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ABSTRACT

In this paper, we propose an adaptive time-frequency reso-
lution approach for the single channel source separation prob-
lem. The aim is to improve the quality and intelligibility of
the separated sources by adapting the time-frequency resolu-
tion of the analysis window to the characteristic of the signal
under consideration. The results evaluated on a large test set
show the improvements obtained by the proposed algorithm.

Index Terms— Non-negative Matrix Factorization, sound
source separation, adaptive time-frequency resolution

1. INTRODUCTION

Audio source separation has been used in many applications
such as structured audio coding, automatic transcription of
music and robust speech recognition.

In this paper we focus on the separation of two speakers
from a single monophonic recording. Even though a human
listener can easily attend to one speaker or the other, the de-
sign of a computational system that has that ability is still an
open problem in audio research.

A vast amount of research has been conducted both in
blind [1] and supervised [2] single channel audio source
separation. Among these, Non-negative Matrix Factoriza-
tion (NMF) has been widely preferred for its simplicity and
efficiency to factorize the mixture signal into a linear com-
bination of basis vectors under non-negativity constraints of
output matrices [1], [2]. Usually, NMF is applied on the fixed
resolution time-frequency representation of the mixture sig-
nal. However, it is well known that vowels can be stationary
over long segments, thus employing longer windows leads to
improved frequency resolution. On the other hand, the tran-
sients smear the time resolution and require to be analyzed in
shorter windows [3]. Therefore, it is desirable to change the
time-frequency resolution of the mixture signal adaptively
based on the signal characteristics.

In this paper, we propose an adaptive time-frequency res-
olution based single channel supervised source separation
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scheme using NMF in order to enhance the separation qual-
ity. The learning approach benefits from knowledge extracted
from each speaker’s utterances outside of the input samples
based on the method proposed in [2]. The adaptation is based
on the maximal energy compaction principle method pro-
posed in [3]. We run multiple instances of NMF algorithm
on the same mixture signal with different time-frequency
resolutions. We mix the separated source signals obtained
from different time-frequency resolutions to obtain minimal
smearing both in time and frequency directions. We show
that the proposed method leads to an increase of 1-3 dB in
Signal-to-Distortion-Ratio (SDR) and Signal-to-Interference
Ratio (SIR) relative to the fixed time-frequency resolution
approach.

2. SOURCE SEPARATION USING NON-NEGATIVE
MATRIX FACTORIZATION

In this section, we describe the non-negative matrix factoriza-
tion (NMF), which we will employ as the core of our source
separation algorithm.

NMF based source separation algorithms aim to factorize
an observed magnitude spectrogram matrix X € R¥*7T as a
product of two non-negative matrices W € RF*® and H ¢
REXT guch that
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where W{f, r] denotes the f—th frequency of the r—th audio
component, H [r, t] is the gain of the r—th component in t—th
time frame and R is the number of audio components. Using
prior information, as shown in section 4.1, audio components
belonging to the same source are clustered into a single group
and they collectively define that source in the mixture. The
optimization objective is to minimize the reconstruction error
as measured by a Kullback-Leibler-like divergence measure
which is defined as:
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This function is optimized using multiplicative update rules
for the two factors W and H:
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Both of these updates are applied iteratively until the two fac-
tors converge [4].

3. ADAPTIVE TIME-FREQUENCY RESOLUTION

The main problem with the fixed time-frequency resolution
Short Time Fourier Transform (STFT) is the smearing of sig-
nal energy. Smearing in frequency can prevent distinguish-
ing closely spaced harmonics and smearing in time can af-
fect estimation of positions and durations of transients. When
used in the context of source separation, this smearing pro-
hibits accurate editing in the time-frequency space and can
impede performance. Our objective in this paper is to allevi-
ate that problem by estimating the smearing amount for dif-
ferent fixed time-frequency resolutions and selecting the res-
olution that minimizes smearing in both time and frequency.

We use the maximal energy compaction principle method
proposed in [3] for varying the time-frequency resolution
adaptively. This approach estimates the sparsity of different
time-frequency resolutions and mixes them accordingly so
as to obtain minimal smearing both in time and frequency
directions.

3.1. Maximal Energy Compaction Principle

In this section, we describe the maximal energy compaction
principle proposed in [3]. First, we calculate the fixed time-
frequency resolution STFT coefficients for different resolu-
tions using time-domain windows of varying length. The hop
size and the frequency grids should be equal for all L STFT
resolutions in order to ensure that all STFT squared magni-
tudes |X;|?,1 = 1---L are calculated in the same grid of
time-frequency locations. In order to achieve that, we also
zero pad the smaller STFT windows to ensure that all of the
STFTs will have the same number of frequencies.

