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Abstract—Reducing the interference noise in a monaural noisy periodic models of the speech signal [9]. In these methods, a
speech signal has been a challenging task for many years. Cem statistical model is assumed for the speech and noise signal
pared to traditional unsupervised speech enhancement metitls, 5,4 the clean speech is estimated from the noisy observation

e.g., Wiener filtering, supervised approaches, such as algihms . . . .
based on hidden Markov models (HMM), lead to higher-quality without any prior information on the noise type or speaker

enhanced speech signals. However, the main practical diffity of ~ identity. However, the main difficulty of most of these medko
these approaches is that for each noise type a model is reqel  is estimation of the noise power spectral density (PSD)-10]
to be trained a priori. In this paper, we investigate a new clas of [12], which is a challenging task if the background noise is
supervised speech denoising algorithms using nonnegativeatrix non-stationary.

factorization (NMF). We propose a novel speech enhancement . . .
method that is based on a Bayesian formulation of NMF For the supervised methods, a model is considered for both

(BNMF). To circumvent the mismatch problem between the the speech and noise signals and the model parameters are
training and testing stages, we propose two solutions. Fits estimated using the training samples of that signal. Then, a
we use an HMM in combination with BNMF (BNMF-HMM) interaction model is defined by combining speech and noise
to derive a minimum mean square error (MMSE) estimator  5qe|s and the noise reduction task is carried out. Some

for the speech signal with no information about the underlyng ) . .
noise type. Second, we suggest a scheme to learn the requiredaxamples of this class of algorithms include the codebook-

noise BNMF model online, which is then used to develop an based approaches, e.g., [13], [14] and hidden Markov model
unsupervised speech enhancement system. Extensive expegnts  (HMM) based methods [15]-[19]. One advantage of these
are carried out to investigate the performance of the proposd methods is that there is no need to estimate the noise PSD
methods under different conditions. Moreover, we compare he using a separate algorithm.

performance of the developed algorithms with state-of-theart Th ised h h b h i d
speech enhancement schemes using various objective measur € supervised approaches have been shown 10 produce

Our simulations show that the proposed BNMF-based methods better quality enhanced speech signals compared to the unsu

outperform the competing algorithms substantially. pervised methods [14], [16], which can be expected as more
Index Terms—Nonnegative matrix factorization (NMF), speech prior 'nfqrmat'on is fed to the_ system in these (.:‘?SGS and
enhancement, PLCA, HMM, Bayesian Inference the considered models are trained for each specific type of

signals. The required prior information on noise type (and
speaker identity in some cases) can be given by the user, or
|. INTRODUCTION can be obtained using a built-in classification scheme [14],

Estimating the clean speech signal in a single-chanripl, or can be provided by a separate acoustic environment
recording of a noisy speech signal has been a research tgp@ssification algorithm [20]. The primary goal of this wask
for a long time and is of interest for various applicationt Propose supervised and unsupervised speech enhancement
inc|uding hearing aids, Speechlspeaker recognition, aﬂdd] algorithms based on nonnegative matrix factorization (NMF
communication over telephone and internet. A major outcorfl], [22].
of these techniques is the improved quality and reducedNMF is a technique to project a nonnegative magrionto
listening effort in the presence of an interfering noisenalg & space spanned by a linear combination of a set of basis
In general, speech enhancement methods can be cate§§iors, i.e.y ~ bv, where bothb andv are nonnegative
rized into two broad classes: unsupervised and supervisBifitrices. In speech processingjs usually the spectrogram
Unsupervised methods include a wide range of approaciféghe speech signal with spectral vectors stored by column,
such as spectral subtraction [1], Wiener and Kalman fi|g3rinb is the basis matrix or dictionary, andis referred to as the
e.g., [2], [3], short-time spectral amplitude (STSA) esttors NMF coefficient or activation matrix. NMF has been widely
[4], estimators based on super-Gaussian prior distribatioused as a source separation technique applied to monaural
for speech DFT coefficients [5]-[8], and schemes based BHxtures, e.g., [23]-[25]. More recently, NMF has also been
used to estimate the clean speech from a noisy observation
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. . . . . TABLE |
multitalker babble noise) for which the basis matrices Of  Thc TABLE SUMMARIZES SOME OF THE NOTATIONS THAT ARE
speech and noise are quite similar. In these cases, although CONSISTENTLY USED IN THE PAPER
the traditional NMF-based approaches can be used to get stagC frequency index
of-the-art performance, other constraints can be imposed i timqe indg;
NMF to obtain a better noise reduction. For instance, assgmi X a scalar random variable
that the babble waveform is obtained as a sum of differenf = [Ya: a matrix of random variabels
h si | . hi k Li Y t-th column of Y
speech signals, a nonnegative |ddep Markov model is pro; _ [, 1 a matrix of observed magnitude spectrogram
posed in [26] to model the babble noise in which the babble/, t-th column ofy
basis is identical to the speech basis. Another fundamentéﬂ;s)) speech pafameterbk)”_ is the speech basis matrix)
issue in basic NMF is that it ignores the important temporal® noise parametersh{) is the noise basis matrix)

