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Abstract

This paper presents a collaborative audio enhancement system that aims to re-
cover a high-quality recording from multiple low-quality recordings provided by
the crowd attending the same event. We see this procedure as a crowdsourcing ex-
ample, because neither an automated system nor a set of crowdsourced recordings
cannot easily replace a professionally processed manual audio recording, which
is expensive and not always available. We do the job in the context where each
recording is uniquely corrupted by different frequency responses of microphones,
audio coding algorithms, interferences, noise, etc. To this end, we adopt a method
of simultaneous probabilistic topic modeling on synchronized inputs, called Prob-
abilistic Latent Component Sharing (PLCS). In PLCS, some of the parameters
are fixed to be same during and after the learning process to capture the common
audio content while the rest model unwanted recording-specific interferences and
artifacts. The main contribution of the paper is that we speed up the EM-based
PLCS parameter estimation process by incorporating Winner-Takes-All (WTA)
hashing so that the update can be performed with fewer selective observations
rather than the whole. Therefore, we can deal with a bigger set of recordings more
efficiently. Experiments on music signals with various artifacts show that the pro-
posed method provides with sensible speed-up with no degrade of audio quality
compared with the comprehensive PLCS model.

1 Introduction

Because of widespread use of hand-held devices, we often find many overlapping recordings of an
audio scene. Our goal in this paper is to efficiently utilize these low cost noisy data by extracting
common audio sources from them so as to produce a higher quality rendering of the recorded event
in a fast enough way. Hence, it can be seen as a collaborative approach to audio enhancement
sharing some similar concepts with crowdsourcing methods [1, 2]. The first step towards unifying
these recordings is to synchronize them, something we can easily achieve using one of the efficient
and robust synchronization methods proposed in the past [3, 4]. Once this is done, one could simply
use the best available recording at any point in time, assuming there is an automated way of quality-
ranking the signals. This can be the simplest implementation of collaborative audio enhancement,
where we can take advantage of other people’s recordings to improve ours. However, such simple
reasoning does not work for many common cases. Figure 1 shows a case where the obvious approach
might fail. Between the two synchronized recordings, we cannot simply choose one because both
are deficient, albeit in a different way. The bottom recording has a poor high frequency response,
which could be the effect of a low-cost microphone or aggressive audio coding. On the other hand,
the full bandwidth recording at the top has some interference in the 3 – 4.3 second region, which is
however not present in the bottom one.
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Figure 1: An example of a difficult scenario, when
a synchronization and selection method can easily
fail to produce a good recording. In this case we
observe unwanted interference (top) and the other
is band-limited (bottom).

As the number of input recordings increases,
the unique distortions in each recording make
choosing a single best recording difficult, if not
impossible. One could encounter various types
of nonlinear artifacts or interferences, e.g., the
audience chatter, lens zooming noises, button
clicks, clipping, band-pass filtering, etc. Even-
tually we would like to solve this problem
by using information from all recordings and
combine it appropriately in order to produce a
higher quality render.

Probabilistic Latent Component Sharing
(PLCS) model [5] is based on the probabilistic
counterparts of Nonnegative Matrix Factor-
ization (NMF) [6, 7], such as Probabilistic
Latent Semantic Indexing (PLSI) [8, 9]. PLCS
extends PLSI with the common component
sharing concept, similarly to Nonnegative
Matrix Partial Co-Factorization (NMPCF) [10]
does in the context of NMF. PLCS differs from the NMPCF-based methods in that it decomposes
each input matrix into three parts, rather than just two, so that we can share both bases and encoding
matrices while providing slack in the model by letting the weights of the components not to be
shared. Because PLCS controls the contribution of the latent components with probabilistic weights,
P (l)(z), it gives more intuitive interpretation of the roles of components in the reconstruction
whereas in the Convolutive Common Nonnegative Matrix Factorization (CCNMF) model [11]
they are absorbed in the filtering factor. Moreover, because the whole process is based on the
probabilistic model, we could explicitly take advantage of Bayesian approaches, which is not
straightforward in either NMPCF or CCNMF. The Bayesian approach provides a straightforward
way to involve a certain amount of prior knowledge about the bases, which we can get in advance
from the cleaner, but different versions of the similar sources.

