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Mixtures of Local Dictionaries
for Unsupervised Speech Enhancement
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Abstract—We propose a novel extension of Nonnegative Matrix
Factorization (NMF) that models a signal with multiple local dic-
tionaries that are sparsely activated. This set of local dictionaries
for a source, e.g. speech, disjointly constitute a superset that is
more discriminative than an ordinary NMF dictionary, because
its local structures represent the source’s manifold better. A block
sparsity constraint is used to regularize the NMF solutions so that
only one or a small number of blocks are active at a given time.
Moreover, a concentration prior further regularizes each block of
bases to be close to each other for better locality preservation. We
test the proposed Mixture of Local Dictionaries (MLD) on single-
channel speech enhancement tasks and show that it outperforms
the state of the art technology by up to 2dB in signal-to-distortion
ratio, especially in the unsupervised environment where neither
the speaker identity or the type of noise is known in advance.

Index Terms—Nonnegative Matrix Factorization, Speech En-
hancement, Manifold Learning

I. INTRODUCTION

Nonnegative Matrix Factorization (NMF) [1], [2] has been
widely used in audio research, e.g. automatic music transcrip-
tion [3], musical source separation [4], speech enhancement
[5], etc. Among this work a key strategy for applying NMF
towards single channel speech enhancement is to model a
source’s training set (usually magnitude spectra) with a dictio-
nary that consists of a small number of basis vectors. These
basis vectors should be able to approximate all of the source’s
produced spectra. Since both bases and weights are nonnega-
tive, the dictionary learned from NMF eventually models the
input magnitude spectra with a convex cone (more precisely,
a simplicial cone [6]). Then, the main goal of the single
channel speech enhancement becomes that of representing the
noisy input spectrum as a weighted sum of speech bases and
estimated noise bases. The source estimates are forced to lie
inside their respective convex cones. Therefore, the source-
specific convex cone concept is critical for the denoising
performance since the less the convex cones overlap each
other, the more discriminative they are.

However, this linear decomposition model can be limited
when it comes to modeling a complex source manifold.
Although NMF has been found to be a suitable model for
analyzing audio spectra because of its flexible additive nature,
this flexibility sometimes hinders the ability to discriminate
between different sources. If all the data points on a complex
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manifold structure should belong to a convex set defined by the
basis vectors, it is inevitable that this convex cone will include
some unnecessary regions where source spectra cannot reside.

We propose a Mixture of Local Dictionaries (MLD) model
along the lines of recent attempts to preserve the manifold of
the audio spectra during the NMF-like analysis. The basic idea
is to learn dictionaries using the sparse coding concept to better
approximate the input [7]. Particularly, in [8] a non-parametric
overcomplete dictionary model was proposed that fully makes
use of the entire training spectra instead of discarding them
after learning their convex model. This method encourages
the source estimates to lie on the manifold by approximating
them with the sum of only a very small number of training
samples. A succeeding work did this job in a more direct way
by encompassing the nearest neighbors only for the source
estimation [9].

Another relevant work is the Universal Speech Model
(USM) [10]. USM tackles the case where the identity of the
speaker is unknown and clean speech signals from anony-
mous speakers are available for training instead. Since the
anonymous training spectra can have too much variance, a
naive NMF approach that uses a single convex cone from
the entire training signal set can be less discriminative than
a convex cone learned from a single speaker. In order to
address that, USM first uses regular NMF on each speaker
to learn a speaker-specific convex cone, and then during the
separation stage it only activates a very small number of
speakers’ dictionaries at a time, the ones that best fit the
observed data. To this end, USM involves a block sparsity
constraint that was also used in [11], [12], so that irrelevant
speakers’ basis sets are turned off in the group-wise manner.

The proposed MLD model intends to preserve the manifold
of the source data in a more controlled way. The benefit of
using MLD comes from the following points:

¢ During training MLD discovers several convex cones per
a source, each of which covers a chunk of similar spectra
across all speakers rather than just one per a speaker.

e For each convex cone, MLD penalizes the difference
between the local dictionary and its a priori, such as in
the Maximum A Posteriori (MAP) estimation. Therefore,
the learned bases are eventually more concentrated on the
prior. As a result, each convex cone covers a smaller area
than USM or NMF cases.

e During denoising MLD activates only a small number of
dictionaries for a given noisy input spectrum. Because
MLD makes this decision in the frame-by-frame way,
the model dynamically finds an optimal fit while USM
approach does this in a global sense over time.
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II. DICTIONARY-BASED DENOSING USING NMF

This section reviews the straightforward speech enhance-
ment procedure that uses NMF basis vectors as a dictionary.

