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Abstract

We present two complementary topic mod-
els to address the analysis of mixture data
lying on manifolds. First, we propose a
quantization method with an additional mid-
layer latent variable, which selects only data
points that best preserve the manifold struc-
ture of the input data. In order to address
the case of modeling all the in-between parts
of that manifold using this reduced repre-
sentation of the input, we introduce a new
model that provides a manifold-aware inter-
polation method. We demonstrate the ad-
vantages of these models with experiments
on the hand-written digit recognition and the
speech source separation tasks.

1. Introduction

Probabilistic topic models have been widely used for
various applications, such as text analysis (Hofmann,
1999b;a; Blei et al., 2003), recommendation systems
(Popescul et al., 2001), visual scene analysis (Cao
& Fei-Fei, 2007), and music transcription (Smaragdis
et al., 2006; Févotte et al., 2009). A common intu-
ition behind such models is that they seek a convex
hull that wraps the input M -dimensional data points
in the M − 1 dimensional simplex. The hull is defined
by the positions of its corners, also known as basis vec-
tors, whose linear combinations reconstruct the inputs
inside the hull.

Although these linear decomposition models provide
compact representations of the input by using the
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learned convex hull, an ambiguity exists: the hull loses
the data manifold structure as it redundantly includes
areas where no training data exist. This is problem-
atic especially when the input is a mixture of distinc-
tive data sets with heterogeneous manifolds. In this
case, the desirable outcome of this analysis is not only
to approximate the input, but to separate it into its
constituent parts, which we will refer to as sources. In
text these could be sets of topics, in signal processing
they could be independent source signals, etc.

Without knowing the nature of each source, the sep-
aration task is ill-defined. Hence, it is advantageous
to start with learned sets of basis vectors. Each set
approximates the training data of a particular source.
Figure 1 depicts a separation result using Probabilistic
Latent Semantic Indexing (PLSI) (Hofmann, 1999b;a).
In this example two data sets are modeled using their
four-cornered convex hulls (red and blue dashed poly-
topes) as computed by PLSI, respectively. Once con-
fronted with a new data point that is a linear mix-
ture of these two classes (black square) we can de-
compose it using the already-known models. As seen
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Figure 1. Separation using convex hulls of sources that are
learned from PLSI.
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Figure 2. Separation by sparse coding on all the training
data points.

in the simulation in the figure, the combination of
the learned convex hulls can jointly approximate that
mixture point very well (black circle), but estimates
for the two source points that constitute the mixture
(blue and red filled triangles) lie outside of the origi-
nal two manifolds, thereby providing poor separation
of sources. For instance, in the speech separation sce-
nario the separated speeches do not reflect the char-
acteristics of the sources while their mixture sounds a
lot like the mixed signal.

If we use all the overcomplete training samples as can-
didate topics and force them to be activated in a very
sparse way, it can be an alternative to the convex hull
representation (Smaragdis et al., 2009). Doing so we
can prevent reconstructions from being placed in areas
away from the data manifold. For instance, in Figure
2, only one training sample from each class partici-
pated as a topic in estimating the constituent sources.
Thus, the sparsity constraint can confine the source-
specific reconstructions to lie on the data manifolds.

In this paper, we propose two hierarchical topic mod-
els. First, a quantization method is used to reduce
the size of the overcomplete training data. Doing
so is important since the overcomplete representation
can often necessitate additional memory and compu-
tational resources to process larger number of parame-
ters. Quantizing the data helps minimize redundancy
in the data while retaining their expressive power.
To this end, we introduce an additional latent vari-
able that selects overcomplete candidate topics and
use them to replace the entire overcomplete bases.

Second, the sparse topic model cannot always pro-
duce good source estimates especially when the train-
ing data is not dense enough, or some important part
of the data is lost during the sampling procedure. To
handle this issue, we propose another middle-layer la-
tent variable, which is also dedicated to activate only

selected data points: groups of neighboring data points
of the current estimation of sources. That will result
in more manifold-preserving reconstructions.

