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ABSTRACT

Classifying the acoustic environment is an essential part of a practi-
cal supervised source separation algorithm where a model istrained
for each source offline. In this paper, we present a classification
scheme that is combined with a probabilistic nonnegative matrix fac-
torization (NMF) based speech denoising algorithm. We model the
acoustic environment with a hidden Markov model (HMM) whose
emission distributions are assumed to be of NMF type. We derive
a minimum mean square error (MMSE) estimator of clean speech
signal in which the state-dependent speech estimators are weighted
according to the state posterior probabilities (or probabilities of dif-
ferent noise environments) and are summed. Our experimentsshow
that the proposed method outperforms state-of-the-art substantially
and that its performance is very close to an oracle case wherethe
noise type is known in advance.

Index Terms— Nonnegative matrix factorization, acoustic en-
vironment classification, supervised speech enhancement

1. INTRODUCTION

In this paper, we develop a single-channel speech enhancement sys-
tem in which a supervised noise reduction approach is combined
with an environmental noise classification technique. Sucha solu-
tion is of interest for different applications such as hearing aids and
speech communication over telephone and internet.

In general, speech enhancement methods can be categorized into
two broad classes of unsupervised and supervised approaches. In
the unsupervised methods, e.g., Wiener filtering and methods based
on super-Gaussian prior distributions for speech DFT coefficients
[1], estimation of the clean speech signal is carried out without any
prior information on the noise type. For the supervised methods,
on the other hand, speech and noise models are trained offlineusing
some training data. Then, assuming that the noise type is known, the
noise reduction task is performed. Some examples of this class of
algorithms include hidden Markov model (HMM) based methods[2]
and NMF-based techniques [3,4].

The main difficulty of the unsupervised methods is the noise
power spectral density (PSD) estimation, e.g. [5], which isa chal-
lenging task for non-stationary background noises. One advantage
of the supervised methods is that there is no need to estimatethe
noise PSD using a separate algorithm. Moreover, the supervised ap-
proaches have been shown to produce better results comparedto the
unsupervised methods [2,6,7].

The main practical issue of the supervised approaches is that the
required prior information on the noise type and speaker identity has
to be estimated online since this information is usually notavailable
in an online system. This task can be solved using a built-in classi-
fication scheme [2], or using an external environmental noise classi-
fication algorithm, e.g., [8]. In this paper we propose a probabilistic
built-in classification technique that is integrated into aspeech en-
hancement system.

NMF is a technique to approximate a nonnegative matrixY as
a product of a basis matrixB and an activation matrixV, i.e.,Y ≈
BV [9]. In speech processing,Y is usually the spectrogram of the
speech signal. NMF has been recently used to estimate the clean
speech from a noisy observation [3,4,6,10]. A main focus of most of
these approaches is to use the temporal dynamics in an NMF-based
speech denoising or separation algorithm [4,6,11].

When applied to the speech source separation, a good separa-
tion can be expected only when speaker-dependent basis matrices
are learned. However, for the noise reduction even if a universal
speaker-independent basis matrix of speech is learned a good en-
hancement can be achieved [4]. In some cases when the interfering
noise exhibits speech-like properties, e.g. babble noise,to have a
better enhancement additional constraints should be imposed into
NMF. For example, assuming that babble waveform is obtainedas
a sum of different speech signals a nonnegative HMM is proposed
in [7] to model the babble noise in which babble basis is identical to
the speech basis. The obtained babble model is then used to devise
a noise reduction method.

The available NMF-based noise reduction systems suffer from
the problem that they either need some a priori information that is
difficult to obtain in practice or they are not appropriate for online
applications. For example, the approach presented in [3] isonly ap-
plicable in batch mode, meaning that the whole noisy signal is as-
sumed to be observed for the purpose of enhancement. Likewise,
the semi-supervised approach proposed in [10], although itdoes not
need to know the noise type in advance, requires the entire spectro-
gram of the noisy signal to denoise the observed signal.