A. Dictionary Learning

For each source ¢, either ¢ = S for speech or ¢ = N
for noise, we first perform the Short Time Fourier Transform
(STFT) and take the magnitude to build a source specific
nonnegative training matrix Vj; € R%XNC. NMF then finds
a pair of factor matrices W, € fo cand H,, € RchNC
that define a convex cone to approximate the input: Vj, =~
Wg..Hg. [11, [2]. Among all the possible choices of -
divergences to measure the approximation error as proposed
in [13], we focus on the case # = 1, or a generalized KL-
divergence as follows:

D(zly) = z(logz —logy) + (y — ). 1)

The parameters W, and HJ, that minimize the error
D(Vg |W, HS,;.) are estimated by changing the step size of
the gradient descent optimization so that they are updated in
a multiplicative way:
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where the Hadamard product ® and division are carried out in
the element-wise fashion. Once the parameters are initialized
with nonnegative random numbers, their sign stays the same
after the updates. The learned basis vectors W, . per each
source work as a dictionary for the source.

B. Speech Enhancement

The speech enhancement procedure on the unseen noisy
signals is done by learning the activations of the corresponding
dictionaries as learned from the procedure in section II-A. For
a noisy spectrogram Vi.s: € RfXN‘”‘ , the activation per each
source c is estimated as follows:
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that we call this case the supervised separation since both
the speech and noise dictionaries are known. We do not
usually update the learned dictionaries during the supervised
separation. Finally, the speech part of the test spectrogram is
recovered by masking the mixture matrix by the proportion of
the speech estimate in the total reconstruction:

‘/tfst ~ Viest © (W(ZcHist)/(WdicHtest)- “4)

In the semi-supervised separation either the speech or noise
training set is not available [14]. If the noise dictionary Wé\ifc is
unknown, it has to be learned from the mixture signal, calling
for an update for the dictionary in addition to (3):
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(b) The proposed MLD model

Fig. 1: A comparison of convex hulls learned from a toy
dataset.

III. THE MIXTURE OF LOCAL DICTIONARIES MODEL

In this section we first address some downsides of the
conventional NMF model with respect to source manifold
preservation, and introduce the proposed MLD approach.

A. Locality in Data Manifolds

Fig. 1 (a) depicts the behavior of NMF dictionaries. For
illustrational convenience we project the input vectors onto
the simplex as if they are normalized. In this toy example,
there are three spectral features that correspond to the three
corners of the simplex. In Fig. 1 there are two different kinds
of sources represented with small red dots and blue diamonds
respectively. If we learn a set of four basis vectors that describe
each source, they construct a convex hull' as its corners (empty
diamonds and circles), which surrounds the data points. Note
that each source has a manifold structure that consists of two
distinct clusters.

NMF does not take this structure into account and results in
a convex dictionary that wraps both intrinsic clusters. Hence,
each convex hull can reconstruct not only the training data, but
also spurious cases in the areas where the data is very unlikely
to exist. On top of that, since NMF does not guarantee that the
convex hull will surround the data tightly, the dictionary can
include even more unnecessary regions. During the unmixing
phase, we use the learned bases only. Since the bases from two

I'Since the data points are normalized for the simplex representation, the
convex cone learned by an NMF run reduces to a hull.
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Fig. 2: A block diagram for the full speech enhancement
procedure including source specific dictionary learning and its
(block) sparse coding with the learned dictionaries.

sources do not precisely represent each source’s structure, we
end up with overlapping convex hulls. This is a problem since
when an estimated source spectrum falls in the overlapped
region of the red and blue convex hulls, it is impossible to
identify which source it belongs to..