2. Background: Topic Models and
Separation with Sparse Coding

2.1. Probabilistic Latent Semantic Indexing

Ordinary topic models, such as PLSI, take a matrix
as input, whose column vectors can be seen as obser-
vations with multiple entries, e.g. news articles with
finite set of words, sound spectra with frequency bin
energies, vectorized images with pixel positions, etc.
The goal of the analysis is to find out topics P (f |z)
and their mixing weights Pt(z) that best describe the
observations Xf,t as follows:

Xf,t ∼
∑
z

P (f |z)Pt(z), (1)

where t, f , and z are indices for observation vectors,
elements of a topic, and the latent variables, respec-
tively. The EM algorithm is common to estimate the
model parameters, and in this case this works by min-
imizing the sum of cross entropy between Xf,t and∑
z P (f |z)Pt(z) for all t:

E-step:

Pt(z|f) =
P (f |z)Pt(z)∑
z P (f |z)Pt(z)

M-step:

P (f |z) =

∑
tXf,tPt(z|f)∑
f,tXf,tPt(z|f)

, Pt(z) =

∑
f Xf,tPt(z|f)∑
f,zXf,tPt(z|f)

.

For example, in Figure 1, we can construct the convex
hull of source A by taking source A’s training data as
input XA

f,t and getting PA(f |z) as four corners of the
hull, which are designated by z. Pt(z) is the mixing
weight of z-th corner to reconstruct t-th input.

2.2. Sparse PLSI

The t-th data point of the mixture input XM
f,t is an

observation drawn from a multinomial distribution,
which is a convex sum of multiple sources s:

XM
f,t ∼

∑
s

Pt(f |s)Pt(s), (2)

where t-th source multinomial Pt(f |s), which corre-
sponds to the filled triangles in Figure 1 and 2, can be
further decomposed into combination of topics (cor-
ners) as in (1) by seeing Pt(f |s) as input:

Pt(f |s) ∼
∑
z

Ps(f |z)Pt(z|s). (3)



Manifold Preserving Hierarchical Topic Models for Quantization and Approximation

As discussed in the previous section, it is convenient
to pre-learn the source-specific topics, Ps(f |z). For in-
stance, if we learned several political topics as Ps1(f |z)
and medical topics as Ps2(f |z), respectively, we can re-
construct a news article about a medical bill in the
council. For a spectrum representing a mixture of
speech signals of two different people, we can recon-
struct it as a weighted sum of speaker-wise estimates
by using each individual’s sets of “topic” spectra. In
other words, a mixture input XM

f,t can require more
than one set of similar topics, as opposed to the tra-
ditional use of PLSI where the input is not a mixture
of multiple sources.

With the learned and fixed topics per each source
Ps(f |z), the rest of the separation analysis consists of
inferring global source weights Pt(s) and source-wise
reconstruction weights Pt(z|s) using EM:

E-step:

Pt(s, z|f) =
Pt(s)Pt(z|s)Ps(f |z)∑

s Pt(s)
∑
z∈z(s) Pt(z|s)Ps(f |z)

,

M-step:

Pt(z|s) =

∑
f X

M
f,tPt(s, z|f)∑

f,zX
M
f,tPt(s, z|f)

,

Pt(s) =

∑
f X

M
f,t

∑
z∈z(s) Pt(s, z|f)∑

f X
M
f,t

∑
s

∑
z∈z(s) Pt(s, z|f)

, (4)

where z(s) is a set of topic indices for source s.

The sparse PLSI model additionally assumes that the
weights Pt(z|s) and Pt(s) are sparse, so that the mix-
ture and source estimation in (2) and (3) try to use less
number of sources Pt(f |s) and topics Ps(f |z), respec-
tively. Furthermore, instead of using the corners of the
learned convex hull as topics, the sparse PLSI requires
the topics to be the source specific training data it-
self. Consequently, Pt(z|s) has weights on only a very
small portion of the training points as active topics.
These two properties result in a manifold-preserving
source estimate during the separation procedure. Ob-
viously this is a demanding operation as the training
data can be a large data set resulting in an unusually
high number of topics.

We will discuss about the way of employing sparsity
constraints in the EM algorithm more specifically in
Section 3.1.

