
Bitwise Neural Networks
for Efficient Single-Channel Source Separation

Minje Kim∗
Department of Intelligent Systems Engineering

Indiana University
Bloomington, IN 47401
minje@indiana.edu

Paris Smaragdis†
University of Illinois at Urbana-Champaign

Adobe Research
Urbana, IL 61801

paris@illinois.edu

Abstract

We present Bitwise Neural Networks (BNN) as an efficient hardware-friendly solu-
tion to single-channel source separation tasks in resource-constrained environments.
In the proposed BNN system, we replace all the real-valued operations during the
feedforward process of a Deep Neural Network (DNN) with bitwise arithmetic
(e.g. the XNOR operation between bipolar binaries in place of multiplications).
Thanks to the fully bitwise run-time operations, the BNN system can serve as an
alternative solution where efficient real-time processing is critical, for example
real-time speech enhancement in embedded systems. Furthermore, we also propose
a binarization scheme to convert the input signals into bit strings so that the BNN
parameters learn the Boolean mapping between input binarized mixture signals and
their target Ideal Binary Masks (IBM). Experiments on the single-channel speech
denoising tasks show that the efficient BNN-based source separation system works
well with an acceptable performance loss compared to a comprehensive real-valued
network, while consuming a minimal amount of resources.

1 Introduction

Deep learning has become one of the major forces in machine learning-based source separation tasks,
thanks to its powerful multi-layered structure that can learn complex mapping functions between a
large amount of training samples (e.g. noisy speech) and their corresponding target values (e.g. clean
speech) Xu et al. (2014); Huang et al. (2015); Wang & Wang (2013); Erdogan et al. (2015); Weninger
et al. (2015); Le Roux et al. (2015). In many research areas the Deep Neural Network (DNN)
topology is believed to capture a hierarchy of features Bengio (2009), which eventually provides
a better performance in supervised learning tasks. Dictionary-based models by using Nonnegative
Matrix Factorization (NMF) Lee & Seung (1999, 2001), on the other hand, learn a set of basis vectors
that correspond to the weights of a shallow network. In general, we can say that the multiple hidden
layers in the deep network structure can learn some more abstraction about the data at the cost of
training and maintaining a larger amount of parameters, which can easily amount to a few millions.

This paper develops an efficient feedforward procedure that reduces the computational and spatial
complexity of running and maintaining a DNN-based source separation system. The deep learning
advances in source separation systems cost more resources, such as memory and power, due to the
enlarged network structure. For example, now the network has to compute the feedforward operation
for more hidden layers with larger weight matrices. Since those resources can be constrained in
embedded devices, it could be prohibitive for them to perform multiplications between large matrices
with millions of elements, although it is a fairly typical computation size in many DNNs.
∗This work was partly supported by Intel Corporation.
†This work was supported by NSF grant 1453104.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



We employ Bitwise Neural Networks (BNN) Kim & Smaragdis (2015) to compress the network for
an efficient implementation in a resource-constrained environment. BNN’s drastically simplified
feedforward operation comes from the fact that in a BNN all the input and output signals, weights
and biases of the networks, and operations on them are all defined in an efficient bitwise fashion,
which we will review more thoroughly in Section 2. If we represent the input signals with bipolar
binary numbers, i.e. +1 and −1, and we train the bipolar binary parameters as well, the feedforward
part can be done using only bitwise logics such as XNOR and bit counting, instead of multiplication,
addition, and a nonlinear activation (e.g. tanh) on the usual floating or fixed-point variables. Note
that since each weight and node will be encoded with binaries, the space requirement is also reduced
compared to the multi-bit encoding schemes.

In all these procedures, we use binarized signals, so that the network can work in a fully bitwise
fashion. For example, hidden unit output signals are already binarized thanks to the sign function
as the activation, though binarization of input and target variables is an open question. In this
paper, we propose a binarization technique, Quantization-and-Dispersion (QaD), which effectively
encodes magnitude spectra. As for the target variable, Ideal Binary Masks (IBM) are a natural choice,
although the same QaD process can potentially convert any real-valued target variables. Experimental
results on some single-channel speech denoising tasks verify that the proposed BNN system gives
comparable results to the similarly structured DNNs with near-continuous encoding strategy.