On the other hand, MLD learns a set of small convex
dictionaries per each source, similarly to the way that a
mixture model approximates an arbitrary distribution. The
underlying latent modality of a mixture model corresponds to
each convex cone in MLD. In Fig. 1 (b) we can see that MLD
successfully tracks the data manifold with two disjoint convex
hulls. Moreover, the hull wraps the data points tightly enough
to exclude any surrounding empty space. In this case we can
expect less ambiguity than with the ordinary NMF case, and
this representation will be able to model more complex source
manifolds than the simple case we present here.

B. Mixture of Local Dictionaries: Algorithms

Fig. 2 describes the entire speech enhancement procedure
using MLD. We first have to learn basis vectors from each
source (orange and green) as in the dictionary learning proce-
dure introduced in II-A. In MLD however, the basis vectors
for a source are grouped into a pre-defined number of blocks,
e.g. in the figure five bases per a block and three blocks per a
source, each of which corresponds to a convex cone, or a local
dictionary. At the same time the activation matrix H is learned
to be block-wise sparse, so that a training sample belongs to
only one or a very small number of local dictionaries. We use
these learned dictionaries as they are when we perform the
denoising job on some unseen noisy signals while we newly
learn a block-wise sparse encoding matrix, H.

The objective function 7 is defined as follows:

J =D(VIWH)+ Y Q) +nY D W), (6
t g

where W = [W(l),--T~ W), H = [hy, - ,hy] and

hy = [hgl) yo ,hEG) ]T. t and g are for the frame and

group indices. The first term is for KL-divergence in (1)

Algorithm 1 The dictionary learning algorithm using MLD

1: Input: V € RY>*N G R
2: Output: W
3: Find G cluster means, ,u(g), by using K-means
4: Tnitialize W@ € RY*® with (9 and H € RV with
random numbers
repeat
Update W and H using (7), (8), and (9)
7: until Convergence

AN

from the original NMF algorithm. The function €2 on g-th
block of each frame t is to give penalty to the solutions
that are not sparse. In particular, we use log/l; penalty,
Qhe) = 32, log(e + |[A”[]1), which was also used in [12],
[10], for its monotonicity and induced multiplicative updates.
The third term governs basis vectors in each block so that they
are similar to each other and the resulting convex cones are
tight. A and 7 control the amount of the regularization.

The main difference between USM [10] and the proposed
MLD model comes from the fact that the former sets block
sparsity on speakers. It selects relevant speakers in a global
fashion, so the chosen one is always active regardless of
the time index ¢ whereas the proposed method selects the
participating blocks dynamically. Therefore, USM does not
have the index ¢ in the second term. Since it is not guaranteed
that each speaker is associated with a distinct cluster, the
data-driven way we choose is more suitable for modeling
the general human speech with the same number of clusters.
After all, we expect that MLD can sort out the similar sound
components into the same block regardless of who speaks
them, and then eventually approximate the data more precisely.

Another thing that makes MLD unique is the newly in-
troduced third term. For each block g we can have a priori
knowledge about the bases, which can be learned beforehand
by using any clustering techniques, e.g. K-means clustering.
When the algorithm tries to reduce the error in the third term,
the bases are more likely to be similar to the a priori infor-
mation. This will also result in more concentrated solutions.
Note that the regularization works as a conjugate prior in the
corresponding probabilistic models, such as Dirichlet priors in
Probabilistic Latent Semantic Indexing (PLSI) [15].

After majorizing the second term [10] we can derive mul-
tiplicative update rules similarly to the NMF case for all
ge{l,---,Gtand t € {1,--- ,N}:
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The MLD update rules are used to learn dictionaries from
the source-specific training signals and to denoise an unseen
noisy signal as in Section II-A and II-B. Algorithm 1 shows
how we learn the dictionaries. First, we prepare a big set of
speech training spectra Vdfc recorded by anonymous speakers,
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Algorithm 2 The speech enhancement algorithm using MLD

I Input: Ve RN (w8 9 e RMXRs |1 < g < Gy,
and {Wﬁc(g) € RfXRNll < g < Gy} (optional, semi-
supervised) or Ry (optional, unsupervised)
Output: H%, HN
Initialize H° and H" with random numbers
repeat
Update H using (8) and hsig) using (9)
if Unsupervised then
Update WY using (5)
else
Update hNEg) using (9)
end if
until Convergence
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Fig. 3: Average SDR results from three models and cases.

and define the number of blocks G and the number of bases
R in each block. If a noise training set is available, we
prepare Vdjlyc as well. Then, we use each matrix as the input
to Algorithm 1, respectively, to get Wfic and W .