There is room for improvement when we actually apply PLCS on the crowdsourced data. The
EM-based estimation procedure of PLCS is not efficient enough to cope with big audio data from
hundreds of recordings. In this paper we propose to harmonize a particular type of Locality Sensitive
Hashing (LSH) [12], called Winner-Takes-All (WTA) hashing [13, 14], with the EM updates, so that
each parameter is updated with a smaller set of relevant data samples rather than the whole. Since
we rely on Hamming similarity between the hash codes of the parameter and the data sample, the
construction of the relevant subset can be implemented in a cheap way by using bitwise operations.

2 Symmetric PLSI [9]

Given the magnitude spectrogram, V = |X|, with elements Vf,t indexed by the frequency bin f and
the time frame t, symmetric PLSI maximizes the log-likelihood P of observing the input Vf,t,

P =
∑
f,t

Vf,t logP (f, t) =
∑
f,t

Vf,t log
∑
z

P (f, t|z)P (z) =
∑
f,t

Vf,t log
∑
z

P (f |z)P (t|z)P (z).

To get the second equality, the component-specific distributions P (f, t, z) is further factorized into
three parts: the frequency distribution P (f |z), its temporal activations P (t|z), and the component
specific weights P (z). Note that the term “symmetric” came from this tri-factorization [8], which
eventually let us have control over additional temporal distributions of components as well as fre-
quency distributions. This being a latent variable model, we use the Expectation-Maximization
(EM) algorithm to estimate its parameters. In the E-step we find a posterior probability of the latent
variable z given the time and frequency indices,

P (z|f, t) = P (f |z)P (t|z)P (z)∑
z P (f |z)P (t|z)P (z)

. (1)
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In the M-step the expected complete data log-likelihood is maximized, which yields to the following
update rules:

P (f |z) =
∑

t Vf,tP (z|f, t)∑
f,t Vf,tP (z|f, t)

, P (t|z) =
∑

f Vf,tP (z|f, t)∑
f,t Vf,tP (z|f, t)

, P (z) =

∑
f,t Vf,tP (z|f, t)∑
f,t,z Vf,tP (z|f, t)

. (2)

3 Probabilistic Latent Components Sharing [5]

Let us assume that there are L input magnitude spectrogram matrices, corresponding to L available
recordings in the collaborative audio enhancement application. In PLCS we partition the values of
the latent components in the l-th recording z(l) into two disjoint subsets, z(l) = zC ∪ z(l)I , where zC
is the subset that contains indices of the common components shared across all recordings, and z(l)I
contains those of all the other components present only in the l-th recording. Now, the log-likelihood
P of observing L given recordings can be written as:

P =
∑
l

∑
f,t

V
(l)
f,t log

{ ∑
z∈zC

PC(f |z)PC(t|z)P (l)(z) +
∑

z∈z(l)
I

P
(l)
I (f |z)P (l)

I (t|z)P (l)(z)

}
. (3)

The main feature in (3) is to fix both the spectral and the temporal distributions to be same across all
inputs for z ∈ zC , which are specified as the common variables PC(f |z) and PC(t|z). On the other
hand, components indicated by z ∈ z

(l)
I represent recording-specific sound components, such as

interferences, characterized by parameters P (l)
I (f |z) and P (l)

I (t|z). We refer to this model as PLCS,
for which the E-step is:

P (l)(z|f, t) = P (l)(f |z)P (l)(t|z)P (l)(z)∑
z∈z(l) P (l)(f |z)P (l)(t|z)P (l)(z)

, ∀z ∈ z(l). (4)

Note that the parameters P (l)(f |z) and P (l)(t|z) can either refer to the common parameters PC(f |z)
and PC(t|z) when z ∈ zC or P (l)

I (f |z) and P (l)
I (t|z) when z ∈ z(l)I , respectively.

