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ABSTRACT
This paper presents a single channel source separation method
based on an extension of Nonnegative Matrix Factorization
(NMF) algorithm by smoothing the original posterior prob-
abilities with an additional Markov Random Fields (MRF)
structure. Our method is based on the alternative interpreta-
tion of NMF with β-divergence as latent variable models. By
doing so, we can redefine NMF-based separation procedure
as a Bayesian labeling problem where each label stands for
the mask for a specific source. This understanding leads us to
intervene in the calculation of posterior probabilities, so that
the priors from MRF’s neighboring structure can smooth out
isolated masking values that have different labeling results
from their neighbors. Experiments on several dictionary-
based source separation tasks show sensible performance
gains.

Index Terms— Markov Random Fields, Nonnegative
Matrix Factorization, Probabilistic Latent Component Analy-
sis, Probabilistic Latent Semantic Indexing, Informed Source
Separation

1. INTRODUCTION

Nonnegative Matrix Factorization (NMF) [1, 2] has been
widely used to analyze magnitude or power spectrograms
to reveal underlying latent components of the input audio
signals. Its parts-based representation gives intuitive analy-
sis results for music signals [3], where each latent variable
corresponds to a note. The NMF-based music transcrip-
tion task also initiated audio source separation works based
on spectrogram decomposition using NMF, such as NMF
with additional temporal continuity of sources and sparse-
ness constraints [4], speech enhancement using source and
noise statistics [5], drum source separation with Nonnegative
Matrix Partial Co-Factorization (NMPCF) [6], etc.

Most of those separation algorithms eventually use the
NMF results to calculate the posterior probabilities of latent
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variables given the time-frequency observation, so that they
are multiplied to the mixture spectrogram as a soft mask such
as in Wiener filtering. Therefore, it is straightforward to re-
gard the NMF’s multiplicative update rules as an EM-like al-
gorithm once they are using the family of β-divergence [7, 8]
to measure the error between the input and the reconstruc-
tion. In this way we do not have to change the multiplicative
updates, but can reformulate the system to be readily harmo-
nized with MRF structures.

Although there have been a lot of effort to regularize NMF
with some amount of prior information, such as modeling
temporal dependencies using a Kalman-like prediction [9],
harmonic-temporal clustering [10], nonngeative factorial hid-
den Markov models [11], etc, each specific variant requires a
particular inference method that hinders generalization.

However, as underdetermined source separation problems
wind up seeking a proper masking of mixture spectrograms,
we can consider the NMF-based single channel spectrogram
masking as a Bayesian labeling problem, too. It is impor-
tant to extract posterior probabilities from NMF’s ordinary
multiplicative update rules, because then we can conveniently
take our prior knowledge about the latent components into ac-
count.

Based on the previous masking-based source separation
method in [12], binaural cues, such as Interchannel Level
Differences (ILD), of multi-channel inputs can be tackled by
this kind of clustering approach, too. In [13], Markov Ran-
dom Fields (MRF) was successfully harmonized into the ILD
clustering problem, so that the neighboring structure of latent
variables can be involved into the process in a controlled man-
ner. As shown in many computer vision tasks, such as image
denoising, segmentation, and stereo matching, MRF can pro-
vide standardized way to communicate with locally relevant
labeling results and smooth out the results.

The system in [13], however, deals with ILD features as
its input that limits its application to the cases where more
than one mixture signals are available. The proposed smooth
NMF in this paper also harmonizes the MRF structure into the
source separation problem, but now considers a single mag-
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nitude spectrogram as the input matrix. At the same time, the
input matrix is decomposed with the help of NMF in place of
Gaussian mixture models underlying the referred multichan-
nel work.

In this paper, we first briefly introduce NMF and MRF
in section 2, and then reformulate the NMF algorithm as a
Bayesian labeling problem in section 3 to derive the proposed
smooth NMF, which is defined by a new Maximum A Pos-
teriori (MAP) estimation approach with MRF’s smoothness
costs. We compare the smooth NMF with conventional one
in terms of single channel convolutive source separation per-
formances on a few mixtures with different types of interfer-
ences in section 4. Section 5 concludes the work.

