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ABSTRACT

There has been a significant amount of research in new algorithms
and applications for nonnegative matrix factorization, but relatively
little has been published on practical considerations for real-world
applications, such as choosing optimal parameters for a particular
application. In this paper, we will look at two applications, single-
channel source separation of speech and interpolating missing music
data. We will present the optimal parameters found for the experi-
ments as well as discuss how parameters affect performance.

Index Terms— Nonnegative matrix factorization, source sepa-
ration, spectrogram interpolation

1. INTRODUCTION

Nonnegative matrix factorization (NMF) has become a popular area
of research and has been applied in many diverse fields, including au-
dio. Within audio, it has been applied in a variety of tasks, including
single-channel source separation [1], interpolation of missing audio
data [2], bandwidth expansion [3], polyphonic transcription [4], and
multi-source and noise-robust speech recognition and dynamic time
warping [5, 6]. There has been a significant amount of research on
these topics, with many new algorithms and parameters being pro-
posed. While it is exciting to see so much work in this field, it has
become challenging to choose an NMF algorithm for a particular
application because there are many papers proposing different cost
functions and parameters that purport to be the best. At the moment,
it can take a significant amount of time to search through the litera-
ture and run experiments to find the best parameters for the chosen
application. The goal of this paper is to help address this challenge.
In this paper, we focus on two popular applications, single-channel
separation of speech and interpolation of missing music data. For
each, we ran experiments with many different NMF models and
parameters. In our data analysis, we will discuss how parameters
affect performance, provide explanations and hypotheses about the
performance trends we observe, as well as present our findings for
parameters that perform optimally overall, in a fashion similar to
the parameter analysis for NMF-based musical source separation in
[7] and NMF-based multi-pitch estimation in [8]. Our goals are to
show readers what models and parameter values work well, as well
as help develop an intuition for how parameters affect performance.
And although we focus on two applications in this paper, we hope
that this knowledge of how parameters affect performance will lead
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to an ability to understand, and even predict, how parameter choice
will affect the performance of different applications.

2. BACKGROUND

The NMF algorithm decomposes an observed matrix into a product
of a basis and weight matrix,

VaV=WH,
where V € RF*T W e RF*K H e RF*T,
and Vg, Wy, Hie > 0 for all elements (€))]

The key differentiator of NMF from other matrix factorization mod-
els, such as independent component analysis or principal component
analysis is that all of the elements of the observed data ('), basis
(W), and weight matrix (H) are nonnegative and real. This means
that the basis vectors combine additively, never canceling each other
out. When applied to audio, the observed matrix is most often the
magnitude or power spectrogram, but can also be other nonnega-
tive time-frequency representations [9]. When applied to a time-
frequency representation, the columns of W correspond to spectral
basis vectors and the columns of H indicate the weighting of those
basis vectors within a particular time window. In audio applications,
the nonnegativity constraint on the matrices can often result in mean-
ingful basis vectors, which can be helpful for analysis or processing.
For example, NMF analysis of a piano excerpt can find basis vectors
that each correspond to the spectra of individual notes [4], and NMF
analysis of speech can result in phoneme-like bases [1].

Although the basic NMF algorithm is fairly simple, there are
many variations that have been proposed in the research literature,
including differences in cost function, magnitude exponent, num-
ber of bases, and window length. In this paper, we will explore
how these affect performance, as well as disclose the parameters we
found to work best overall. We will now discuss these parameters
and provide examples and intuition of how they affect performance.
NMF uses an iterative algorithm to updates the basis and / or weight
matrices to minimize the given cost function. Thus, different cost
functions can produce significantly different results. The most pop-
ular cost functions are the squared Frobenius norm [10],
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the Kullback-Leibler (KL) divergence [10],
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and the Itakura-Saito (IS) divergence [11]

d(V[V)is =Y (th +log It _ 1) )
— \ Vs Vit

The squared Frobenius norm, as it minimizes the squared error of
the estimate, is sometimes criticized for audio applications because
it places too high an importance on modeling higher-energy com-
ponents, often at the expense of lower-energy components, which
are often still important for audio quality and auditory perception
[11]. In contrast, the KL divergence places a more equal emphasis
on components with higher and lower energy. And finally, the IS
divergence has a completely scale-invariant cost function, meaning

d(V|V)1s = d(aV|aV)rs, fora >0 )

These cost functions are all special cases of the beta-divergence,
where 3’s of 2, 1, and 0 correspond to the squared Frobenius norm,
KL divergence, and IS divergence, respectively [12]. [ values be-
tween and beyond these three values can be used as well, and will be
explored and discussed in the paper.