Using Lagrange multipliers to ensure that the probability distributions sum to one, we maximize the
expected complete data log-likelihood with following update rules as the M-step:

For z ∈ z(l)I : P
(l)
I (f |z) =

∑
t V

(l)
f,tP

(l)(z|f, t)∑
f,t V

(l)
f,tP

(l)(z|f, t)
, P

(l)
I (t|z) =

∑
f V

(l)
f,tP

(l)(z|f, t)∑
f,t V

(l)
f,tP

(l)(z|f, t)
, (5)

For z ∈ zC : PC(f |z) =
∑

l,t V
(l)
f,tP

(l)(z|f, t)∑
l,f,t V

(l)
f,tP

(l)(z|f, t)
, PC(t|z) =

∑
l,f V

(l)
f,tP

(l)(z|f, t)∑
l,f,t V

(l)
f,tP

(l)(z|f, t)
, (6)

For z ∈ z(l) : P (l)(z) =

∑
f,t V

(l)
f,tP

(l)(z|f, t)∑
z,f,t V

(l)
f,tP

(l)(z|f, t)
. (7)

Note that the updates for PC(f |z) and PC(t|z) include summation over l to involve all the recon-
structions of common components.

3.1 Incorporating priors

It is often useful to involve prior knowledge about the parameters in probabilistic models. For
instance, we can have a clean recording of the same content as in the provided inputs, albeit recorded
at a different time (e.g. a studio recording of a song whose recordings we obtain from a concert). Or,
it is also possible to assume that the interferences are a certain kind of sources, e.g. human voice.
On the other hand, we cannot simply learn the bases of those a priori signals and fix them as our
target parameters, PC(f |z) or P (l)

I (f |z), as there is no guarantee that the a priori known signals
have exactly the same spectral characteristics with the target sources. To address this problem PLCS
follows a Bayesian approach to derive a maximum a posteriori (MAP) estimator of the parameters.
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First, we learn the bases of the magnitude spectrograms of the similar sources and interferences by
directly applying PLSI update rules in (2). The learned bases vectors Psource(f |z) and P (l)

interf(f |z)
are used in the PLCS model to construct a new expected complete data log-likelihood

〈P〉 =
∑
l,f,t

V
(l)
f,t

{ ∑
z∈zC

(
P (l)(z|f, t) logPC(f |z)PC(t|z)P (l)(z)

)
+
∑

z∈z(l)
I

(
P (l)(z|f, t) logP (l)

I (f |z)P (l)
I (t|z)P (l)(z)

)}
+ α

∑
f,z∈zC

Psource(f |z) logPC(f |z) + β
∑

l,f,z∈z(l)
I

P
(l)
interf(f |z) logP

(l)
I (f |z),

where α and β controls the amount of influence of the prior bases. Once again, by using proper
Lagrange multipliers, we can derive the final M-step with priors as follow:

For z ∈ z(l)I : P
(l)
I (f |z) =

∑
t V

(l)
f,tP

(l)(z|f, t) + βP
(l)
interf(f |z)∑

f,t V
(l)
f,tP

(l)(z|f, t) + βP
(l)
interf(f |z)

, (8)

For z ∈ zC : PC(f |z) =
∑

l,t V
(l)
f,tP

(l)(z|f, t) + αPsource(f |z)∑
l,f,t V

(l)
f,tP

(l)(z|f, t) + αPsource(f |z)
. (9)

E-step and the other M-step update rules are not changed from the original PLCS model. Figure
2 summarizes the whole PLCS process on three different inputs: low-pass filtered, high-pass fil-
tered, and mid-pass filtered inputs. All three inputs also contain unique distortions represented with
different noise patterns in the figure.