2. BACKGROUND

2.1. NMF with β-divergence

NMF takes a nonnegative matrix V ∈ RM×N+ as input and
tries to approximate it with a pair of factor matrices W ∈
RM×R+ and H ∈ RR×N+ , where the set R+ stands for non-
negative real numbers, and R is for the number of latent com-
ponents [1, 2]. A generalized way to measure the approxima-
tion error between the input V and the reconstruction WH =∑R

z=1 wzhz can be the β-divergence, which is defined by

Dβ(x|y) =


xβ+(β−1)yβ−βxyβ−1

β(β−1) β ∈ R\{0, 1}
x(log x− log y) + (y − x) β = 1
x
y − log x

y − 1 β = 0

(1)
for any pair of elements x and y in the input and the re-
construction, respectively. Note that (1) reduces to Frobe-
nius norm, unnormalized Kullback-Leibler divergence, and
Itakura-Saito divergence [14] when β equals to 2, 1, and 0,
respectively. Therefore, the objective function of NMF can
be defined as follows:

Jβ = Dβ
(
V
∣∣∣ R∑
z=1

wzhz

)
. (2)

Using the fact that the derivative of the Dβ(x|y) with respect
to y is

∂Dβ(x|y)
∂y

= yβ−2(y − x), (3)

we can calculate the derivatives of the objective function (2)
as follows:

∂Jβ
∂wz

=
{
(WH)(β−2) � (WH−V)

}
h>z ,

∂Jβ
∂hz

= w>z
{
(WH)(β−2) � (WH−V)

}
, (4)

where � is for Hadamard products and exponentiations are
carried in the element-wise manner as well.

We can derive the multiplicative update rules of NMF by
selecting the step size of the gradient descent method in such
a way that it turns the update into a multiplicative form. An al-
ternative view of this process is to simply choose the negative
and positive terms of the derivative as the numerator and the
denominator, respectively, which in turn produces following
update rules:

wz ← wz �

{
(WH)(β−2) �V

}
h>z

(WH)(β−1)h>z
,

hz ← hz �
w>z
{
(WH)(β−2) �V

}
w>z (WH)(β−1)

. (5)

2.2. Single-channel source separation using NMF

With some training signals from clean sources, we can learn
the bases in advance and fix them to learn their activations
only in the mixture. By using the update rules (5) we can learn
the desired source’ and interference’ spectrum bases Ws ∈
RM×R

s

+ and Wn ∈ RM×R
n

+ , respectively, from the training
signals that contain either the source or interference. Now
that we have fixed basis vectors from two training signals, we
can use them to separate mixture of unseen signals V, but
of the same kind of sources and interferences. Usually the
number of components Rs and Rn are unknown, so we need
to heuristically guess or investigate them as in [15].

In the separation step, we define the fixed W = [Ws,Wn],
and the number of component R = Rs + Rn. Then, the
activation matrix H we get by using (5), but skipping the
update for wz, consists of two source groups, hz∈{1:Rs} and
hz∈{Rs+1:R}. Therefore, the desired source spectrogram
can be separated from the mixture by masking the mixture
spectrogram V with the proportion of the corresponding
components in the total reconstruction as follows:

V ≈ V �
∑Rs

z=1 wzhz

WH
+V �

∑R
z=Rs+1 wzhz

WH
= V �Pz∈{1:Rs} +V �Pz∈{Rs+1:R}. (6)

A soft mask matrix for a particular component z can be seen
as posterior probabilities Pz = P (z|V) of the latent vari-
able z given the observed input magnitude spectrogram V.
However, note that the masks for the two groups of com-
ponents, Pz∈{1:Rs} and Pz∈{Rs+1:R}, are actually sums of
component-wise masks:

Pz∈{1:Rs} =
Rs∑
z=1

Pz, Pz∈{Rs+1:R} =
R∑

z=Rs+1

Pz. (7)

2.3. MRF for clustering

As undirected graphical models, MRF try to model the ob-
servations with two sets of relationships: edge potentials be-



tween latent variables and node potentials between latent vari-
ables and observations. Any clustering problem with class la-
bels as a latent variable can be represented with MRF if we
have proper prior knowledge among local pixels’ labels. It
is often convenient to use these concepts for processing grid
structured data, e.g. digital images and Short-Time Fourier
Transformed (STFT) signals.

Figure 1 represents an MRF structure that assumes simi-
larity between a node and its four surrounding neighbors. The
circled nodes of the MRF correspond to a set of R labels that
make up the mask we seek to find while the filled squares Vf,t

stand for deterministic observed pixel values. As aforemen-
tioned, each node is linked to its observation with a node po-
tential φ(zf,t,Vf,t) and to its neighbors zk,l with edge poten-
tials φ(zf,t, zk,l), where (k, l) indexes the neighboring pixels
of (f, t)-th pixel, Nf,t.