Methods proposed in [4,6,12] require to know the noise type in
advance to use noise-dependent basis matrices to enhance the noisy
signal. For some applications where user is allowed to choose a
scenario from a given set, this assumption can be feasible. How-
ever, in general, a separate environmental noise classifieror a noise-
independent basis matrix have to be used in these approachesto be
used in practice.

In this paper, we further develop our proposed method in [4] to



design a noise reduction system in which the noise-type is not known
in advance. In the proposed method, the temporal dependencies are
used to construct informative prior distributions to be applied in a
Bayesian formulation of NMF (BNMF). In contrast to [4], the prior
distributions are signal to noise ratio (SNR) dependent where SNR
is estimated online from the noisy mixture. Then, we developan
HMM with output density functions given by the BNMF to designa
simultaneous noise classification and reduction system. Wederive a
minimum mean square error (MMSE) estimator for the speech signal
in which the noise type does not need to be known a priori. In the
proposed scheme, the classification is done using the noisy input
and is not restricted to be applied at only the speech pauses as it is
in [2]. We evaluate the proposed system in different noise levels and
compare its performance to state-of-the-art and show that it is clearly
superior to the competing methods.

2. SIMULTANEOUS NOISE CLASSIFICATION AND
REDUCTION USING BNMF-HMM

We explain our proposed method to perform simultaneous noise
classification and suppression in this section. We use an HMM
to model the acoustic environment where each state of the HMM
corresponds to a noise type. Given the hidden state, we modelthe
noise magnitude spectrogram using a probabilistic NMF thatwill be
explained in this section. Also, all the states share some common
parameters that include an NMF model for the speech magnitude
spectrogram and an estimate of the long-term signal to noiseratio
(SNR). Having this setup, we derive an MMSE estimator for the
clean speech signal that is conditioned on the observed noisy signal.

2.1. A Probabilistic Nonnegative Factorization

Compared to the deterministic formulations of NMF, e.g. [9], a prob-
abilistic NMF provides an easier way to incorporate our prior knowl-
edge about the sources. Moreover, we can derive optimal estimates
of the desired signal, e.g., MMSE estimate, in a probabilistic frame-
work. Therefore, in this paper we assume that the speech, noise,
and noisy magnitude spectrograms are random variables. Each time-
frequency bin of a spectrogram is assumed to be a sum ofI latent
variables as:

ykt =
I

∑

i=1

zkit, (1)

wherek andt denote the frequency and time indices, respectively,
and each hidden variablez is assumed to be drawn from a Poisson
distribution whose mean value is given bybkivit, i.e.,

f (zkit) = (bkivit)
zkit e−bkivit/ (zkit!) , (2)

wherez! is the factorial ofz. Using the properties of the Poisson
distribution we can see thatykt is also drawn from a Poisson distri-
bution whose mean value is given by

∑

i
bkivit. We use this mean

value to provide an NMF approximation of the observed data. Writ-
ing in matrix form we haveY ≈ BV whereY = [ykt], B = [bki],
andV = [vit]. The maximum likelihood (ML) estimates of the
parametersB andV can be obtained using an EM algorithm [13],
and the result is identical to the well-celebrated multiplicative update
rules for NMF using Kullback-Leibler (KL-NMF) divergence [9].

To provide a way to impose our prior knowledge into the factor-
ization, the nonnegative factors are further assumed to be stochastic.

We assume that each element of the basis matrixB and activation
matrixV are drawn from a gamma distribution as follows:

f (vit) = G (vit;φit, θit/φit) ,

f (bki) = G (bki;ψki, γki/ψki) ,
(3)

in which G (v;φ, θ) = exp((φ− 1) log v − v/θ − log Γ (φ) −
φ log θ) denotes the gamma density function withφ as the shape
parameter andθ as the scale parameter (thus mean value is given by
φθ), andΓ (φ) is the gamma function.φ, θ, ψ andγ are referred to
as the hyperparameters.