X X 

X X 

X X 

V (1)

V (2)

V (3)

P
(1)
I (f |z)

P
(2)
I (f |z)

P
(3)
I (f |z)

P
(3)
I (t|z)

P
(2)
I (t|z)

P
(1)
I (t|z)

P (1)(z)

P (2)(z)

P (3)(z)

PC(f |z)

PC(t|z)

PC(f |z)

PC(t|z)

PC(t|z)

X X 

Psource(f |z)
Vprior

Time 

Fr
eq

ue
nc

y 

PC(f |z)

Figure 2: An example of common source separa-
tion process using PLCS on three defected input
matrices and prior information.

Note that the first common component of l = 1
case (first row) degrades the reconstruction as
its basis vector has high frequency energy while
V (1) was low-pass filtered. Therefore, the first
weight in the diagonal matrixP (1)(z = 1) has a
very low (dark) value. Similarly, P (2)(z = 4),
P (3)(z = 1), and P (3)(z = 4) are also those
weights that turn off inactive common compo-
nents. Note also that the a priori learned bases
Psource(f |z) are full-banded and have some-
what different spectral shapes from the com-
mon bases, so they cannot replace the common
bases as they are.

To recover the magnitudes of the desired
sources, we multiply the sum of the posterior
probabilities of z ∈ zC to the input complex-
valued spectrograms Xf,t,

Ŝ
(l)
f,t = X

(l)
f,t

∑
z∈zC

P (l)(z|f, t),

where Ŝ(l) is the spectrogram of the separated sources from the l-th input.

3.2 Post Processing

It is possible that the recorded signals exhibit non-uniform frequency responses due to recording
devices and format specifications. The PLCS method can identify the isolated common sources,
but it is not expected to ameliorate effects like frequency response losses, since that information
will be coded in the basis vectors and is not readily accessible as an artifact. A collaborative post
processing step addresses this issue. It is motivated by the fact that even if most of the recordings
are filtered in some way, one recording that did not go through such filtering can give us enough
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(c) A permutation table

8.8	   9.9	   2	  
8.8	   3.3	   1	  
3.4	   9.9	   2	  

4.5	   5.5	   2	  
4.5	   2.5	   1	  
1.8	   4.5	   2	  

3.5	   1.7	   1	  
3.5	   5.0	   2	  
2.2	   1.7	   1	  

c1 = [2, 1, 2] c2 = [2, 1, 2] c3 = [1, 2, 1]

    

(d) Hash codes generated according to P

Figure 3: A WTA hashing example. (a) x1 and x2 are similar in their shape while x3 looks different.
(b) Exhaustive pairwise ordering can give ideal hash codes c, but the feature space (hash code) is
high dimensional. (c) A permutation table provides a fixed set of random pairwise selections. (d) P
generates succinct hash codes that approximate the original similarity of inputs.

information to recover the full-banded reconstruction. Suppose that we get L recovered spectro-
grams Ŝ(l)

f,t using PLCS. The post processing begins with getting the normalized average magnitude

spectrum of those reconstructions y(l)f =
∑

t |Ŝ
(l)
f,t|
/∑

f,t |Ŝ
(l)
f,t|. Now, we can obtain some global

weights by considering the balance among different recordings in each particular frequency bin,
wf =

∑
l y

(l)
f

/
maxl y

(l)
f . Then, the final complex spectrogram of the desired output is obtained by

dividing the sum of the band-limited reconstructions with the corresponding elements of the global

weight: Ŝf,t =
∑

l Ŝ
(l)
f,t

wf
.

3.3 Computational complexity

If each l-th input is a matrix of size F × T , and we assume that there are Z = ZC + ZI latent
components, where ZC and ZI respectively stand for the number of common and individual ones,
calculation of posterior probabilities (4) runs in the order of O(FTZL). In the M-step (5), (6), and
(7), each update requires another set of operations in the order of O(FTZL). When we have many
recordings to deal with (big L) or the length of each recording is long (big T ), the computational
complexity grows proportionally to them. In this paper we propose to use hashing techniques to
reduce the size of F and T .