3. The Proposed Hierarchical Topic
Models

Although the proposed extensions of PLSI have differ-
ent applications, both the manifold preserving quan-

tization and interpolation share some structural sim-
ilarity: an additional latent variable that weeds out
unneeded topics during the analysis.

Suppose that we have some observations Xf,t. We
might need to learn both P (f |z) and Pt(z) for training,
or can fix the provided Ps(f |z) and learn the encod-
ings only. In the proposed hierarchical models, we first
seek a more compact representation of P (f |z) by addi-
tionally decomposing them with a new latent variable
y as follows:

Xf,t ∼
∑
y

∑
z

P (f |z)P (z|y)Pt(y). (5)

Hence, we can say that the linear transformation of
topics,

∑
z P (f |z)P (z|y), is a selection process once

the selection parameters P (z|y) meet certain criteria.

3.1. Manifold Preserving Quantization

The goal of manifold preserving quantization is to rep-
resent the input data with smaller number of samples,
each of which can play as a representative topic that
well respects locality of the data. Usually, this quanti-
zation is to replace the overcomplete training data or
their convex hull with smaller number of representa-
tives on the manifold.

First of all, we use the input observation vectors Xf,t

as our topic multinomials P (f |z) in (5) as they are as
our topic multinomials as they are:

Xf,t ∼
∑
y

∑
t′

Xf,t′P (t′|y)Pt(y), (6)

where the new index t′ is surely for column vectors of
X as well, but introduced to distinguish from the ob-
servation indexing as they have a new usage, i.e. fixed
topics. And then, we assume the selection parameter
P (z|y) has a smaller number of values of y than that
of z, so that the selection procedure

∑
t′ Xf,t′P (t′|y)

produces less samples than the inputs1. Furthermore,
assumptions about sparsity of P (t′|y) and Pt(y) along
t′ and y axes, respectively, can let the learning results
respect the manifold structure. For the sparsest case,
assume that only t′-th element of P (t′|y) is one while
the others are zero. The only activation chooses an in-
put vector as y-th representative sample. After getting
the reduced number of topics P (f |y) like this another
sparsity constraint on y also forces each topic to repre-
sent as many surrounding inputs as possible by itself.

For the inference of the hierarchical latent variable
model, we follow the conventional EM approach, but

1Note that we get a trivial solution when we set the
same number of y as t′, i.e. P (t′|y) and Pt(y) being identity
matrices.
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for each layer sequentially. However, for this particular
quantization model, we can skip the first layer EM as
the topical parameter P (f |z) is substituted and fixed
with the input vectors Xf,t′ , and the other parameter
Pt(t

′) can be trivially reconstructed with the second
layer parameters, Pt(t

′) =
∑
y P (t′|y)Pt(y).

The second layer expected complete data log-
likelihood 〈L〉 for y is:

〈L〉 =
∑
f,t,t′,y

Xf,tPt(t
′, y|f)

{
lnP (t′|y) + lnPt(y)

}
+ γ1

∑
t′

φt′ lnP (t′|y) + γ2
∑
y

θy lnPt(y)

+ λ1{1−
∑
t′

P (t′|y)}+ λ2{1−
∑
y

Pt(y)}

+ Constants, (7)

where Lagrange multipliers λ1 and λ2 for ensur-
ing parameters to sum to one are straightforward.
The sparsity constraint terms γ1

∑
t′ φt′ lnP (t′|y) and

γ2
∑
y θy lnPt(y) are from Dirichlet priors with sparse

parameters φ and θ, and γ1 and γ2 control the contri-
bution of the sparsity terms in the objective function.
One way to introduce sparsity to the Dirichlet hyper
parameters is to substitute them with raised parame-
ters,

φt′ = P (t′|y)α, θy = Pt(y)β

where α and β are some values bigger than 1, and
parameters are the estimations from the previous EM
iterations. This sparse priors can be intuitively un-
derstood, because, for instance, the L2 norm (when
α = β = 2) of a p.d.f. is maximized when only one
value of the variable has probability 1 while the others
are 0. Generally, basing on the fact that the param-
eters have the same L1 norm, α and β bigger than 1
can make the parameters sparser.