The second parameter we will be examining is the magnitude
exponent of the observation, which raises every element of the STFT
magnitude | X| to the power p,

Vie=|XplP for f=1,. Ft=1,..T (6)

The most common values of p are 1 and 2, which correspond to the
magnitude and power spectra of the signal. However, any value of
p > 0 can be used for any of the cost functions.

Deciding on the number of basis vectors to use is essential for
good performance. Choosing too small a number can result in the
basis vectors not being able to approximate the data well, but too
many can result in over-fitting the data. The final parameter we
will be discussing is the window length. If a window is too short,
then there may not be enough spectral differentiation between the
sources, causing poor source separation and interpolation. But if the
window is too long, then the spectra of the signal will be less station-
ary within a window, which will also result in poor performance.

3. SPEECH SEPARATION

3.1. Theory

The parts-based decomposition in the NMF algorithm lends itself
well to source separation. If it is known that disjoint sets of spectral
basis vectors correspond to different sources, then the enhanced sig-
nal for source s can be synthesized by multiplying together the basis
vectors and weights corresponding to that source,

Vipe = (Z Wkakz) (7)
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where K is the set of spectral basis vectors corresponding to source
s. This estimate is used to calculate the time-frequency weights for
filtering the original, complex-valued STFT of the mixed signal,
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This method ensures that the decomposition is lossless.

One challenge of source separation is how to acquire disjoint
sets of basis vectors that represent the different sources well. We will
be using the most straightforward method for our speech separation
experiments, the fully-supervised copy-to-train method [13, 14]. In
this method, we will use the magnitude of the STFT of the training
data (raised to the magnitude exponent p), with the training data be-
ing other utterances from that same speaker found in the mixture.
The idea is that the speech from the spectra of the training data will
be similar enough to that of the speech in the test data that it can be
estimated well by the training data. The copy-to-train method is re-
peated for all the speakers in the mixture. Other methods include the
fully-supervised factor-to-train, semi-supervised, and unsupervised
training methods [14]. We chose the fully-supervised method be-
cause we had training data for all the speakers. One known method
to increase source separation performance is to eliminate all frames
with energy below a threshold, because nearly silent frames do not
represent the important speech well [13]. Because of this, we set the
threshold at 40 dB below the highest-energy frame of each speaker’s
training data. We chose copy-to-train over factor-to-train for a few
reasons. First of all, if the training data is representative of the test
data, the former method is guaranteed to result in meaningful ba-
sis vectors, while the other methods will not necessarily do so if a
poor number of basis vectors was chosen for factorizing the train-
ing data. Both too many and too few basis vectors can result in less
meaningful basis vectors and poor separation. Also, it was helpful to
eliminate any unnecessary variables to focus on analyzing the other
variables to make the results clearer. So in these experiments, we
will see how cost function, magnitude exponent, and window length
affect performance.

We will use the blind source separation evaluation (BSS Eval)
toolkit for analyzing and comparing source separation results [15].
This method measures the source-to-interference ratio (SIR), source-
to-artifact ratio (SAR) and source-to-distortion ratio (SDR). The SIR
measures how much of the interfering sources are left in the sepa-
rated signal. The SAR measures how much energy is in the signal
that is not part of either the target or interfering signals. The SDR
combines the SIR and SAR into one measurement. The SIR results
are computed by finding the difference, in dB, of the SIR of the en-
hanced signal from the SIR of the original mixed signal. The SDR is
computed in the same fashion. The SAR is computed simply by the
SAR of the enhanced signal. Since there are no artifacts in the orig-
inal mixture, its SAR is +oo dB. Thus, if we used this value in the
calculation, the resulting SAR difference would always be —oco dB,
which is not helpful for comparisons. In other words, the baseline
SIR and SDR are calculated from the original mixture. We will refer
to these measurements as relative SIR, absolute SAR, and relative
SDR.