4 Winner-Takes-All Hashing

The recent application of WTA hashing [13] to a big image searching task provided accurate and fast
detection results [14]. As a kind of locality sensitive hashing [12], it has several unique properties:
(a) similar data points tend to collide more (b) Hamming distance of hash codes approximately
reflects the original distance of data. Therefore, it can be seen as a distribution on a family of hash
functions F that takes a collection of objects, such that for two objects x and y, Prh∈F [h(x) =
h(y)] = sim(x, y). sim(x, y) is some similarity function defined on the collection of objects [15].

WTA hashing is based on the rank correlation measure that encodes relative ordering of elements.
Although the relative rank order can work as a stable discriminative feature, it non-linearly maps data
to an intractably high dimensional space. For example, the number of orders inM -combinations out
of an F -dimensional vector is (# combinations)× (# orders in each combination) = F !

M !(F−M)!×M .
Instead, WTA hashing produces hash codes that compactly approximate the relationships.

WTA hashing first defines a permutation table P ∈ RK×M that has K different random index sets,
each of which chooses M elements. For the k-th set the position of the maximal element among M
elements is encoded instead of the full ordering information. Therefore, the length of hash codes is
MK-bits since each permutation results in M bits, where only one bit is on to indicate the position
of the maximum, e.g. 3 = 0100, and there are K such permutations. Whenever we do this encoding
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for an additional permutation, at most M − 1 new pairwise orders (maximum versus the others) are
embedded in the hash code. The permutation table is fixed and shared so that the hashing results are
consistent. Figure 3 shows the hashing procedure on simple data. Note that the Euclidean distance
between x1 and x2 are larger than that of x2 and x3 as opposed to the similarity in their shapes.
WTA hashing results in hash codes that respect this shape similarity. Note also that WTA hashing is
robust to the difference between x1 and x2, which can be explained as some additive noise.

5 The Proposed Speed-up: EM for PLCS on Nearest Neighbors

The M-step of PLCS estimation from (5) to (7) (or with (8) and (9) in the MAP version) can be seen
as a weighted summation of the input matrices, where the weights are defined by the estimation
of posterior probabilities in (4). We make this re-weighting procedure faster by focusing only on
the ones with high posterior probabilities, but it requires the computation of posterior probabilities
anyway. Instead, we construct a pseudo-nearest neighbor set based on the Hamming similarity
between the parameter and input, hoping that it serves as good candidates. For example, for a basis
vector with a fixed z, P (f |z), in the PLSI case, we can update it based on its neighbors, such as

P (f |z) =
∑

t Vf,tP (z|f, t)∑
f,t Vf,tP (z|f, t)

≈
∑

t∈N c
z
Vf,tP (z|f, t)∑

f

∑
t∈N c

z
Vf,tP (z|f, t)

, (10)

where N c
z denotes the set of column vectors of the input that are closest to the current estimation

of the z-th basis vector, P (f |z), where the bold character f is introduced to denote all possible
realization of random variable f , i.e. z-th column vector of the matrix P (f |z). Similarly, we can
define N r

z for the set of row vectors.

This approximation with nearest neighbors intuitively makes sense as we can think of the nearest
neighbors to the current parameters as purer data points where the contribution from the other com-
ponents are less significant. A possible disadvantage would be the case if the current estimation is
stuck in some isolated local minimum, which is surrounded by very low sample probabilistic den-
sities. In this worst case scenario, nearest data samples that are all from the isolated reason are not
able to help the estimation escape from the local minima.

We also have to be careful about choosing the nearest neighbors. An optimal divergence measure
will be cross entropy in our probabilistic topic models, but then searching takes up another order
of O(FTL) computations per each parameter vector. We instead adapt WTA hash codes as our
features, so that the nearest neighbors can be defined based on Hamming similarity between them
as follows:

KM∑
k

h
(
Vf ,t∈N c

z

)
∧ h
(
P (f |z)

)
>

KM∑
k

h
(
Vf ,t/∈N c

z

)
∧ h
(
P (f |z)

