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ABSTRACT

Classifying the acoustic environment is an essential daatmacti-
cal supervised source separation algorithm where a motteliied
for each source offline. In this paper, we present a clas8dita
scheme that is combined with a probabilistic nonnegativeirtac-
torization (NMF) based speech denoising algorithm. We rhtioe

The main practical issue of the supervised approachestithina
required prior information on the noise type and speakentitiehas
to be estimated online since this information is usuallyawatilable
in an online system. This task can be solved using a builtasst-
fication scheme [2], or using an external environmentalenoigssi-
fication algorithm, e.g., [8]. In this paper we propose a pinlistic
built-in classification technique that is integrated intepeech en-

acoustic environment with a hidden Markov model (HMM) whose hancement system.

emission distributions are assumed to be of NMF type. Weveeri
a minimum mean square error (MMSE) estimator of clean speec

signal in which the state-dependent speech estimatorseighied
according to the state posterior probabilities (or prolit#s of dif-
ferent noise environments) and are summed. Our experirsbots
that the proposed method outperforms state-of-the-adtaobally
and that its performance is very close to an oracle case where
noise type is known in advance.

NMF is a technique to approximate a nonnegative mafias
Q product of a basis matri® and an activation matri¥, i.e., Y ~
BV [9]. In speech processind, is usually the spectrogram of the
speech signal. NMF has been recently used to estimate tha cle
speech from a noisy observation [3,4,6,10]. A main focus astof
these approaches is to use the temporal dynamics in an NsEgba
speech denoising or separation algorithm [4, 6, 11].

When applied to the speech source separation, a good separa-

Index Terms— Nonnegative matrix factorization, acoustic en- tion can be expected only when speaker-dependent basizesatr

vironment classification, supervised speech enhancement

1. INTRODUCTION

In this paper, we develop a single-channel speech enhancays

tem in which a supervised noise reduction approach is coeabin

with an environmental noise classification technique. Sucolu-
tion is of interest for different applications such as hegids and
speech communication over telephone and internet.

In general, speech enhancement methods can be categotized

two broad classes of unsupervised and supervised appathe
the unsupervised methods, e.g., Wiener filtering and methaded
on super-Gaussian prior distributions for speech DFT aeffts

[1], estimation of the clean speech signal is carried ouhevit any

prior information on the noise type. For the supervised mash

on the other hand, speech and noise models are trained affling

some training data. Then, assuming that the noise type isrkribe

noise reduction task is performed. Some examples of this @&
algorithms include hidden Markov model (HMM) based meth@ils
and NMF-based techniques [3, 4].

are learned. However, for the noise reduction even if a usale
speaker-independent basis matrix of speech is learned & goo
hancement can be achieved [4]. In some cases when the ritigrfe
noise exhibits speech-like properties, e.g. babble nosbave a
better enhancement additional constraints should be ietbogo
NMF. For example, assuming that babble waveform is obtaased
a sum of different speech signals a nonnegative HMM is pregos
in [7] to model the babble noise in which babble basis is idahto
the speech basis. The obtained babble model is then usedise de

-a noise reduction method.

The available NMF-based noise reduction systems suffen fro
the problem that they either need some a priori informatiat is
difficult to obtain in practice or they are not appropriate doline
applications. For example, the approach presented in [3ilisap-
plicable in batch mode, meaning that the whole noisy signalsk
sumed to be observed for the purpose of enhancement. Likewis
the semi-supervised approach proposed in [10], althoudibeis not
need to know the noise type in advance, requires the entersp
gram of the noisy signal to denoise the observed signal.

Methods proposed in [4,6,12] require to know the noise type i

The main difficulty of the unsupervised methods is the noiseddvance to use noise-dependent basis matrices to enhanceisly

power spectral density (PSD) estimation, e.g. [5], which hal-
lenging task for non-stationary background noises. Onarsdge
of the supervised methods is that there is no need to estithate
noise PSD using a separate algorithm. Moreover, the sigaehap-
proaches have been shown to produce better results contpete
unsupervised methods [2, 6, 7].

signal. For some applications where user is allowed to ah@os
scenario from a given set, this assumption can be feasibtav- H
ever, in general, a separate environmental noise classifeenoise-
independent basis matrix have to be used in these approtches
used in practice.