The second layer E-step for y is:

Pt(y, t
′|f) =

Xf,t′P (t′|y)Pt(y)∑
t′ Xf,t′

∑
y P (t′|y)Pt(y)

.

In the second layer M-step we find the solutions that
make the partial derivatives of 〈L〉 zero, which in turn
become update rules as follow:

P (t′|y) =

∑
f,tXf,tPt(t

′, y|f) + γ1P (t′|y)α∑
f,t,t′ Xf,tPt(t′, y|f) + γ1P (t′|y)α

,

Pt(y) =

∑
f,t′ Xf,tPt(t

′, y|f) + γ2Pt(y)β∑
f,t′,yXf,tPt(t′, y|f) + γ2Pt(y)β

. (8)
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Figure 3. The repeatedly (20 times) sampled 4 bases
P (f |y) on an ε shaped manifold with (a) random sampling
(b) proposed sampling.
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Figure 4. The repeatedly (20 times) sampled 5 bases
P (f |y) on a ε shaped manifold with (a) random sampling
(b) proposed sampling.

Note that the hyper parameters are replaced at every
iteration with the raised previous estimations.

Figure 3 shows the sampling results on ε-shaped mani-
fold. The input exhibits a lower number of data points
on the wings as opposed to a higher concentration in
the middle. Figure 3 (a) shows the 80 random sam-
ples, which consist of four samples that are repetitively
drawn 20 times. From the random sampling result
(blue squares), we observe that it is very possible to
have the all four samples from the center, where the
population is highest, but rarely from the wings.

On the other hand, in Figure 3 (b) with the pro-
posed quantization, the four representatives (black di-
amonds) tend to lie on the two elbows and the two
tips, which crucially explain the manifold. They can
at least form a c-shape by ignoring the kink while näıve
four samples all from the populous central kink give no
shape information. Note that only three out of 80 are
sampled from the center using the proposed quantiza-
tion.
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However, it is obvious that the fifth sample should be
from the kink to complete the full ε-manifold. Figure
4 (b) gives the desired result where the fifth sample
successfully represents the central kink, while in Figure
4 (a) the randomly sampled five do not provide such a
well-structured quantization results.

 

 

Original Overcomplete Data

Mixture

Source #1

Estimated Source #2

Neighboring Samples

Non−Neighboring Samples

Reconstructed Mixture
with Manifold Interpolation

Reconstructed Mixture
with Sparse PLSI

Figure 5. An illustration about the drawback of coupling
manifold quantization and the sparse PLSI method. The
proposed interpolation method resolves the issue by a local
linear combination of samples.

3.2. Manifold Preserving Interpolation

Although the proposed manifold preserving quantiza-
tion provides a compact representation, the original
data points that were in-between those samples might
not be modeled as accurately as with the overcomplete
data plus sparse PLSI case. Moreover, it is also pos-
sible that the original training data might not be as
dense in the first place.

Figure 5 describes this situation. Let us assume that
we discarded all data points (pink circles) after quan-
tizing them with only five samples (filled or empty di-
amonds). Given a mixture point (blue cross) and an
already estimated source #1 for simplicity, the goal of
the sparse PLSI is to select the best one out of the
five samples, which eventually reconstructs the mix-
ture with the reverse triangle. On the other hand,
the proposed manifold preserving interpolation seeks
a linear combination of neighboring samples (filled di-
amonds), which provides an interpolation for the miss-
ing data between the samples (blue star). Note that
the estimation of mixture with this approach (trian-
gle) is closer to the input mixture than that from the
quantization only.

We start from the same hierarchical topic model in-
troduced in (5). For the t-th mixture vector Xf,t the
goal is to reconstruct it by combining a few neighbors:

Xf,t ∼
∑
s

∑
z∈N s

t

Ps(f |z)Pt(z|s)Pt(s),

where s indicates the sources and N s
t is the set of

neighboring samples of s-th source estimation for t-th
input (the filled diamonds in Figure 5). The selec-
tion parameter Pt(z|s) now has the index t to provide
weights for each set of neighbors per an input as in
(Roweis & Saul, 2000). On the contrary to the previ-
ous quantization method, Ps(f |z) is fixed to hold ei-
ther the overcomplete training data or quantized sam-
ples of source s as a set of topics.