Next, we need to infer the posterior distribution of the variables.
As the exact Bayesian inference is intractable for (1), (2),and (3)
a variational Bayes approach has been proposed in [13] to obtain
the approximate posterior distributions of the variables.Hence, in
an iterative scheme the current parameters of the posteriordistribu-
tions ofZ are used to update the parameters of the posterior distribu-
tions ofB andV, and these new parameters are used to update the
posterior distributions ofZ in the next iteration. The iterations are
carried on until convergence. The posterior distributionsfor zk,:,t
are shown to be multinomial density functions (: denotes ’all the in-
dices’), while forbki andvit they are gamma density functions. Full
details of the update rules can be found in [13]. This variational
approach is much faster than an alternative Gibbs sampler, and its
computational complexity can be comparable to that of the MLesti-
mate of the parameters (KL-NMF).

2.2. BNMF-HMM Structure

In this section, we describe the proposed BNMF-HMM method.
Let us considerM noise types for which we are able to gather
some training data. We first use some appropriate training data to
obtain a BNMF model for each type of the considered noises and
for the speech signal offline. Here, we consider a general speaker-
independent model of the speech signal, which does not introduce
any limitation in the approach.

The structure of the BNMF-HMM is shown in Fig. 1. Each state
of the HMM has some state-dependent parameters, which are just
the noise BNMF model parameters. Also, all the states share some
state-independent parameters, which consist of the speechBNMF
model and an estimate of the long-term SNR that will be used for
the enhancement. To complete the Markovian model, we predefine a
state transition matrix whose diagonal elements are set to some high
values, and the rest of its elements are set to some small values such
that each row of the transition matrix sums to one. Moreover,each
element of the initial state probability is also set to1/M .

We model the magnitude spectrogram of the clean speech and
noise signals by (1). To train a BNMF model, we need to obtain the
posterior distribution of the basis matrix. During the training, we
assign some sparse and broad prior distributions toB andV accord-
ing to (3). After convergence of the variational Bayes approach, the
posterior distributions of the noise basis matrix (B(n)) and speech
basis matrix (B(s)) are stored to be used for the enhancement.

Let us denote the hidden state variable at timet by xt that can
take one of the possible outcomesxt = 1, 2, . . .M . Also, we show
the magnitude of the discrete Fourier transform (DFT) coefficients
of the speech, noise, and noisy signals byS = [skt],N = [nkt] and
Y = [ykt], respectively. The vector of noisy DFT magnitudes, given
the statext, is approximated asyt = st + nt. To obtain the state-
dependent distribution ofyt, the parameters of the speech and noise
basis parameters (B(s),B(n)) are concatenated to get the parameters
of the noisy basis matrixB, i.e.,B = [B(s) B(n)]. Now, Eq. (1) is
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Fig. 1. A block diagram representation of BNMF-HMM with three
states.

written as

ykt = skt + nkt =

I(s)
∑

i=1

z
(s)
kit +

I(n)
∑

i=1

z
(n)
kit =

I(s)+I(n)
∑

i=1

zkit, (4)

whereI(s)and I(n) are the number of the speech and noise basis
vectors, respectively. As a result of (4), the distributionof the noisy
DFT magnitudes is given by

f (ykt | xt,B,vt) =
λ
ykt

kt e
−λkt

ykt!
, (5)

whereλkt =
∑

i
bkivit. Note that to keep the notations uncluttered

in (5) we skip writing the state-dependency ofB explicitly. The
state-conditional likelihood of the noisy signal can now becomputed
by integrating overB andvt, as:

f (ykt | xt) =

∫ ∫

f (ykt | B,vt, xt) f (B,vt | xt) dBdvt.

(6)
The distribution ofyt is obtained by assuming that different fre-

quency bins are independent:

f (yt | xt) =
∏

k

f (ykt | xt) . (7)

2.3. Speech Enhancement Using BNMF-HMM

As the first step of the enhancement, variational Bayes approach is
applied to approximate the posterior distributions of the activation
vectorvt by maximizing the variational lower bound on (7). Here,
we assume that the state-dependent posterior distributions ofB are
time-invariant and are identical to those obtained during the train-
ing. Moreover, we use the temporal dynamics of noise and speech to
construct informative prior distributions forvt, which is explained
later.