Therefore, the clustering problem boils down to a MAP
estimation where we minimize the posterior probabilities
of getting zf,t given the observation and knowing about its
neighbors:

P (z|V) ∝
∏
f,t

P (Vf,t|zf,t)
∏

k,l∈Nf,t
P (zf,t|zk,l) (8)

=
1

Z

∏
f,t

φ(zf,t,Vf,t)
∏

k,l∈Nf,t
φ(zf,t, zk,l),

where Z is to normalize the unnormalized probabilities φ.

MRFs are different from each other by how we define the
potentials and neighbors. For instance, they reduce to a Gaus-
sian mixture model when we define a Gaussian generative
model per a component for P (Vf,t|zf,t) without additional
smoothing.

V f,tW H

zf,t

zf+1,t

zf�1,t

zf,t+1zf,t�1

Fig. 1. The proposed pairwise MRF structure with four neigh-
bors and W and H as deterministic parameters.

3. NMF AS A BAYESIAN LABELING PROBLEM

NMFs can have different generative models depending on
their assumption about the divergence measure. For example,
Poisson distributions when β = 1 [16] and complex Gaus-
sians [14] when β = 0 are known underlying distributions. In
this paper, we adopt W and H as deterministic parameters of
node potentials (solid circles in Figure 1). As pointed out in
[14] the Wiener filtering-like posterior probabilities that are
common in audio community, such as Pz in (6), do not al-
ways match with the underlying generative models that vary
with β. However, it is also true that the representation works
like a mask in practice and generally shows good separation
performances.

By using this insight, we stick to use the Pz representation
as our posterior. Then, we can rearrange the NMF update
rules into an EM-like ones. First, we explicitly calculate the
posterior probabilities Pz (E-step), and then plug it into the
parameter update rules (M-step) as follow:

Pz ←
wzhz

WH
, (9)

wz ←

{
(WH)(β−1) �V �Pz

}
1N×1

(WH)(β−1)h>z
, (10)

hz ←
11×M

{
(WH)(β−1) �V �Pz

}
w>z (WH)(β−1)

. (11)

Note that these update rules are equivalent to those of
Probabilistic Latent Component Analysis (PLCA) [17] when
we set β = 1 and with proper normalizations.

If we ignore edge potentials that are needed for the MRF
structure for now, the calculation of posterior probabilities Pz

can be thought of as a special case of (8), where the node
potential φ(Vf,t, zf,t) is defined by

φ(Vf,t, zf,t = z) = wz(f)hz(t), (12)

which needs to be normalized by
∑R

z=1 wz(f)hz(t) as pos-
terior probabilities.

3.1. Smooth NMF

If we want to smooth the posterior probabilities with the con-
cept of MRF, we need to define its neighbor structure and
edge potentials in between them. Suppose that we are using
simple four neighbors as in Figure 1. We define the edge po-
tential with a simple Gaussian-like relationship as follows:

φ(zf,t, zk,l) = e−
{
f(zf,t,zk,l)

}2
/σ2
N , (13)

where σ2
N is a pre-defined variance. The distance function

f sets the distance of two latent variable values in the same
source group 0, and 1 otherwise, as follows:

f(zf,t, zk,l) =

{
0 if zf,t, zk,l ∈ Si
1 otherwise , (14)
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Fig. 2. The mixing environment

where the subset Si holds indices of components that belong
to i-th source. For instance, in the single channel source sep-
aration problem discussed in section 2.2, the R = Rs + Rn

components can be divided into two exclusive subsets S1 and
S2, which represent the indices for the main source s and the
interference n, respectively. As an extreme case, we could al-
low each value of latent variable z can solely define a subset,
too, so that the number of subset equals to the that of compo-
nents.

In the proposed separation system, we adopt the for-
mer relaxed definition of “agreement between neighbors” as
the straightforward full relationships between all the latent
components z = {1, · · · , R} are often over-specific when it
comes to tens of components per a source.