Similarly to the previous derivation, we also skip the
first layer EM, since Ps(f |z) is fixed, and marginaliza-
tion of the second layer variable s is trivial.

The second layer complete data log-likelihood for t-th
input 〈Lt〉 is defined as follows:

〈Lt〉 =
∑
f,z,s

Xf,tPt(z, s|f)
{

lnPt(z|s) + lnPt(s)
}

+ λ1{1−
∑
z

Pt(z|s)}+ λ2{1−
∑
s

Pt(s)}

+ Constants, (9)

where λ1 and λ2 are Lagrange multipliers for the sum
to one constraint as usual. We get the posterior prob-
abilities Pt(s, z|f) from the second layer E-step:

Pt(s, z|f) =
Ps(f |z)Pt(z|s)Pt(s)∑

s Pt(s)
∑
z∈N s

t
Ps(f |z)Pt(z|s)

. (10)

In the M-step, we find the parameters that maximize
〈Lt〉 as follows:

Pt(z|s) =

∑
f Xf,tPt(s, z|f)∑
f,zXf,tPt(s, z|f)

,

Pt(s) =

∑
f Xf,t

∑
z∈N s

t
Pt(s, z|f)∑

f Xf,t

∑
s

∑
z∈N s

t
Pt(s, z|f)

. (11)

It is obvious that the update rules of the proposed
interpolation method eventually become analogous to
those of sparse PLSI in (4), but the difference of defin-
ing the selection parameter Pt(z|s) makes the proposed
method behave uniquely. Instead of imposing spar-
sity on the completely defined parameter Pt(z|s) for
all z indices, the neighbor set N s

t lets the procedure
focus only on the current neighbors. In other words,
Pt(z|s) is not smooth as it is zero for z /∈ N s

t , and so is
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Pt(s, z|f) for z /∈ N s
t in the M-step, consequently. The

smaller the number of neighbors is, the more local the
reconstruction is. Likewise, in the proposed interpo-
lation model sparse coding is achieved by finding run-
ning neighbors at every iteration, which are K-nearest
samples from the current estimation of each source for
t-th input, Pt(f |s) =

∑
z∈N s

t
Ps(f |z)Pt(z|s):

N s
t =

{
zk : E

[
Ps(f |zk)

∥∥Pt(f |s)]
< E

[
Ps(f |z′ /∈ N s

t )
∥∥Pt(f |s)]}, (12)

where the integer index 1 ≤ k ≤ K, and z′ indicates
all the possible topics. E [A‖B] can be any divergence
measure, but we use cross entropy, which is a natural
choice in the simplex domain,

E [A‖B] = −
∑
i

Ai logBi. (13)

(a) (b)

Figure 6. Comparison of probabilistic topics and manifold
preserving samples. (a) 44 basis topic multinomials learned
from ordinary PLSI. (b) 44 manifold samples drawn from
the proposed quantization.

3.3. Computational Complexities

Each EM iteration for a mixture vector XM
t of the

sparse PLSI model (4) runs in time O(SFZ), where
S, F , and Z, stand for the number of sources, fea-
tures, and topics. Therefore, reducing Z to a small
set of manifold samples rZ with sampling rate r < 1
can mitigate the computational cost of the separation
procedure. The quantization can be done beforehand,
so its complexity is negligible.

The interpolation method can further reduce rZ to
the size of neighbors K. Finding neighbors using
(12), which is a sorting operation with O(rZ log rZ),
is usually a lot less complex than O(SFrZ) with small
sampling rate r. However, since calculating the error
function (13) requires additional O(SFrZ), the com-
plexity of the manifold interpolation is O(SFrZ), not
O(SFK).

4. Empirical Results

4.1. Quantization of Hand-written Digits

The first experiment is to show the behavior of the
quantization model at a sampling rate is 5% – 44 sam-
ples out of 876 images of hand-written digit, “8”, from
MNIST dataset (LeCun et al., 1998). For the compar-
ison, we learned the same number of ordinary PLSI
topics, which are the corners of the convex hull that
wraps the images in the digit “8” class.