In this paper, we further develop our proposed method ind4] t



design a noise reduction system in which the noise-typetikmawn
in advance. In the proposed method, the temporal depereteacd
used to construct informative prior distributions to be lagbin a
Bayesian formulation of NMF (BNMF). In contrast to [4], theqr
distributions are signal to noise ratio (SNR) dependentre/i8\NR
is estimated online from the noisy mixture. Then, we develop
HMM with output density functions given by the BNMF to design
simultaneous noise classification and reduction systemdéfiee a
minimum mean square error (MMSE) estimator for the speagptasi
in which the noise type does not need to be known a priori. ¢n th
proposed scheme, the classification is done using the nomyt i
and is not restricted to be applied at only the speech passitssa
in [2]. We evaluate the proposed system in different noigel$eand
compare its performance to state-of-the-art and showttlsatliearly
superior to the competing methods.

2. SIMULTANEOUS NOISE CLASSIFICATION AND
REDUCTION USING BNMF-HMM

We explain our proposed method to perform simultaneousenois
classification and suppression in this section.
to model the acoustic environment where each state of the HM
corresponds to a noise type. Given the hidden state, we ntioglel
noise magnitude spectrogram using a probabilistic NMFliabe
explained in this section. Also, all the states share somenzan

parameters that include an NMF model for the speech magnitud

spectrogram and an estimate of the long-term signal to maise

We use an HMl\@lces’), while forbx; andv;: they are gamma density functions. Full

We assume that each element of the basis m&rand activation
matrix V are drawn from a gamma distribution as follows:

f (vit) = G (vit; Git, Ot [ it )
J (bri) = G (bris Yri, Yri /Uri)

in which G (v;¢,0) = exp((¢p —1)logv — v/0 — logT (¢) —
¢log ) denotes the gamma density function withas the shape
parameter ané as the scale parameter (thus mean value is given by
¢0), andI (¢) is the gamma functiong, 6, ¢ and~ are referred to
as the hyperparameters.

Next, we need to infer the posterior distribution of the ableés.
As the exact Bayesian inference is intractable for (1), 24 (3)
a variational Bayes approach has been proposed in [13] &irpbt
the approximate posterior distributions of the variablekence, in
an iterative scheme the current parameters of the postistibu-
tions of Z are used to update the parameters of the posterior distribu-
tions of B andV, and these new parameters are used to update the
posterior distributions o% in the next iteration. The iterations are
carried on until convergence. The posterior distributitorsz .,
re shown to be multinomial density functionsiénotes 'all the in-

®)

details of the update rules can be found in [13]. This vaorsl
approach is much faster than an alternative Gibbs sampidrijta
computational complexity can be comparable to that of thed¥iti-
mate of the parameters (KL-NMF).

(SNR). Having this setup, we derive an MMSE estimator for the2.2. BNMF-HMM Structure

clean speech signal that is conditioned on the observeg sigjsal.

2.1. A Probabilistic Nonnegative Factorization

Compared to the deterministic formulations of NMF, e.qg, §&prob-
abilistic NMF provides an easier way to incorporate our ipkimow!-
edge about the sources. Moreover, we can derive optimah&ss
of the desired signal, e.g., MMSE estimate, in a probakilfsame-
work. Therefore, in this paper we assume that the speecbkenoi
and noisy magnitude spectrograms are random variableh. tEae-
frequency bin of a spectrogram is assumed to be a sumlatent
variables as:

@)

I
Yt = g Zkity
i=1

wherek andt¢ denote the frequency and time indices, respectively
and each hidden variableis assumed to be drawn from a Poisson
distribution whose mean value is given byv;+, i.e.,

I (2rit) (brivie)* ¥ €~ "% [ (ziae!) (2
wherez! is the factorial ofz. Using the properties of the Poisson
distribution we can see thai.; is also drawn from a Poisson distri-
bution whose mean value is given By, by;vi:. We use this mean
value to provide an NMF approximation of the observed datet-W
ing in matrix form we havé¥’ ~ BV whereY = [yx:], B = [bk],
andV = [vi]. The maximum likelihood (ML) estimates of the
parameterd8 andV can be obtained using an EM algorithm [13],
and the result is identical to the well-celebrated muitigiive update
rules for NMF using Kullback-Leibler (KL-NMF) divergencé]

To provide a way to impose our prior knowledge into the factor
ization, the nonnegative factors are further assumed ttdobastic.