3.2. Experiments and Results

We had the following goals with our single-channel speech separa-
tion experiments. First of all, we wanted to see how parameters (cost
function, magnitude exponent, and window length) affected perfor-
mance. We also wanted to test with a variety of target-to-masker ra-
tios (TMR, where the target is the wanted signal and the masker is the
unwanted signal) and speaker combinations to determine whether or
not there was an optimal set of parameters for all scenarios, and hy-
pothesize why. The test signals consist of two utterances from dif-
ferent speakers from the TIMIT database [16], sampled at 16 kHz.
In order to maximize signal overlap in time, we truncated the length
of the mixture to the shorter of the two utterances. We then mixed
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Fig. 1. BSS Eval results illustrating how [ and magnitude exponent
affect performance (averaged over all experiments with 0 dB TMR
and 512-point (32 ms) window). Note: bigger bars are better.

the utterances at -10, -5, 0, +5, and +10 dB TMR. There were eight
speaker combinations of mixed gender, four of female only, and four
of male only. For each experiment, we measured the BSS Eval mea-
surements for both speakers in each experiment. Because of this, we
had eight target/masker combinations each of F/F, M/M, F/M, and
M/F. Each speaker in the TIMIT database has two sentences com-
mon to the other speakers and eight unique sentences. We used only
the unique sentences. For a given speaker combination, we used
seven of the eight sentences for training and the other for the test
mixture. For each combination of speakers, we used two different
combinations of test and training signals. So for each set of parame-
ters at each TMR, we ran 24 experiments, resulting in 48 BSS Eval
measurements.

In our analysis of the results, we found that one set of parameters
performed best overall for our speech separation task. The optimal
parameters were a § of 0, a magnitude exponent of 1, and a win-
dow size of 512 points (32 ms). We have included some figures that
illustrate how parameters affect performance.

3.2.1. Magnitude power and 3

In Figure 1, we have plotted the BSS Eval results for varying mag-
nitude powers and the 3’s of the cost function, with a constant win-
dow size of 512 (32 ms) and TMR of 0 dB, averaged over all test
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Fig. 2. BSS Eval results illustrating how window size and TMR
affect performance (averaged over all experiments with 5 of 0 and
magnitude exponent of 1). With a 16 kHz sampling rate, windows
of 512, 1024, 2048, and 4096 points correspond to lengths of 32, 64,
128, and 256 ms, respectively.

sentences. We see that the relative SIR is highest when 3 equals 0
(Itakura-Saito divergence) and magnitude exponent equals 1.5 and 2.
A B of 0 and a magnitude exponent of 2 correspond to the generative
model of superimposed Gaussian components advocated in [11]. In
the SAR results, we see that as the magnitude exponent increases,
the absolute SAR decreases. This is logical because if the magni-
tude exponent were 0, the separated signals would simply be iden-
tical signals that would be half the amplitude of the original signal.
There would be no artifacts in that signal, but the SIR improvement
would also be 0 dB. As the magnitude exponent increases, more fil-
tering takes place, which can lead to more artifacts and thus a lower
SAR. Within a magnitude power, 8 values of 0 (Itakura-Saito di-
vergence) and 2 (squared Frobenius norm) have the highest absolute
SAR, though their SAR values vary less within a given magnitude
power than between different powers. The relative SDR, which in-
corporates both relative SIR and SAR, is maximized when /3 is 0 and
the magnitude exponent is 1.

3.2.2. Window size and TMR

In Figure 2, we see how TMR and window size affect performance.
The results plotted are with the optimal parameters discussed in the
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Fig. 3. BSS Eval results illustrating how window size and speaker
gender affect performance (averaged over all experiments with 5 of
0, magnitude exponent of 1, and TMR of 0).

previous paragraph, which are a 8 of 0 and a magnitude exponent
of 1. We see that within each TMR, a window size of 512 performs
the best for both the relative SIR and SDR. The absolute SAR is a
slightly higher with window sizes of 256 and 2048. What is more in-
teresting in this figure is observing how the BSS Eval measurements
are affected by the target speaker’s TMR. As the TMR increases, the
resulting relative SIR decreases. This can be explained as follows: if
the TMR is very low, it is easier to identify and attenuate the masker,
but when the TMR is very high, is it more difficult to identify and
attenuate the masker. For example, if the TMR were 100 dB, it could
be very difficult to find the noise, and attenuating the signal would
most likely attenuate the desired signal, thus decreasing the relative
SIR. The absolute SAR results can be explained as follows: since
the SAR measures the ratio of the signal to the artifacts, if the signal
level increases and artifacts stay the same level, then the SAR will
improve. However, we see that artifacts do not stay constant over
the TMR range, so that for every difference of 5 dB, the artifact level
changes by about 2.5 dB. We thus see that an TMR increase of 5
results roughly in an increase of 2.5 dB absolute SAR. And finally,
when analyzing the SDR results, we see that as TMR increases, rel-
ative SDR decreases. So at +10 dB, although we are able to still
increase relative SIR, the artifacts cause just a small improvement in
relative SDR. Although the relative SDR and SIR decrease as TMR