Figure 6 presents the results. As we can expect, and
reported in (Lee & Seung, 1999), ordinary topic mod-
els without the concept of sparsity give a parts-based
representations of the data, which can be seen as build-
ing blocks to be additively combined to reconstruct
the input data. It is intuitive as the corners of the
convex hull that surround the data points would be
more likely to be near the margins, edges, or corners
of the simplex, where more elements are suppressed
than around the middle of the simplex, so that only
several entries of the topic are activated. That is why
we see some strokes of the digit “8” in Figure 6 (a)
rather than holistic representations.

Although the parts-based representation encourages
the model to flexibly combine the topical bases, care-
fully quantized samples can be better representatives
of the data, especially when the original data points
lie on high-dimensional manifolds. Figure 6 (b) clearly
shows the difference of the proposed sampling method
from the results in (a). If we use the samples as the
topics of sparse PLSI, which would be sparsely acti-
vated to recover unseen inputs, the model can confine
the estimation in the manifold of the training data.

4.2. Interpolation for Classifying Handwritten
Digits

If the quantization is successful, it can be used instead
of the whole training dataset or its convex hull. In this
section we employ the proposed manifold interpolation
method to recover the missing data between neighbor-
ing samples. First, given the 10 digit groups we do
classification with 10-fold cross validation. Each class
has around 1,000 images. We learn manifold samples
from each class at different sampling rates with pa-
rameters set to: α = β = 1.2 and γ1 = γ2 = 0.001.
For a test handwritten digit, we reconstruct it using
the proposed manifold preserving interpolation with
several pre-defined number of neighbors2. Therefore,

2Note that in this case we assume the test input is not a
mixture of multiple classes. Hence, we do the EM updates
and decision of neighbors for each class separately by fixing
s in (10), (11), and (12).
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the class, where the test vector is best approximated
in terms of cross entropy, is assigned as the estimated
class label.

For the comparison, we also conducted a K-Nearest
Neighbor (KNN) classification, which uses cross en-
tropy as its divergence measure. During KNN clas-
sification, we also consider manifold samples as our
training data. For instance, the bars in the back in
Figure 7 (a) is the case of 100% sampling rate, where
we do the ordinary KNN with the whole training data.
We can first check that the proposed quantization per-
forms better than or comparable to (88.2% at sampling
rate 1%) the case of using whole data (less than 85%)
if we carefully set the number of neighbors.

However, with interpolation we can generally get bet-
ter classification accuracy, which ranges between 90 to
95% as in Figure 7 (b). Furthermore, we can also re-
solve the issue of sensitivity to the number of neighbors
at the low sampling rates by tying up the neighboring
samples to reconstruct the input rather than choosing
the best one from here and there. Note that there are
cases when the number of neighbors is bigger than that
of samples (front-left bars with zero height).

4.3. Quantization of Speech Signals

We further discuss the advantage of the proposed
quantization by using speech signals. In this exper-
iment a female speaker is selected from TIMIT speech
corpus (Garofolo et al., 1993). Spectrums of a concate-
nated nine spoken sentences, each of which is 2 to 3
seconds-long, are used as overcomplete training data.
The concatenated training signals are converted into
the matrix forms, i.e. spectrograms, by using mag-
nitudes of short-time Fourier transform, with 64 ms
window size and 32 ms overlaps. Therefore, the train-
ing matrix consists of 832 spectra (column vectors),
each of which has 513 frequency elements. Now we
use the spectrogram matrix X as input vectors to the
manifold preserving quantization system. Moreover,
we use X as the parameter P (f |z) as they are, and fix
them during the process.