The MMSE estimate of the speech DFT magnitudes can be
shown to be [7]:

ŝkt = E (skt | yt) =

∑M

xt=1 ξt (yt, xt)E (skt | xt,yt)
∑M

xt=1 ξt (yt, xt)
, (8)

whereξt (yt, xt) = f(yt, xt | yt−1
1 ) = f(yt | xt)f(xt | yt−1

1 ),
yt−1
1 = {y1, . . .yt−1}. Here,f(xt | yt−1

1 ) is computed using the
forward algorithm [14]. Since (6) can not be evaluated analytically,
we approximate it by evaluating the integral at the mean value of the
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Fig. 2. The posterior distribution of the activations (V) at past time
frames are widened and are used as the prior distributions for the
current time instance in a Bayesian framework. In this example, the
mean value of the prior and posterior are the same while the variance
of the prior is increased to reflect a higher uncertainty.

posterior distributions ofB andvt, which are denoted byB′ and
v′
t, respectively, asf (ykt | xt) ≈ f (ykt | B

′,v′
t, xt). The state-

dependent MMSE estimate of the speech DFT magnitudesE(skt |
xt,yt) in (8) can be obtained using the variational Bayes approach
and is given by [4]:

E (skt | xt,yt) =

∑I(s)

i=1 e
E(log bki+log vit|xt,yt)

∑I(s)+I(n)

i=1 eE(log bki+log vit|xt,yt)
ykt. (9)

The time-domain enhanced speech signal is reconstructed using the
noisy phase information. When the posterior distributionsof the ba-
sis and activation matrices are very sharp (which happen forvery
large shape parameters in the gamma distribution), Eq. (9) takes a
simple form of a Wiener filtering1.

We can useξt (yt, xt) to classify the underlying noise type more
explicitly. For this purpose, we compute the state posterior probabil-
ity as:

f
(

xt | y
t
1

)

=
f(yt, xt | y

t−1
1 )

∑

xt
f(yt, xt | y

t−1
1 )

. (10)

f
(

xt | y
t
1

)

is the probability of each noise type given all the
past noisy observations. Another likelihood-based classifications has
been used in [2] for HMM-based denoising systems. Here, a single
noise HMM is selected during periods of speech pauses and is used
to enhance the noisy signal until the next speech pause when anew
selection is made. In contrast, our proposed classificationin (10)
does not need any voice activity detector.

2.4. SNR-dependent Prior Distributions

To apply variational Bayes to the noisy signal, we can use thetem-
poral dependencies of data to assign prior distributions tothe activa-
tionsvt. For this purpose and also to account for the non-stationarity
of the signals, we obtain a prior forvt by widening the posterior
distributions ofvt−1. Fig. 2 demonstrates such an approach us-
ing a toy example. Let the state-conditional prior distributions be:
f(vit | xt) = G(vit;φit[xt], θit[xt]/φit[xt]) whose mean value

is given byθit[xt]. We update this mean value recursively as:

θit [xt] = αθi,t−1 [xt] + (1− α)E (vi,t−1 | yt−1, xt) , (11)

1If v is drawn from a gamma distribution whose shape parameter is very
large, we can writeE(log v) ≈ log(E(v)).
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Fig. 3. An empiricalα-SNR curve that is used in our experiments.

where the value ofα controls the smoothing level to obtain the mean
value for the prior distribution. Depending on the non-stationarity of
the signals, different shape parameters are used for the speech and
noise activations. Also, a single constant parameter is used for all
the activations corresponding to one source. We learn this parameter
at the end of the training stage by computing the average of all the
shape parameters of the activation posterior distributions.

Our experiments show that the optimal amount of smoothing
in (11) depends on the long-term input SNR. For low SNRs (high
level of noise) a strong smoothing (α → 1) improves the perfor-
mance by reducing unwanted fluctuations while for high SNRs a
milder smoothing is preferred (α → 0). The latter case corresponds
to obtaining the mean valueθ directly using the information from
the previous time frame. Here, in contrast to [4], we use a SNR-
dependent value for the smoothing factor. Fig. 3 shows anα− SNR
curve that was obtained in our computer simulations and is used in
our experiments.