increases, we fortunately see that the absolute SDR (which is the
sum of the mixture TMR and the relative SDR) and absolute SIR
increase as TMR increases.

3.2.3. Speaker gender and window size

In Figure 3, we see how the speakers’ genders and the window size
affect performance. The results plotted are with the optimal param-
eters discussed in the previous paragraph, which are a 5 of 0 and a
magnitude exponent of 1. We wanted to compare these two variables
on the same figure because we had originally hypothesized that the
optimal window size would depend on the spectral similarity and
the pitch ranges of the speakers. We hypothesized that as spectral
similarity increased (same gender), or the pitch ranges decreased
(both male speakers), that a longer window would perform better.
We found, however, that this was not true. In fact, the 512-point
window gives the best overall performance for all three speaker gen-
der combinations (mixed gender, both female, and both male). This
is good news because the optimal value of this parameter is not de-
pendent on the speakers’ characteristics.

In comparing performance between different sets of speaker
genders, we saw that the mixed-gender sentences typically had
higher relative SIR, absolute SAR, and relative SDR scores than
sentences with the same gender. This is consistent with our hy-
pothesis that more spectrally different sources would result in better
separation. We also see that the relative SIR and SDR are higher
for the two-female mixtures than the two-male mixtures, and the
absolute SAR is just slightly lower. We think that the relative SIR
and SDR improvements are higher for the female speakers because
there will typically be less overlap in the spectra of the two females
because their pitch, and thus spacing between harmonics, is greater.
Spectral similarity and spectro-temporal overlap are thus two of the
best indicators of NMF’s source separation performance. NMF will
perform better when similarity and overlap are lower and worse
when similarity and overlap are higher.

Here is a summary of the single-channel 2-talker speech separa-
tion results:

e The best overall parameters found for relative SDR were a 3
of 0, a magnitude exponent of 1, and a window size of 512
points (32 ms).

e The Itakura-Saito divergence (8 = 0) with a magnitude ex-
ponent of 1.5 and 2 typically maximize suppression of inter-
fering speakers.

e Increasing magnitude exponent typically increases artifacts.

e Increasing TMR typically increases absolute SIR, absolute
SAR, and absolute SDR, and decreases relative SIR, and rel-
ative SDR.

e A 512-point (32 ms) window works best overall for all
speaker gender combinations.

e Performance is negatively correlated with spectral similarity
and spectro-temporal overlap of the sources, which give the
following order of performance, from best to worst: mixed
gender, both females, and both males.

4. MUSIC INTERPOLATION

4.1. Theory

When parts of an audio signal are missing or too corrupted by noise
to be recovered by traditional means, spectrogram interpolation can



be used to fill in these gaps [2]. NMF-based spectrogram interpo-
lation works by learning the spectral basis vectors and weights of
the observed signal. The missing time-frequency points are ignored
in the cost function and update equations. After the algorithm con-
verges, the missing data are replaced by the NMF estimation of those
points (see Figure 4). Some methods for estimating the phase of the
interpolated data include using random phase, using the phase of a
nearby neighbor, and finding a phase that increases STFT consis-
tency [17]. Instead of estimating the missing phase, we just used the
phase of the original, uncorrupted signal, so we could focus on the
the NMF-based STFT magnitude estimation in our experiments and
analysis.

The challenge again is to find the optimal parameters for interpo-
lation. In this task, we will again see how cost function, magnitude
exponent, and window size affect performance. Additionally, we
will also see how the number of basis vectors affects performance.
In the speech separation experiments, we used the training data as
spectral basis vectors, but in our interpolation experiments, we have
no training data. If we did have training data, such as non-corrupted
corrupted data from a different part of the song, we could try using
that as training, but the experiments in this paper will use the con-
ditions where training data is available. We will be using absolute
SNR of the reconstructed signal to measure performance,

SNR = 10log,, ””7“22 ©)
[v—2]

where v and v are the time-domain signals of the orignal and inter-

polated signals, respectively.