With some estimation of parameters W and H from the
previous iteration, the E-step of smooth NMF that substitutes
(9) is now defined as follow:

max
z

Pz = max
z

1

Z

∏
f,t

φ(Vf,t, zf,t)
∏

k,l∈Nf,t
φ(zf,t, zk,l)

= max
z

1

Z

∏
f,t

wz(f)hz(t)
∏

k,l∈Nf,t
φ(zf,t, zk,l),

(15)

where the second equation comes from our assumption about
the node potentials in (12) and edge potentials in (13).

The new E-step now requires an inference algorithm as
the change for a pixel should be propagated to the other nodes.
Among many well-known inference algorithms, for instance,
this labeling problem can be understood as a hard decision
procedure to assign posterior probability 1 to the most prob-
able component at a pixel if we use a certain inference al-
gorithms, such as graph cuts. Otherwise, we can say that
the edge potential adjust the current posterior probabilities at
(f, t) a little bit to encourage them to be similar to its neigh-
bors’ current posterior probabilities. Followed by a proper
normalization subject to z, now the rest of the process is to

update the parameters wz and hz using (10) and (11).
In particular, we use Gibbs sampling to solve the MAP

problem in the E-step. It is however not confined to use a
specific inference algorithm. Instead, we can use any other
graphical model inference algorithms to meet the application-
specific needs, and it is an advantage of using MRF.

4. EXPERIMENTAL RESULTS

The proposed smooth NMFs is compared with ordinary
NMFs in terms of the speech source separation performance.
Figure 2 illustrates the room simulation environment with
only one microphone in the middle, which captures both
the reverberant speech source s and the interference n. It
is assumed that the surface of the walls absorbs 50% of the
incoming sound waves.

On top of a female speech from TIMIT dataset [18] as the
desired source to be enhanced, we add five different kinds of
interferences to it: a Gaussian white noise, a babble noise, a
factory noise, a traffic noise, and a male speech. The reverber-
ant mixture signal with the 16kHz sampling rate is converted
into STFT domain with 1024 points window with 50% over-
lap to construct the input magnitude spectrogram.

We priorly learn 50 and 30 bases respectively from clean
speech signals of the same speaker and the same kind of in-
terferences to fix Ws and Wn during the updates. Therefore,
there are four different sets of fixed W’s to cover three dif-
ferent choices of β = {0, 1, 2} plus PLCA. During separation
we infer the posterior probabilities using (15) instead of (9),
skip (10), and update hz using (11) at every iteration.

Figure 3 shows the results when input mixture is −6 dB,
which means that n is a lot louder than s. The Signal-to-
Interference Ratio (SIR) improvements show that the pro-
posed MRF structure further enhances the plain NMF-based
system almost always except the marginal improvement in
the traffic noise case with β = 2 (compare the third and forth
bars of each group at every setting of β).

After considering the artifacts that are added during sepa-
ration procedures the SDR improvements are usually smaller
than SIR. However, we can still observe that the proposed
MRF structure provides better SDR numbers than NMF only
(compare the first and second bars).

We can check the separation results on the same kinds of
mixtures, but with different input mixture SDR in Figure 4.
In this second experiment we use 0 dB input where the fe-
male speech and the interferences have roughly same amount
of energy. First of all, we can see that both NMF and the
smooth NMF do their jobs as well, because the improvement
bars are positive. In the meantime the merit of introducing
MRF structure is mitigated a little especially in the case of
the traffic noise with β = 2. Yet, the proposed method gener-
ally outperforms the ordinary NMF.
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Fig. 3. Average SDR and SIR Improvements of -6 dB input mixture with 5 different random parameter initializations.
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Fig. 4. Average SDR and SIR Improvements of 0 dB input mixture with 5 different random parameter initializations.



5. CONCLUSION

In this paper we provided a harmonization of MRF and NMF
based on the understanding of NMF as a Bayesian labeling
problem. By isolating the posterior probabilities as such, we
can intervene in the calculation in order to make sure the la-
bels are locally associated. The remainder of the NMF update
rules can be seen as parameter update procedures that are as-
sumed to be fixed during the MRF inference as an E-step. We
checked that the proposed smoothing on NMF could improve
the separation results for several different kinds of mixtures.

In the future, we plan to elaborate the proposed model
with more audio and speech-centric knowledge. For instance,
instead of the four simple neighbors, more complicated neigh-
bor sets that can cover harmonics structure could maximize
the benefit of MRF structures. Furthermore, it is also promis-
ing that some of the MRF inference algorithms are ready to
be parallelized and then can be accelerated by custom hard-
wares.
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