In this section, we describe the proposed BNMF-HMM method.
Let us considerM noise types for which we are able to gather
some training data. We first use some appropriate trainitg ta
obtain a BNMF model for each type of the considered noises and
for the speech signal offline. Here, we consider a generalksgpe
independent model of the speech signal, which does notdinte
any limitation in the approach.

The structure of the BNMF-HMM is shown in Fig. 1. Each state
of the HMM has some state-dependent parameters, which stre ju
the noise BNMF model parameters. Also, all the states stame s
state-independent parameters, which consist of the sp2iR&hF
model and an estimate of the long-term SNR that will be used fo
the enhancement. To complete the Markovian model, we predefi
state transition matrix whose diagonal elements are sene igh
values, and the rest of its elements are set to some smatis/alich
that each row of the transition matrix sums to one. Moreozach
element of the initial state probability is also setjG\/.

We model the magnitude spectrogram of the clean speech and
noise signals by (1). To train a BNMF model, we need to obtaén t
posterior distribution of the basis matrix. During the tiag, we
assign some sparse and broad prior distributio® é&md'V accord-
ing to (3). After convergence of the variational Bayes apphy the
posterior distributions of the noise basis mat@®’) and speech
basis matrix B(*)) are stored to be used for the enhancement.

Let us denote the hidden state variable at tinfy x; that can
take one of the possible outcomes= 1,2, ... M. Also, we show
the magnitude of the discrete Fourier transform (DFT) coieffits
of the speech, noise, and noisy signalsSy [s:],N = [ny:] and
Y = [yxt], respectively. The vector of noisy DFT magnitudes, given
the statex;, is approximated ag: = s: + n;. To obtain the state-
dependent distribution of;, the parameters of the speech and noise
basis parameter®(*), B(™)) are concatenated to get the parameters
of the noisy basis matriB, i.e.,B = [B() B(™)]. Now, Eq. (1) is
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Fig. 1. A block diagram representation of BNMF-HMM with three
states.
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Fig. 2. The posterior distribution of the activation¥’) at past time
frames are widened and are used as the prior distributianthéo
current time instance in a Bayesian framework. In this eXxantpe
mean value of the prior and posterior are the same while thi@nee
of the prior is increased to reflect a higher uncertainty.

posterior distributions oB andv;, which are denoted b3’ and
vy, respectively, af (yx: | ¢) ~ f (yxe | B', vi, ). The state-
dependent MMSE estimate of the speech DFT magnitdd@es; |

whereI®and I™ are the number of the speech and noise basig:, y+) in (8) can be obtained using the variational Bayes approach

vectors, respectively. As a result of (4), the distributddrthe noisy
DFT magnitudes is given by

e

ykt!

f(ykt | xt7B7vt) = (5)

)

where\,, = >, brivi.. Note that to keep the notations uncluttered
in (5) we skip writing the state-dependency Bf explicitly. The
state-conditional likelihood of the noisy signal can nowcbenputed
by integrating oveB andv., as:

Fons o0 = [ [ 1| Bovican) £ (Bovi | a0) dBav..
(6)
The distribution ofy: is obtained by assuming that different fre-
guency bins are independent:

Fyelme) =TT/ (wre | o). O
k

2.3. Speech Enhancement Using BNMF-HMM

As the first step of the enhancement, variational Bayes agprs
applied to approximate the posterior distributions of thgvation
vectorv; by maximizing the variational lower bound on (7). Here,
we assume that the state-dependent posterior distrilsutitB are
time-invariant and are identical to those obtained durtmg train-
ing. Moreover, we use the temporal dynamics of noise andcspee
construct informative prior distributions far;, which is explained
later.