4.2. Experiments and Results

For our experiments, we chose 10-second instrumental excerpts from
4 songs from different genres. They retained the same 44.1 kHz sam-
pling rate as the CD’s from which they were extracted. The parame-
ter choices we tested were 3 (0, 0.5, 1, 1.5, 2), magnitude exponent
(0.5, 1, 1.5, 2), window size (1024, 2048, 4096 points, which cor-
respond to 23.2 ms, 46.4 ms, and 92.8 ms, respectively), number of
basis vectors (4, 8, 16, 32, 64), and amount of missing data (10-80%
at 10% increments). The binary mask for determining the missing
data was randomly generated, but each experiment at a given amount
of missing data used the same mask to remove additional variance in
performance.

The scenarios that we will be focusing on will be when more
than 50% of the data is missing. The optimal parameters for when
80% of the data was missing was a 3 of 1, magnitude exponent of
0.5, window size of 4096 points, and a basis vector rank of 4. We will
first discuss how 3 and window size affect performance, and then we
will discuss how the magnitude power and number of spectral basis
vectors affect interpolation performance.

In analyzing 3, we saw that with a small amount of missing data,
[ values of 1 and higher performed well, without one being a clear
winner, but when more data was missing, a 5 value of 1 was best.
Our theory for this is that since a S value of 0 makes fitting all ob-
served data to be equally important, this may cause undesired behav-
ior when nearly silent (low magnitude) regions exist. As 3 increases,
it puts increasingly more importance on fitting higher energy points.
And then as the amount of data increases, the KL divergence per-
forms best perhaps because has a good balance of how it prioritizes
fitting higher and lower energy data.

When analyzing window size, we saw that although perfor-
mance did not dramatically change between different window sizes,
a 4096-point window performed best overall. A 4096-point window
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at 44.1 kHz corresponds to a 92.8-millisecond window, which is
much longer than the optimal-length window for single-channel
speech separation (32 milliseconds with 512-point window at 16
kHz sampling rate). This may be due to the differences in temporal
rate of music and speech, as well as the difference in tasks. It would
be interesting to explore this hypothesis further by comparing the
optimal window parameters of interpolating speech, but is out of the
scope of this paper.

Next, we will discuss how the magnitude exponent affects per-
formance. In Figure 5, we see that as the amount of missing data
increases, the optimal magnitude exponent value decreases mono-
tonically from 1.5 to 0.5. Our observation was that as the missing
data increased, the frequency that the estimated data has a much
higher energy than is correct is also increased. This seems to happen
more with higher values of the magnitude exponent. This is seen
most clearly when 80% of the data is missing, where a magnitude
exponent of 0.5 performs much better than higher values.

Next, we will discuss how the number of basis vectors affects
performance. In Figure 6, we see that as the amount of missing data
increases, the optimal number of basis vectors decreases monoton-
ically from 32 to 4. With small amounts of data missing, a higher
number of basis vectors, perhaps corresponding to the number of in-
struments or notes in the sample, performs well. But as the amount
of missing data increases, over-fitting becomes an issue, and we
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again see that data estimates being much higher than the correct
value become more common with higher values of basis vectors.
Here is a summary of the music interpolation results:

e The best overall parameters, with respect to maximizing the
SNR, for interpolating 80% of missing data were a (8 of 1,
a magnitude exponent of 0.5, a window size of 4096 points,
and a basis vector count of 4.

e As the amount of missing data increased, the optimal value of
the magnitude power and the number of basis vectors tend to
decrease.

e As the number of basis vectors increase, the variance of re-
sults dependent on the initial values of the basis and weight
matrices tends to decrease.

5. CONCLUSION

In this paper, we have seen how parameters and test conditions af-
fect performance for NMF-based single-channel speech separation
and music interpolation. Specifically, we analyzed the 3, magnitude
exponent, and window size parameters and the TMR’s and genders
of the sources for speech separation, and the 3, magnitude expo-
nent, number of basis vectors, and window size parameters and the
amount of missing data for music interpolation. We hope that our
goals of explaining how parameters affect performance will not only
provide optimal parameter choices for these applications, but that
the explanations of the data will also provide a deeper understanding
and a better intuition of NMF parameters for other applications.
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