There are three test scenarios depending on the availability
of dictionaries:

o Unsupervised: the case when neither the speaker identity
nor the type of noise is known. Therefore, we learn a
suboptimal dictionary from someone else’ clean speech
and apply the semi-supervised technique.

o Semi-supervised: in this case either speech or noise
dictionary is missing. The missing dictionary is learned
during the test phase.

o Supervised: both kinds of information are known and
their training data are available.

MLD is mainly for the unsupervised and semi-supervised
cases. In the unsupervised scenario, since we have no speaker
information, Algorithm 1 learns the speech dictionary Wfic
using third-party speech signals as an alternative training set.
Then, the noise dictionary is learned from the mixture signal
(the “Unsupervised” option in Algorithm 2) using the ordinary
NMF update in (5). In the semi-supervised case where only
the type of noise is known, we solve this as if it was a
supervised case with the noise dictionary and the suboptimal
speech dictionary.

IV. EXPERIMENTAL RESULTS

We compare the results from the MLD algorithms with
USM and NMF in the three denoising scenarios. All signals
used are sampled at 16kHz. As for STFT, we use 1024
samples for Hann windowing and FFT with 256 pt hop size.
A small value for e=10"5 worked fine. We randomly select
20 speakers from the training set of TIMIT corpus as our
anonymous speakers, and mix 5 test speakers’ speech with 10
different non-stationary noise signals that were proposed in
[14] to build 50 test sequences as in USM experiments. Instead
of learning 10 NMF bases from each of the 20 speakers, we
learn a set of GG =20 local dictionaries, each of which holds
Rgs = 10 bases. This number of speech bases is eventually
same with the original USM setting while holding different
information about the source. All USM and NMF results in
this section are from the experiments in [10].

In the unsupervised case, the number of noise bases is fixed
with the optimal ones investigated in [14], i.e. one of {20, 10,
200, 20, 20, 10, 20, 10, 10, 10}, depending on the noise type
used. A = 64 is big enough to yield sparse solutions. MLD
outperforms USM by 2dB in terms of the average Signal-to-
Distortion Ratio (SDR) [16] with an adequate n = 0.1 (the
bottom bars in Fig. 3). Note that when n— oco we get worse
results, representing the case where each local dictionary is
completely concentrated on its mean. Another case of interest
is when 17=0, which boils down to a variation of USM where
the speaker selection is done at every frame, but without the
third regularization term in (6). We can say that another 1dB
improvement is explained by the third term.

Next, we learn noise dictionaries as well with the same
parameters (Gy =Gg, Ry = Rg), and then run Algorithm 2
without the unsupervised option. A = 2 gives less sparse noise
coding, but provides best separation results. Compared to the
other semi-supervised algorithms (middle bars in the figure),
the result is significantly better than NMF (1dB improvement)
and comparable to USM. In this case, learning 200 basis
vectors for each individual noise type is a difficult problem,
and eventually does not outperform USM.

In Fig. 3 the result from the fully supervised NMF algorithm
is provided for a further comparison. Once we are allowed
to learn dictionaries for noise (semi-supervised), both USM
and MLD models produce comparable results to the fully
supervised NMF case without knowing the exact speaker.

V. CONCLUSION

In this paper we proposed the Mixture of Local Dictionaries
(MLD) model that preserves the underlying manifold of the
data. With extensions to the Universal Speech Model (USM),
such as temporally relaxed block sparsity and concentration
of basis vectors, the near-disjoint combination of local dictio-
naries provided substantial improvement over NMF and USM
in the unsupervised single-channel speech enhancement tasks
with as little a priori information about the sources as possible.
Since this assumption about the source is general enough, i.e.
an English speech, and robust to many possible variations,
such as dialects, speaker identities, and genders, we believe
that MLD could be a practical solution to the single-channel
unsupervised speech enhancement problem.
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