The MMSE estimate of the speech DFT magnitudes can b
shown to be [7]:

S & (v ) B (ske | 20, y1)

S & (v )
wheres; (e, z:) = f(ye,xe | yi71) = f(ye | o) f(e | yih),
yiTl = {y1,...ye—1}. Here,f(x: | yi~') is computed using the
forward algorithm [14]. Since (6) can not be evaluated atizify,
we approximate it by evaluating the integral at the meanevafitthe

®)

Skt = E(Skt | }’t)

I

and is given by [4]:
e

1(8) 4 1(n)

i=1

E(log by +logvis|ze,yt)

9)

E (skt | wt,yt) = Ykt -

Z eE(logby;t+logvit|wt,yt)
The time-domain enhanced speech signal is reconstruciegl the
noisy phase information. When the posterior distributiofithe ba-
sis and activation matrices are very sharp (which happedor
large shape parameters in the gamma distribution), Eq.ak@sta
simple form of a Wiener filterinty

We can us€: (y:, x+) to classify the underlying noise type more
explicitly. For this purpose, we compute the state postgriobabil-
ity as:
f(yh:ct | yiil)

t—1
1

(10)

£zl y1)

B Zztf(yhxtly )

f (= | yi) is the probability of each noise type given all the
past noisy observations. Another likelihood-based di@ssions has
been used in [2] for HMM-based denoising systems. Here,@esin
noise HMM is selected during periods of speech pauses argkis u
to enhance the noisy signal until the next speech pause whew a
selection is made. In contrast, our proposed classificatiqiiO)
does not need any voice activity detector.

2.4. SNR-dependent Prior Distributions

To apply variational Bayes to the noisy signal, we can usddhe
poral dependencies of data to assign prior distributiotisé@ctiva-
gonsw. For this purpose and also to account for the non-statignari
of the signals, we obtain a prior far; by widening the posterior
distributions ofv:_;. Fig. 2 demonstrates such an approach us-
ing a toy example. Let the state-conditional prior disttibas be:
fir | ) = G(vie; Git|we], Oit[xe]/ Pit[x]) whose mean value
is given byé;.[x+]. We update this mean value recursively as:

Oit [x¢] = a1 [xe] + (1 — @) E (Vig—1 | ye—1,2¢), (11)

L v is drawn from a gamma distribution whose shape parameteryjs v
large, we can writé?(log v) ~ log(E(v)).
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Fig. 3. An empiricala-SNR curve that is used in our experiments.

where the value aof controls the smoothing level to obtain the mean

value for the prior distribution. Depending on the nonistadrity of

the signals, different shape parameters are used for tleis@and
noise activations. Also, a single constant parameter id tmeall

the activations corresponding to one source. We learn thiepeter
at the end of the training stage by computing the averagel tffiel
shape parameters of the activation posterior distribation
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Fig. 4. Magnitude spectrogram of a sample clean speech, noisy
speech, and enhanced speech signals in top, middle, andijodin-
els, respectively. For this example, factory noise is adddide clean

Our experiments show that the optimal amount of smoothingspeech signal at 5 dB input SNR.

in (11) depends on the long-term input SNR. For low SNRs (high
level of noise) a strong smoothinge (— 1) improves the perfor-
mance by reducing unwanted fluctuations while for high SNRs a
milder smoothing is preferredy(— 0). The latter case corresponds
to obtaining the mean valug directly using the information from
the previous time frame. Here, in contrast to [4], we use a SNR
dependent value for the smoothing factor. Fig. 3 shows anSNR
curve that was obtained in our computer simulations andes urs

our experiments.

To calculate the long-term SNR from the noisy data, we imple-
mented the approach from [15] that works well enough for aur p
pose. This approach assumes that the amplitude distnibafithe
clean speech signal is a gamma distribution with a smallesipap
rameters (around 0.4) while the additive noise is assumled @aus-
sian. The noisy signal is assumed to be gamma-distributexsevh
shape parameter is uniquely determined from the long-telR.S
Promising results have been reported for different noipegy15].