Figure 8 shows the sum of the reconstruction errors in
terms of cross entropy for the three different systems
at seven different sampling rates. For example, when
the sampling rate equals to 1%, the number of sam-
ples is 8 ≈ 0.01×832. The proposed method produces
the samples as a form of sparse linear combination of
the whole training points using the selection param-
eter,

∑
t′ Xf,t′P (t′|y), but provides reconstructions of

the input X at the same time as in (6). For the pa-
rameters, α, β, γ1, and γ2, we once again use the same
values as in Section 4.2. We also randomly choose the
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Figure 7. Handwritten digits classification results with (a)
KNN and (b) the proposed interpolation method.
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Figure 8. Sum of cross entropy between inputs and the re-
constructions from the proposed quantization, oracle ran-
dom samples, and ordinary PLSI.

same number of samples for comparison. After the
random sampling, we use the closest sample for each
input column as an oracle reconstruction. Lastly, or-
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dinary PLSI learns same number of topics with the
samples. As this is not an experiment for the sepa-
ration, PLSI’s convex hull covers the largest area, so
that it provides the best possible reconstruction among
the three systems. Note that PLSI does not work well
as such, if the inputs are mixture of more than two
sources (speakers) as shown in Figure 1. Experiments
are repeated 10 times to average out the variance of
sampling results.

In the figure, the proposed sampling method can pro-
vide representative samples, which recovers input vec-
tors better than the manually chosen closest random
samples. All the three methods provide better rep-
resentation (less cross entropy) as the sampling rate
increases, but the proposed sampling provides good
performance at low sampling rates, which are better
than those of oracle random samples. Also, its results
are generally comparable to PLSI topics, which basi-
cally can recover the whole convex hull.

4.4. Separation of Crosstalk Using
Interpolation

We introduce additional male speaker to build up the
crosstalk cancellation problem, on top of the speech
from the female speaker. One sentence per a speaker
is picked up, and then mixed up. We learn manifold
samples at various sampling rates from the spectra of
other 9 training sentences of each speaker. They play
the role of two sets of pre-learned topics Ps=female(f |z)
and Ps=male(f |z). After the EM updates in (10) and
(11) plus the neighborhood search (12), we get the
converged posterior probabilities Pt(s, z|f), where z is
marginalized out to finally get the source-specific pos-
terior probabilities Pt(s|f). For the given t-th input
mixture XM

f,t, the source s can be recovered by mul-

tiplying the resulted posterior, XM
f,tPt(s|f), and then

converting back to the time domain.
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Figure 9. SIR of the crosstalk cancellation results with the
proposed quantization and interpolation method compared
with random sampling, sparse PLSI, and ordinary PLSI.

Figure 9 shows the separation performance in terms
of Signal-to-Interference Ratio (SIR) (Vincent et al.,
2006), whose value is zero when the energies of inter-
fering source and the recovered source are same, and
can be infinity if the source estimation is perfect. All
the algorithms were iterated 100 times. First of all,
we use standard PLSI by using the concept in 2.2, but
without the sparsity constraint. We set the number of
topics, i.e. the corners of PLSI convex hulls, to match
the sampling rate. In the shown figure (the right most
bars), we can see that PLSI does not give good results
with many topics, but its performance is the best (7.0
dB) at around 5% sampling rates (42 topics). On the
contrary, sparsity constraints improve the results by
around 1 dB (the second and third rightmost bars). It
is also noticeable that manifold samples that are only
5% of the entire training data provide almost same
separation performance, while random samples start
to lost representativeness below 50%.

Both random and manifold samples along with the
interpolation techniques further enhance the sparse
PLSI results. However, it is also observed that mani-
fold preserving samples are better than random sam-
ples at lower sampling rates when they are coupled
with interpolation (three frontal bars of manifold in-
terpolation cases). Although as the sampling rate
gets higher the merit of manifold sampling vanishes,
manifold-preserving interpolation plays a role for the
better separation performances (up to about 9.5dB)
than both ordinary and sparse PLSI.

5. Conclusion

In this work we proposed a manifold preserving quan-
tization method. By adding a latent variable to the
common probabilistic topic model for selecting rep-
resentatives of overcomplete input, and trying to re-
duce the reconstruction error at the same time, the
method could give better way of compressing the high-
dimensional overcomplete data. We showed that the
manifold quantization can replace the whole dataset
with acceptable loss of approximation power, but with
better image classification and speech separation per-
formances compared with existing topic models. On
top of that, another model with the explicit neighbor-
hood selection is proposed to compensate the quan-
tization error. This local interpolation technique fur-
ther improve the classification and separation results
whether it is applied to the sampled data or the orig-
inal entire observations that sometimes does not fully
contain the manifold structure of the data.
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