)
, (11)

where the hash function h(·) takes an input column vector and convert it into aKM×1 dimensional
binary vector. Hence, similar hash codes yield more agreements in their bits, which can be captured
by bitwise AND (∧) operation followed by bitwise summation. The inequality holds if the set of
neighbors N c

z are the ones that are closest to the current estimation of P (f |z). We dropped the
recording index l for the notational simplicity, but there are L sets of neighbors for P (f |z).
Finally, the update rules of PLCS can be simplified with the hashing concept:

For z ∈ z(l)I : P
(l)
I (f |z) =

∑
t∈N c

z
(l) V

(l)
f,tP

(l)(z|f, t) + βP
(l)
interf(f |z)∑

f

∑
t∈N c

z
(l) V

(l)
f,tP

(l)(z|f, t) + βP
(l)
interf(f |z)

, (12)

P
(l)
I (t|z) =

∑
f∈N r

z
(l) V

(l)
f,tP

(l)(z|f, t)∑
f∈N r

z
(l)

∑
t V

(l)
f,tP

(l)(z|f, t)
, (13)

For z ∈ zC : PC(f |z) =
∑

l

∑
t∈N c

z
(l) V

(l)
f,tP

(l)(z|f, t) + αPsource(f |z)∑
l,f

∑
t∈N c

z
(l) V

(l)
f,tP

(l)(z|f, t) + αPsource(f |z)
, (14)
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PC(t|z) =
∑

l

∑
f∈N r

z
(l) V

(l)
f,tP

(l)(z|f, t)∑
l,t

∑
f∈N r

z
(l) V

(l)
f,tP

(l)(z|f, t)
, (15)

For z ∈ z(l) : P (l)(z) =

∑
f∈N c

z
(l)

∑
t∈N r

z
(l) V

(l)
f,tP

(l)(z|f, t)∑
z

∑
f∈N c

z
(l)

∑
t∈N r

z
(l) V

(l)
f,tP

(l)(z|f, t)
. (16)

Note that after each update, we rebuild the neighbor sets based on the fresh parameter estimates.
Also, we properly add recording index l on the neighbor sets, i.e. N c

z
(l) and N r

z
(l).

5.1 Computational complexity

Update rules from (12) to (16) reduce the original complexity O(FTZL) down to O(FrTZL),
O(rFTZL), andO(rFrTZL), for the vertical, horizontal, and diagonal parameter vectors, respec-
tively, where the proportional size of the neighbor set r defines the actual degree of compression.
For example, r = 0.1 picks up only 10% of the column or row vectors. As for the nearest neighbor
search, we still have to performO(ZFL) orO(ZTL) comparisons among the hash codes generated
from all the input vectors versus the parameter vectors, but each comparison on KM binary values
is with minimal cost since they can be implemented in a cheap way.

In practice, E-step can be performed more often rather than once after all the parameter updates in
the M-step. For instance, one can update the posterior probabilities after every line of the M-step
from (12) to (16). However, now we do not need the entire posterior probabilities, which need the
order of O(FTZL) computations. Instead, we can instantly calculate the only relevant elements.
For example, for the updates in (12) and (14), we can prepare some reduced posterior probabilities
such as,

P (l)(z|f, t′) = P (l)(f |z)P (l)(t′|z)P (l)(z)∑
z∈z(l) P (l)(f |z)P (l)(t′|z)P (l)(z)

, ∀z ∈ z(l)and ∀t′ ∈ N c
z
(l), (17)

because the other elements with t /∈ N c
z
(l) are not used in the succeeding M-step. Likewise,

P (l)(z|f ′, t) with f ′ ∈ N r
z
(l) for (13) and (15), and P (l)(z|f ′, t) with f ′ ∈ N r

z
(l), t′ ∈ N c

z
(l)

for (16) can be also defined with lower complexities.