3. EXPERIMENTS AND RESULTS

This section presents and discusses the results of ourieqrgs.
We evaluated the proposed approach for three noise typasehe
resulting to a BNMF-HMM with three states. We considerecéhr
non-stationary noises including factory and babble froml SEX-
92 database and city traffic from Sound Ideas database. Thbeetu
of the basis vectors in the models were set using simulationa
small development set. We trained 100 basis vectors for eaisie
type. Also, we trained 60 basis vectors for a speaker-inuidge
universal speech model using the training material fromTtinI T
database.

We implemented a variety of NMF-based denoising algorithms
for the purpose of comparison. We also considered a speect: sh
time spectral amplitude (STSA) estimator using super-Gauns
prior distributions in our experiments. These algorithrtisrde
BNMF-based, two NMF-based, and one speech STSA estimator)
are described in the following.

1. BNMF-HMM in which we used (8) where the underlying
noise type in not known a priori

6.

is learned using training data from all the considered noise
types.

. Oracle BNMF that is similar to BNMF-HMM but an oracle

classifier is used to choose a noise model (and a pre-trained
basis matrix) for enhancement instead of the proposediclass
fier. Therefore, this approach is an ideal case of the BNMF-
HMM.

. Oracle ML in which the multiplicative update rules of the-K

NMF in combination with a soft Wiener-type filtering is used
to enhance the noisy signal. Similar to the oracle BNMF,
the approach assumes that the noise type is known for the
enhancement.

. Oracle NHMM: this is basically the supervised causal

NHMM in which the noise type is assumed to be given in
advance. This approach is a modified version of [10] where
we used a causal implementation of the method to denoise
the signal. This modification is done to make the approach
applicable for a scenario where we do not have access to
future observations. To achieve causality, we simply regala

the forward-backward algorithm with forward algorithm in
which the activations from the previous timestamps were
used to initialize the current ones. We trained one universa
NHMM (100 states with 10 basis each) for speech and one
single-state NHMM for each noise type. The number of basis
vectors for the noise models were set experimentally. We
trained 100 basis vectors for the factory and city trafficeei
and 30 basis vectors for the babble noise.

STSA-GenGamma [1], which is a speech STSA estimator us-
ing super-Gaussian priors. We used [5] to track the noise
PSD, and we sey = v = 1 since it is shown to be one

of the best alternatives [1]. This algorithm is considened i
our simulations as a state-of-the-art benchmark to compare
NMF-based systems.

All the signals were down-sampled to 16-kHz in our experi-

ments and the DFT was implemented using a frame lengti ®f

2. General-model BNMF that is a one-state BNMF-HMM samples witt60% overlapped Hann windows. The signal synthesis
where a single general noise dictionary with 200 basis vecto was performed using the overlap-and-add procedure. Thetest
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) o Fig. 6. long-term SNR, Segmental SNR (SegSNR), and PESQ im-
Fig. 5. SDR, SIR, and SAR values as objective measures to evaluaiovements gained by the enhancement systems.

the denoising algorithms. We used "oracle” to point out tthegt
noise type and its basis matrix is known for the speech ermaet.
The evaluation is performed for 192 sentences and the searét
averaged over different sentences and noise types. FolxRea8d
SIR, improvements gained by the enhancement systems axa.sho

in the nonnegative matrix factorization. It might be poksito get
a better performance using a general noise model by addimg mo
constraints into NMF, such as sparsity.
Fig. 6 shows our experimental results for long-term SNR; seg
mental SNR (SegSNR) that is limited to the rarjge 0dB, 30dB],
set of the TIMIT databasel§2 sentences) was used to evaluate theand perceptu(al egvalua?[ion of speech quality (ggE%Q) 7ASI‘itlI]Ea
performange of the algorithms. le wh hi seen in the figure, the BNMF-based methods have led to the high
Fig. 4 demonstrates an example where BNMF approach is usegy sNR| SegSNR and PESQ improvements. The figure shows that

to enhance a noisy signal. For this case, a female-uttessttBsig- ;5016 BNMF and BNMF-HMM methods are superior to the other
nal is degraded with factory noise at 5 dB input SNR. As theréigu approaches and verify the results seen in Fig. 5.