2 Bitwise Neural Networks (BNN)

2.1 Background: Neural Networks with Bitwise Feedforward

Although it has been known that any Boolean function can be represented as a bitwise network with
one hidden layer, e.g. by memorizing all the relationships McCulloch & Pitts (1943), its training is
an NP-complete problem Pitt & Valiant (1988). µ-perceptron networks were proposed as a bitwise
network, but its topology does not allow a full connection between units Golea et al. (1992). Soudry
et. al. recently proposed the Expectation Back Propagation (EBP) algorithm to estimate the posterior
probabilities for the bitwise parameters Soudry et al. (2014). It is a parameter-free learning algorithm
and the discretization is convenient, yet it allows real-valued bias terms and relies on the averaged
outputs of multiple networks whose parameters are sampled from the estimated distribution.

BNN can be seen as one of different ways to achieve the fully binary computation during the test time.
More recently, there have been more neural networks that learn fully binary network parameters such
as BNN Kim & Smaragdis (2015), BinaryConnect Courbariaux et al. (2015), and binarized neural
networks Hubara et al. (2016). In the early stage of the neural network research, it has been known
that if we decrease the quantization level of an already trained network parameters, the performance
of the network drops significantly. One way to avoid this effect is to inject the quantization error
during the training phase, by using the quantized version of the original continuous parameters during
the feedforward so that the network is aware of the additional error introduced by the quantization
and can fix it during backpropagation Fiesler et al. (1990); Hwang & Sung (2014). BNN adopts the
quantization noise injection technique to estimate its bitwise parameters.

2.2 Feedforward in BNNs

2.2.1 Notations and setup: bipolar binaries

Throughout the paper, we use bipolar binaries where the Boolean values are represented as +1 and
−1. They are more expressive than 0-1 binaries in the sense that we can make use of zeros to explain
the sparsity concept. With no loss of generality, in this paper we use the ±1 bipolar representation.

2.2.2 The feedforward process

In a BNN the feedforward pass is defined as follows:
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where B = {−1,+1} and all lowercase letters are for scalar elements. i and j indicate i-th input and
j-th output units of a layer, respectively. Bold characters are for vectors, and matrices are capitalized.
The upper bar notation is to indicate that the parameters are integers or binaries. For convenience we
drop the sample index. Sign function is used as an activation, which will produce bipolar binaries as
the output. The sign function takes an integer a(l)i as its input, whose value can be from −K(l)−1

to K(l)+1. ⊗ and the sign activation can be seen as a special operations designed for the desired
speed-up, since they can replace the original real-valued multiplication and the smooth step functions,
respectively.

2.3 Training BNNs

We can train a BNN by using two sequential runs of the Stochastic Gradient Descent (SGD) procedure.
We first train an ordinary real-valued network, whose network structure is the same with the desired
BNN. We use its weights to initialize the BNN parameters in the subsequent step. In the second phase
of the training we finally learn the bitwise weights using a noisy feedforward pass. The detailed
training procedure can be find in Kim & Smaragdis (2015).

3 Binarization of Signals

3.1 Quantization and Dispersion (QaD)

Since a BNN takes a bit pattern as the input, we need a binarization technique to encode any real-
valued input signals. We found that Lloyd-Max’s quantization Lloyd (1982) is useful, which could
convert an input magnitude into a fixed-point value and feed it into an input unit. Instead of this
integer input string, we treat each bit of the fixed-point quantized value as a binary feature. For
example, after encoding the f -th magnitude coefficient of a noisy speech spectrum xt into 4 bits, we
disperse the 4 bits into 4 corresponding input units. Therefore, the BNN takes a 4F -dimensional
binary vector, where F is the original number of coefficients in the spectrum.

3.2 Ideal Binary Masks (IBM)

As for the output units it is natural to form a softmax layer to solve classification problems as in
Kim & Smaragdis (2015). On the other hand, the source separation problems often form continuous
target variables such as the Ideal Ratio Masks (IRM) Narayanan & Wang (2013), for which we
believe that the same QaD technique can be employed to convert them into bit patterns, too. In
this paper, we conveniently make use of the IBM as our target, which is a natural choice for us to
binarize the target Wang & Wang (2013). We leave the investigation of QaD for the continuous
target variables to future work. Finally, the prediction error E can be measured as follows: E(n) =
1
2

∑K(L+1)

i

(
ti(n)− z̄(L+1)

i (n)
)2

, where ti(n) is an element of the bipolarized IBM mask.