To calculate the long-term SNR from the noisy data, we imple-
mented the approach from [15] that works well enough for our pur-
pose. This approach assumes that the amplitude distribution of the
clean speech signal is a gamma distribution with a small shape pa-
rameters (around 0.4) while the additive noise is assumed tobe Gaus-
sian. The noisy signal is assumed to be gamma-distributed whose
shape parameter is uniquely determined from the long-term SNR.
Promising results have been reported for different noise types [15].

3. EXPERIMENTS AND RESULTS

This section presents and discusses the results of our experiments.
We evaluated the proposed approach for three noise types, hence,
resulting to a BNMF-HMM with three states. We considered three
non-stationary noises including factory and babble from NOISEX-
92 database and city traffic from Sound Ideas database. The number
of the basis vectors in the models were set using simulationson a
small development set. We trained 100 basis vectors for eachnoise
type. Also, we trained 60 basis vectors for a speaker-independent
universal speech model using the training material from theTIMIT
database.

We implemented a variety of NMF-based denoising algorithms
for the purpose of comparison. We also considered a speech short-
time spectral amplitude (STSA) estimator using super-Gaussian
prior distributions in our experiments. These algorithms (three
BNMF-based, two NMF-based, and one speech STSA estimator)
are described in the following.

1. BNMF-HMM in which we used (8) where the underlying
noise type in not known a priori

2. General-model BNMF that is a one-state BNMF-HMM
where a single general noise dictionary with 200 basis vectors
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Fig. 4. Magnitude spectrogram of a sample clean speech, noisy
speech, and enhanced speech signals in top, middle, and bottom pan-
els, respectively. For this example, factory noise is addedto the clean
speech signal at 5 dB input SNR.

is learned using training data from all the considered noise
types.

3. Oracle BNMF that is similar to BNMF-HMM but an oracle
classifier is used to choose a noise model (and a pre-trained
basis matrix) for enhancement instead of the proposed classi-
fier. Therefore, this approach is an ideal case of the BNMF-
HMM.

4. Oracle ML in which the multiplicative update rules of the KL-
NMF in combination with a soft Wiener-type filtering is used
to enhance the noisy signal. Similar to the oracle BNMF,
the approach assumes that the noise type is known for the
enhancement.

5. Oracle NHMM: this is basically the supervised causal
NHMM in which the noise type is assumed to be given in
advance. This approach is a modified version of [10] where
we used a causal implementation of the method to denoise
the signal. This modification is done to make the approach
applicable for a scenario where we do not have access to
future observations. To achieve causality, we simply replaced
the forward-backward algorithm with forward algorithm in
which the activations from the previous timestamps were
used to initialize the current ones. We trained one universal
NHMM (100 states with 10 basis each) for speech and one
single-state NHMM for each noise type. The number of basis
vectors for the noise models were set experimentally. We
trained 100 basis vectors for the factory and city traffic noises
and 30 basis vectors for the babble noise.

6. STSA-GenGamma [1], which is a speech STSA estimator us-
ing super-Gaussian priors. We used [5] to track the noise
PSD, and we setγ = ν = 1 since it is shown to be one
of the best alternatives [1]. This algorithm is considered in
our simulations as a state-of-the-art benchmark to compare
NMF-based systems.

All the signals were down-sampled to 16-kHz in our experi-
ments and the DFT was implemented using a frame length of512
samples with50% overlapped Hann windows. The signal synthesis
was performed using the overlap-and-add procedure. The core test
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averaged over different sentences and noise types. For the SDR and
SIR, improvements gained by the enhancement systems are shown.

set of the TIMIT database (192 sentences) was used to evaluate the
performance of the algorithms.

Fig. 4 demonstrates an example where BNMF approach is used
to enhance a noisy signal. For this case, a female-uttered speech sig-
nal is degraded with factory noise at 5 dB input SNR. As the figure
shows, the approach has reduced the noise significantly (a source to
interference ratio (SIR) in the order of 11 dB) while the speech sig-
nal remains highly undistorted (a source to artifact ratio (SAR) of 13
dB).