shows, the approach has reduced the noise significantlyutaesto Fig. 7 provides the result of another experiment where we-stu

interference ratio (SIR) in the order of 11 dB) while the sgesig- o4 the performance of the noise classification separafelyeduce
nal remains highly undistorted (a source to artifact refiaR) of 13 the fluctFl)Jations and to have a clearer representati(?n i]s@r)fothed
dB). . . . oo . X

. . . . over time and is depicted in this figure. For this experimspeech

Fig. 5 shows the source to distortion ratio (SDR), SIR, aniRSA was degraded by dFi)fferent noisesg(babble factoryp andtrgﬁic)
from BSSEval toolbox. A high value for all of these measures is separately at 0 dB input SNR. Then, the cylassifier’is appliettie
Slheswed. Tr:"S f;]gure shovxf[s SDtR an?I Sl? |Tprovements obtdiged noisy signal and the probability of each possible noisesc(asb-
€ sopeec en ancemehn Syﬁ ergle\(;Ichsn y('j lqorith ble, factory, and city traffic) is computed and is shown infibere.

or 1 utrhexptirlment;shs dOWIt at Heul ) asel aB(‘?\(I)I\r/IItF ms daé%i/lljpeAs it can be seen, the classifier works reasonably well in rgéne
rior to the other methods. In particular, oracte t an Most of the wrong classifications correspond to the case evtrer
HMM are the best_algorlt_hms. T_he dlffer_ence |r_1_the perforoean true noise is confused with babble noise. One reason focdmgi-
of these twg.alg.orlthms IS margmgl, which verifies that tie-p sion is perhaps due to the nature of babble noise. If the -sinogt
posed classification scheme is working successfully. Welsmsee spectral properties of the noise are not very different ftbose of
_that the NMF-based algorithms outperforn_w the STSA'GenG_ammbabble, the union of speech and babble basis vectors caaiezply
in most of the cases. The only exception is that ML-NMF gives anoisy signal by providing a very good fit to the speech parbuih,

worse SDR improvement at high input SNRs, which is mainlysue as shown in Fig. 5 and Fig. 6, this confusion has reduced tfs®no
a small noise suppression (small SIR value). This is becthgsien- reduction perfo?;nance on?); m’arginally

portant temporal dependencies are ignored in ML-NMF. Meeeo
the speech reconstruction rule, soft Wiener filtering, isomtimal
in this case. 4. CONCLUSIONS

Another interesting result is that the oracle NHMM and gaher
model BNMF methods lead to similar SDR values. However,ghes We presented an approach to integrate environmental ntase c
two methods process the noisy signal differently. NHMM noeth ~ sification and NMF-based speech enhancement. In the prdpose
does not suppress a lot of noise while it does not distortpeech  method, acoustic environment is modeled using a discretéHM
signal either (i.e., SAR is high). This is reversed for theegal-  where each state corresponds to one noise type. The deriV&EMV
model BNMF. estimate of the clean speech signal can be seen as a two step op

Finally, Fig. 5 shows that general-model BNMF leads to a wors tor in which (1) the speech MMSE estimate is calculated fothed
performance compared to the BNMF-HMM for which smaller eeis  available noise types, and (2) the probability of each nbjipe is
specific dictionaries are used. This result is in line wite tther  calculated, given the noisy observation, and is used toWeigd
observations using supervised denoising algorithms [Bls Tan be  sum the state-dependent MMSE estimates. Hence, the dedelop
explained by noting that using a large noise dictionarygases the structure performs a simultaneous noise classificatiorspadch en-
flexibility of the noise model, which in turn, increases timetaguity =~ hancement and therefore does not require to know the ngigeirty
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