) give us the overall distribution
Pn(f) for the image. The occluded pixel values at any pixelf is estimated as theexpected number
of counts at the pixels, given byPn(f)(

∑
f ′∈{Fo}

Vf ′)/(
∑

f ′∈{Fo}
Pn(f ′)) whereVf represents

the value of the image at thef th pixel and{Fo} is the set of observed pixels. Figure 4B shows the
reconstructed faces for the sparse-overcomplete case of 1000 basis vectors. Figure 7A summarizes
the results for all cases. Performance is measured by mean Signal-to-Noise-Ratio (SNR), where
SNR for an image was computed as the ratio of the sum of squaredpixel intensities of the original
image to the sum of squared error between the original image pixels and the reconstruction.

4.2 Handwritten Digit Classification

In this experiment we evaluate the specificity of the bases tothe process represented by the training
data set, through a simple example of handwritten digit classification. We used the USPS Handwrit-
ten Digits database which has 1100 examples for each digit class. We randomly chose 100 examples
from each class and separated them as the test set. The remaining examples were used for training.
During training, separate sets of basis distributionsP k(f |z) were learned for each class, wherek
represents the index of the class. Figure 5 shows 25 bases images extracted for the digit “2”. To
classify any test imagev, we attempted to compute the distribution underlying the image using the
bases for each class (by estimating the mixture weightsP k

v (z), keeping the bases fixed, as before).
The “match” of the bases to the test instance was indicated bythe likelihoodLk of the image com-
puted usingP k(f) =

∑
z P k(f |z)P k

v (z) asLk =
∑

f vf log P k(f). Since we expect the bases for
the true class of the image to best compose it, we expect the likelihood for the correct class to be
maximum. Hence, the imagev was assigned to the class for which likelihood was the highest.
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Figure 7: (A). Results of the face Reconstruction experiment. Mean SNR of the reconstructions is
shown as a function of the number of basis vectors and the testcase (number of deleted patches,
shown in the legend). Notice that the sparse-overcomplete codes consistently perform better than
the compact codes. (B). Results of the classification experiment. The legend shows number of
basis distributions used. Notice that imposing sparsity almost always leads to better classification
performance. In the case of 100 bases, error rate comes down by almost 50% when a sparsity
parameter of 0.3 is imposed.

Results are shown in Figure 7B. As one can see, imposing sparsity improves classification perfor-
mance in almost all cases. Figure 6 shows three sets of basis distributions learned for class “3” with
different sparsity values on the mixture weights. As the sparsity parameter is increased, bases tend
to be holistic representations of the input histograms. This is consistent with improved classification
performance - as the representation of basis distributionsgets more holistic, the moreunlike they
become when compared to bases of other classes. Thus, there is a lesser chance that the bases of
one class can compose an image in another class, thereby improving performance.

5 Conclusions

In this paper, we have presented an algorithm for sparse extraction of overcomplete sets of latent
distributions from histogram data. We have used entropy as ameasure of sparsity and employed
the entropic prior to manipulate the entropy of the estimated parameters. We showed that sparse-
overcomplete components can lead to an improved characterization of data and can be used in appli-
cations such as classification and inference of missing data. We believe further improved characteri-
zation may be achieved by the imposition of additional priors that represent known or hypothesized
structure in the data, and will be the focus of future research.
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