6 Experimental Results

In this section, we compare the original PLCS model with the hashing-based approximation we
propose in this paper. Their performances are compared in terms of signal-to-distortion ratio (SDR)
[16], because we desire to reduce all the artifacts, noises, and interferences. Because the proposed
method is less complex than the original PLCS model, the goal of this comparison is to see if the
speed-up introduces any performance drop. To this end, we use five different single channel songs
with 44.1kHz sampling rate and 16 bit encoding, each of which has a pair of versions: a 15 seconds-
long clean live recording S as the source and a 30 seconds-long clean studio recording Sprior as
the prior information of the source. The professional live recording S goes through three different
sets of artificial deformations to simulate usual recording scenarios. The resulting three mixture
spectrograms are:

• x(1): Low-pass filtering at 8kHz (a recording with a low sampling rate) / additional female
speech as an interference

• x(2): High-pass filtering at 500Hz / additional female speech different from x(1) as an
interference

• x(3): Low-pass filtering at 11.5kHz / high-pass filtering at 500Hz / clipping.

Short-time Fourier transform was applied to the signals with following settings: 1024 sample frame-
length and 512 sample of hop size, and then we take the magnitude to construct our nonnegative
input matrices V (l) = |X(l)|. For the priors, we get 100 bases for the source prior Psource(f |z) from
the studio recording Sprior while 50 interference prior bases Pinterf(f |z) are learned from anonymous
female speeches [17].

We set up the two models as follows:
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• The original PLCS model: This full PLCS model uses both the source and interference
priors, Psource(f |z) and Pinterf(f |z) to initialize them and learn them using both (8) and (9).
We initialize Psource(f |z) with a hundred bases learned from the studio recording, while
Pinterf(f |z) by 50 bases learned from anonymous female speech. The initial construction
was done using the ordinary PLSI algorithm. Note that we do not assume the interference
prior for X(3), because it is riddled with clipping, not an additional interference.

• The proposed hashing-based model: We define two permutation matricesPc,Pr ∈ Z128×2
+

for indexing elements in a column or a row, respectively. Therefore, they can hold indices
up to F and T as its elements, respectively. After hashing, each column or row vector is
transformed into a binary hash code vector with length 128 × 2, each of whose k-th pairs
holds the maximum of the two compared elements indicated by k-th row of Pc or Pr.

Iteration
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Figure 4: The audio enhancement quality of the
systems in terms of SDR.

Figure 4 shows the average of SDR improve-
ments from the runs of both systems on five dif-
ferent music signals. The most noticeable ob-
servation is that the hashing methods quickly
reach the highest SDR values, but more iter-
ations result in worse separation. This is a
very common behavior of algorithms devel-
oped from NMF or PLSI, since the original log-
likelihood error has nothing to do the separation
quality, but it is about the overall approxima-
tion quality. With hashing, we observe much
more drastic change of SDR values over itera-
tions, which is a minus for the proposed sys-
tem, because the performance depends more on
the number of iterations. However, the actual
separation performance itself is not worse than
the comprehensive model. As expected, more
number of neighbors provides more stable per-
formance (thicker lines). As for the priors, we gently reduce the impact of prior information as the
iteration i increases (α = β ∝ e−i).
For now, our MATLAB R© implementation of the proposed method is not actually faster than the
full PLCS model, since it is difficult to beat the native matrix computations in MATLAB R© with an
implementation with loops. However, we believe that the merit of our proposed method is already
clear with the computational complexity analysis, and more hardware-friendly implementations will
exhibit the merit.

7 Conclusion

We extended the PLCS model for collaborative audio enhancement, by limiting the number of par-
ticipating observations during the EM-based updates. Since the selection is based on the nearest
neighbor search in terms of the Hamming similarity between hash codes, the cost of this additional
search step is minimal. As a result, we dropped the complexity of the EM updates down to r < 1,
which is a big advantage as the task requires the algorithm to be fast. On top of that, the proposed
hashing-based extension inherits the original characteristics of the PLCS model, i.e. its ability to
distinguish common audio sources from recording-specific artifacts by sharing some part of spec-
tral and temporal marginal factors. The advantage of the proposed efficient model was shown by
experiments on artificially contaminated music signals by providing comparable performance to the
original PLCS model. We leave the more proper implementation and experiments on bigger datasets
to future work.
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