In order to estimate the sparsity in a rectangular grid 2 =
P x @ around a specified time-frequency bin (f,t), we used
three different methods which are compared in [5]. The first
method computes the Ly norm over L; norm of squared STFT
magnitude | X;(f,t)|? in the grid Q as:
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where [ denotes a fixed time-frequency resolution. The sec-
ond method is based on kurtosis:
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where X is the sample mean of squared STFT magnitudes
| Xi(f,t)|? in the grid Q. The third method is based on en-

tropy:
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All the methods mentioned above are widely used as sparsity
measures in different applications [5].

3.2. Resolution Selection Algorithm

In order to obtain the optimal resolution at every time-
frequency bin ( f,t) we consider a rectangular area ) around
this point. There is a trade-off between selecting a small
or a large area. If the area is small, there won’t be enough
coefficients to calculate a robust estimate of energy smearing.
If it is too big, it will not be a local estimate.

In order to avoid hard switching from one resolution to
another we mix the magnitude coefficients from different res-
olutions. The mixing is performed by a weighted sum of the
spectrogram coefficients:
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where | X;|? is the squared STFT magnitude for the [—th fixed
time-frequency resolution and the mixing weights are calcu-

lated as: Sif.1]
it
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Si[f,t] is a measure of sparsity calculated using one of the
three methods explained in Section 3.1.

4. PROPOSED METHOD

In this section, we will introduce a way to incorporate adap-
tive time-frequency resolution when performing separation
from monophonic mixtures of known speakers. This pro-
cess involves learning NMF codebooks of known speakers at
different time-frequency resolutions, applying these on cor-
responding spectrograms of a mixture to extract speaker es-
timates, and finally adaptively interpolating the output from
the multiple resolutions to obtain more robust estimates of
the sources.

4.1. Separation of Known Speakers

In [2], it is shown that once the basis functions of each speaker
are known they can be used to reconstruct the speaker’s sig-
nal from a monophonic mixture. Based on the work [2], the
bases learned separately from the male (W,,) and the fe-
male (W.) speakers are used to reconstruct the source signal
from their mixture. This can be performed by learning each



speaker’s NMF bases from matrices containing their magni-
tude spectrograms X,,, and X, using the method shown in
Section 2. By combining these bases we obtain a union of the
bases W = [W,, W_] which is of size M x 2R. We can
then take a mixture of the known speakers uttering unknown
phrases x(t), and perform NMF on its spectrogram X by fix-
ing the bases to W and learning their weights H. Upon con-
vergence we segment H in two parts H = [H,,,H.] T, each
corresponding to one speaker. We can then estimate the con-
tribution of each speaker in the mixture magnitude spectro-
gram X using only the individual speaker bases and weights
by: X,, = W,,H,, and X, = W_H...

4.2. Mixing the Single Resolution Results

Building filter banks with variable time-frequency resolution
has been commonly addressed for audio compression meth-
ods [6]. However, these approaches are limited by the fact
that compression requires to keep the size of the data rep-
resenting the signal at a minimum. On the other hand, au-
dio processing methods such as source separation can benefit
from redundancy which leads to multi-resolution framework
presented here. In Fig. 1, the same NMF-based source sepa-
ration algorithm is running with several parallel instances on
different fixed time-frequency resolutions of the same input
mixture signal. In the figure, only two resolutions are de-
picted for clarity, but the framework can be extended to any
number. First, STFTs with different time-frequency resolu-
tions (ST FT; and ST FT») are applied on the mixture signal
in order to get the mixture spectrograms of different time-
frequency resolutions (X1 (f,t) and Xo(f,t)). NMF-based
separation is applied on the resulting mixture spectrograms
X1(f,t) and Xo(f,t) independently in order to obtain es-
timated source spectrograms as shown in the previous sec-
tion. The source spectrograms X, 1 (X, 2) and X, 1 (X 2)
represent the estimated source spectrograms of male and fe-
male speakers obtained by applying NMF to X; (X5), respec-
tively. An inverse STFT (ISTFT) is then performed on each
source spectrogram in order to get the time-domain estimates
of the source signals. Note that 5, 1(t) (3,1(t)) and 5, 2(¢)
(8¢,2(t)) correspond to the time-domain estimates of the male
(female) speaker using different time-frequency resolutions.
Our goal is to combine the source signals from different res-
olutions in order to achieve an optimally compact represen-
tation in each part of the time-frequency plane. This com-
bination is performed as in [3] by an additional filter bank,
with a fixed time-frequency resolution that transforms these
resulting signals into time-frequency coefficients on the same
time-frequency grid as in the analysis steps. The mixing is
performed based on the analysis of sparsity of the signal in a
time-frequency area as described in Section 3.1. The ISTFT
is then applied on the mixed STFT coefficients in order to
estimate the source signals.
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Fig. 1. General scheme for source separation using adaptive
multiresolution NMF.