4 Experiments

4.1 Experimental Setups

We prepare 121,280 training spectra (18,020 of them are used for validation). Twelve gender-balanced
TIMIT speakers are chosen for training, each of which contributes five chosen utterances, totalling 60
clean speech signals. They are then mixed with ten different non-stationary noise signals proposed
in Duan et al. (2012) with 0 dB Signal-to-Noise Ratio (SNR) to form 600 noisy utterances. Among
them, we set aside 100 utterances as a validation set. By applying Short-Time Fourier Transform
(STFT) with a Hann window of 1024 points and a 75% of overlap. For testing, another four speakers
are chosen and mixed with the same set of noise signals, but from different parts to make sure the test
mixtures are not seen during training. We apply a 4-bit QaD procedure to these spectra as an input to
the BNN systems. We found ρ = 0.95 optimal via validation. All signals are with sampling rate 16
kHz. We train three different kinds of neural networks that predict the IBM of the given magnitude
spectrum:

• Baseline: The baseline networks take the ordinary 513 dimensional real-valued magnitude spectrum
as its input. For training this network the first round training algorithm is used, where the additional
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Systems Topology SDR SIR SAR STOI
Baseline with 1024×2 10.17 26.69 10.45 0.7880
original input 2048×2 10.57 26.25 10.88 0.8060
Baseline with 1024×2 9.80 27.00 10.08 0.7790
binary input 2048×2 10.11 26.61 10.43 0.7946

BNN 1024×2 9.35 23.38 9.82 0.7819
2048×2 9.82 23.62 10.40 0.7961

Table 1: Speech denoising performance of the proposed BNN-based separation system compared
with the other real-valued networks.

weight compression works like max-norm feature in Srivastava et al. (2014). It employs dropout with
0.95 for the first layer (dropping 5%) and 0.8 for the other layers as the parameter.
• Baseline with binary input: This setup is equivalent to the first round of the BNN training. The
difference between this and the baseline is that the first round networks take the 4× 513 4-bit QaD
vectors as their input. The prediction results from these first round networks will serve as an upper
bound of the separation performance of a real-valued network with the binarized input. Also, the
learned parameters will be reused to intialize the second round parameters.
• The proposed BNN: Here we combine the first round results (baseline with binary input) and the
second round.

Validation determines the learning rate which usually starts from 10−7 or 10−6 and gradually
decreases. Minibatch and the momentum parameter are set to be 100 frames and 0.95, respectively.

4.2 Discussion

Table 1 lists the speech denoising performance of the systems in terms of Signal-to-Distortion Ratio
(SDR), Signal-to-Interference Ratio (SIR), Signal-to-Artifact Ratio (SAR) Vincent et al. (2006), and
Short-Time Objective Intelligibility (STOI) Taal et al. (2010). First, we can see that doubling up the
number of hidden units generally improves SAR, which eventually improves SDR as well. STOI
gets better with more hidden units, too. For example, BNN with 2048 hidden units catches up the
performance of 1024× 2 DNN with binary input (9.82 versus 9.80 dB in SDR and 0.7861 versus
0.7790 in STOI). If we compare the effect of the QaD binarization (baseline with original versus
binary input), we see a slight performance drop in both SDR (0.37 dB and 0.47 dB for the 1024 and
2048 hidden units, respectively) and STOI (0.009 and 0.0114). Starting from there, BNN catches up
with the performance of the baseline system with binarized input by a margin 0.45 dB and 0.29 dB
for the 1024 and 2048 units, respectively. The 2048×2 BNN lost 0.0045, but 1024×2 happens to
improve STOI by 0.0029.

Overall, we see that the proposed BNN that is fully binarized from its input to the output shows
reasonable performance compared to its corresponding real-valued networks. We believe that our
experiments on the Fourier spectra and IBM prove the concept well enough and are ready to be
extended to the other types of features, target variables, and the choice of context window, since the
QaD technique and the BNN training methods work for general purposes.

5 Conclusion

We proposed a novel efficient source separation system by employing BNNs, which redefined the
feedforward pass in a bitwise fashion. A two-stage training strategy was introduced to prepare a
set of compressed weights, and then to initialize the BNN parameters that are eventually binarized
during the feedforward pass. By binarizing the input magnitude spectra with the QaD technique and
having IBM as the target, we showed that BNN performs well for the speech denoising job with a
minimal computational cost.
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