Fig. 5 shows the source to distortion ratio (SDR), SIR, and SAR
from BSSEval toolbox. A high value for all of these measures is
desired. This figure shows SDR and SIR improvements obtainedby
the speech enhancement systems for clarity .

Our experiments show that BNMF-based algorithms are supe-
rior to the other methods. In particular, oracle BNMF and BNMF-
HMM are the best algorithms. The difference in the performance
of these two algorithms is marginal, which verifies that the pro-
posed classification scheme is working successfully. We canalso see
that the NMF-based algorithms outperform the STSA-GenGamma
in most of the cases. The only exception is that ML-NMF gives a
worse SDR improvement at high input SNRs, which is mainly dueto
a small noise suppression (small SIR value). This is becausethe im-
portant temporal dependencies are ignored in ML-NMF. Moreover,
the speech reconstruction rule, soft Wiener filtering, is not optimal
in this case.

Another interesting result is that the oracle NHMM and general-
model BNMF methods lead to similar SDR values. However, these
two methods process the noisy signal differently. NHMM method
does not suppress a lot of noise while it does not distort the speech
signal either (i.e., SAR is high). This is reversed for the general-
model BNMF.

Finally, Fig. 5 shows that general-model BNMF leads to a worse
performance compared to the BNMF-HMM for which smaller noise-
specific dictionaries are used. This result is in line with the other
observations using supervised denoising algorithms [2]. This can be
explained by noting that using a large noise dictionary increases the
flexibility of the noise model, which in turn, increases the ambiguity
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Fig. 6. long-term SNR, Segmental SNR (SegSNR), and PESQ im-
provements gained by the enhancement systems.

in the nonnegative matrix factorization. It might be possible to get
a better performance using a general noise model by adding more
constraints into NMF, such as sparsity.

Fig. 6 shows our experimental results for long-term SNR, seg-
mental SNR (SegSNR) that is limited to the range[−10dB, 30dB],
and perceptual evaluation of speech quality (PESQ). As it can be
seen in the figure, the BNMF-based methods have led to the high-
est SNR, SegSNR and PESQ improvements. The figure shows that
oracle BNMF and BNMF-HMM methods are superior to the other
approaches and verify the results seen in Fig. 5.

Fig. 7 provides the result of another experiment where we stud-
ied the performance of the noise classification separately.To reduce
the fluctuations and to have a clearer representation, (10) is smoothed
over time and is depicted in this figure. For this experiment,speech
was degraded by different noises (babble, factory, and citytraffic)
separately at 0 dB input SNR. Then, the classifier is applied to the
noisy signal and the probability of each possible noise class (bab-
ble, factory, and city traffic) is computed and is shown in thefigure.
As it can be seen, the classifier works reasonably well in general.
Most of the wrong classifications correspond to the case where the
true noise is confused with babble noise. One reason for thisconfu-
sion is perhaps due to the nature of babble noise. If the short-time
spectral properties of the noise are not very different fromthose of
babble, the union of speech and babble basis vectors can explain any
noisy signal by providing a very good fit to the speech part. Though,
as shown in Fig. 5 and Fig. 6, this confusion has reduced the noise
reduction performance only marginally.

4. CONCLUSIONS

We presented an approach to integrate environmental noise clas-
sification and NMF-based speech enhancement. In the proposed
method, acoustic environment is modeled using a discrete HMM
where each state corresponds to one noise type. The derived MMSE
estimate of the clean speech signal can be seen as a two step opera-
tor in which (1) the speech MMSE estimate is calculated for all the
available noise types, and (2) the probability of each noisetype is
calculated, given the noisy observation, and is used to weight and
sum the state-dependent MMSE estimates. Hence, the developed
structure performs a simultaneous noise classification andspeech en-
hancement and therefore does not require to know the noise type in
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In each subplot, the probability of three noise classes (babble, factory, and city traffic noises) are shown.

advance. Our simulations show that the suggested system outper-
forms state-of-the-art and it is not restricted to know any apriori
information that is difficult to obtain in practice.
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