4.3. Resynthesis of the Source Signals

The time-domain estimates of the sources (8,,(t) and 8.(t))
are obtained by calculating masks for each source by com-
paring the estimated spectrograms (X, and X,), so that each
spectrogram bin is assigned to each speaker proportional to
the power of the estimated speaker spectrogram. We then
apply a spectral filter on the mixture spectrogram X based
on these masks and compute the inverse filtered spectrograms
using the phase of the mixture [1].

5. SIMULATION RESULTS

To test the proposed method, monophonic mixtures are syn-
thetically generated by summing two different but equal
length sentences uttered by male and female speakers from
the TIMIT database. A training data of length 10 sec is used
for each speaker in order to learn the bases of each speaker.
The length of the evaluation sentences are 2 to 3 sec long.
All the audio files are sampled at 16 kHz. Evaluation of the
quality of speech separation algorithms is performed using
Signal-to-Distortion-Ratio (SDR), Signal-to-Interference-
Ratio (SIR) and Signal-to-Artifacts-Ratio (SAR). We used
MATLAB routines for computing these criteria obtained
from the SISEC’08 web page [7] and reported the results in
terms of SIR, SAR and SDR.
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Fig. 2. The separation results in terms of (a)SDR, (b) SIR, (c) SAR for various number of bases per each source.

The separation is performed using the method described
in Section 4 by adaptively choosing the time-frequency res-
olution. We calculate the STFT with three different window
sizes: 512, 1024 and 2048 samples. Time-frequency magni-
tudes are calculated on the same grid by zero padding win-
dowed signals and using equal STFT analysis hops of length
256 samples for every resolution. We performed NMF sepa-
ration using the number of bases as R = [1, 10, 20, 80, 200].
We averaged the separation results from a set of five runs of
five randomly selected pairs of male/female speakers from the
TIMIT database. To obtain the optimal resolution at every
point (f,t) of the time-frequency plane we consider a rect-
angular area ) around this point with various sizes. The
length of the rectangular grid is selected as the combinations
of @ = {3,53,103} time frames and P = {3,53, 103} fre-
quency bins around the point of interest. We couldn’t see
significant difference if we change the size of the rectangular
area (2, but we get the slightly best results when we use 3 time
frames and 103 frequency bins around each time-frequency
bin for computing the sparsity. In Fig. 2, the SDR, SIR and
SAR results obtained by the proposed method are displayed,
respectively. The horizontal axis displays the number of bases
per each source. In the figure, the results obtained by fixed
time-frequency resolutions are also plotted to show the im-
provement by mixing the fixed time-frequency resolution re-
sults in an adaptive way. As it can be seen from the figure,
the proposed method increases the separation quality by 1-3
dB in terms of SDR and SIR for R > 10. On the other hand,
the SAR results seem to be the average of the SAR values
obtained by the fixed time-frequency resolutions for R > 20.
The results obtained by using different sparsity measures are
displayed for comparison. We observe that if we compute the
sparsity using entropy measure, we get a slightly better sepa-
ration performance.

6. CONCLUSION

In this paper, we have presented an adaptive time-frequency
resolution supervised method for separating known types of
sounds from a single observation. We observed an improve-
ment of 1-3 dB in terms of SDR and SIR relative to the fixed
time-frequency resolution separation results. The future work
will address extension of the method into convolutive meth-
ods and decreasing the computational complexity.

7. REFERENCES

[1] M.N.Schmidt and M.Mgrup, “Nonnegative matrix factor 2-D
deconvolution for blind single channel source separation,” in
Proc. of ICA’06, Charleston, SC, USA, 2006.

P. Smaragdis, “Convolutive speech bases and their application
to supervised speech separation,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 15, no. 1, January 2007.

(2]

[3] A. Lukin and J. Todd, “Adaptive time-frequency resolution for
analysis and processing of audio,” 120th Audio Engineering So-

ciety Convention, Paris, France, May 2006.

[4] D.D.Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” Adv. Neural Inform. Syst., vol. 13, pp. 556-562,

2000.

N. Hurley and S. Richard, “Comparing measures of sparsity,”’
in IEEE Workshop on Machine Learning for Signal Processing,
2008, pp. 55-60.

T. Painter and A. Spanias, “A review of algorithms for per-
ceptual coding of digital audio signals,” in 13th International
Conference on Digital Signal Processing, 2-4 July 1997, vol. 1,
pp- 179-208.

“Signal separation evaluation campaign (SISEC 2008),” Avail-
able: http://sisec.wiki.irisa.fr, 2008.

(5]

(6]

(7]