) o . b = [b() b(™]  mixture parametersh(is the mixture basis matrix
dependencies of the audio signals. Different approaches ha [ ] P H )

been proposed in the literature to employ temporal dynamics

n NMF,’ 9. [23]_[25],’ 271, [30], [31]. i our experiments and results with supervised and unsupetvis
In this paper, we first propose a new supervised NMkice ‘requction systems. Finally, Section V concludes the

based speech enhancement system. In the proposed met

the temporal dependencies of speech and noise signalsaate us

to construct informative prior distributions that are apglin

a Bayesian framework to perform NMF (BNMF). We then!

develop an HMM structure with output density functions give

by BNMF to simultaneously classify the environmental noise In this section, we first explain a basic NMF approach,

and enhance the noisy signal. Therefore, the noise typexdoeand then we review NMF-based speech enhancement. Let us

need to be specified a priori. Here, the classification is dorepresent the random variables associated with the malgnitu

using the noisy input and is not restricted to be applied &t orof the discrete Fourier transform (DFT) coefficients of the

the speech pauses as it is in [16], and it doesn’t require aspyeech, noise, and noisy signalsSas- [Si], N = [Ny and

additional noise PSD tracking algorithm, as it is required iY = [Y}.], respectively, wheré andt¢ denote the frequency

[14]. and time indices, respectively. The actual realizations ar
Moreover, we propose an unsupervised NMF-based gghown in small letters, e.gy = [yx]. Table | summarizes

proach in which the noise basis matrix is learned online froepme of the notations that are frequently used in the paper.

the noisy mixture. Although online dictionary learningno ~ To obtain a nonnegative decomposition of a given matrix

clean data has been addressed in some prior works, e.g., [¥2]a cost function is usually defined and is minimized. Let

[33], our causal method learns the noise basis matrix froms denote the basis matrix and NMF coefficient matrixtby

the noisy mixture. The main contributions of this work can band v, respectively. Nonnegative factorization is achieved by

|. REVIEW OF STATE-OF-THE-ART NMF-BASED SPEECH
ENHANCEMENT

summarized as: solving the following optimization problem:
1) We present a review of state-of-the-art NMF-based noise (b, v) = argmin D(y[|bv) + uh(b,v), (1)
reduction approaches. b,v

2) We propose a speech enhancement method based,pie p(y(y) is a cost function,i() is an optional reg-
B_NM_F that mherent_ly captgres the te_mpora_l dependeﬂ[arization term, andu is the regularization weight. The
cies in the form of hlerar_chlcal prior distributions. SoM&inimization in (1) is performed under the nonnegativityico
prellmmary results of this approach has been presentgglyin; of1, andv. The common choices for the cost function
n [31.]' Here, we further develop t_he method gnd EVainclude Euclidean distance [21], generalized Kullbackbler
uate its performance comprehensively. In particular, Wfvergence [21], [34], Itakura-Saito divergence [25], ahd
present an approach to construct SNR-dependent prigfiive Jikelihood of data in the probabilistic NMFs [35].

distributions. _ o _ . Depending on the application, the sparsity of the activestio
3) An environmental noise classification technique is su hd the temporal dependencies of input datere two popular
gested and is combined with the above BNMF approa%?

| ) h otivations to design the regularization function, e.@4][
(BNMF-HMM) to develop an unsupervised speech effy7) '[3g], [37]. Since (1) is not a convex problem, iterativ

hancement system. _ _ %radient descent or expectation-maximization (EM) ationis
4) A causal online dictionary learning scheme is proposegds ,qa1ly followed to obtain a locally optimal solutiorr fo
that learns the noise basis matrix from the noisy Obs%’e problem [21], [25], [35].

vatllon. Our s.|mulat|ons show that the final unsupervised Let us consider a supervised denoising approach where the

noise reduc.:tloln_ system outperforms state-of-the-art assis matrix of speech(®) and the basis matrix of noidg™

proaches significantly. are learned using the appropriate training data in advaree.
The rest of the paper is organized as follows: The review obmmon assumption used to model the noisy speech signal is
the NMF-based speech enhancement algorithms is presaentetthé additivity of speech and noise spectrograms,y.e=,s+n.
Section II. In Section lll, we describe our main contribuisp Although in the real world problems this assumption is net ju
namely the BNMF-based noise reduction, BNMF-HMM structified completely, the developed algorithms have been shown
ture, and online noise dictionary learning. Section IV prés to produce satisfactory results, e.g., [24]. The basisirmafr
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the noisy signal is obtained by concatenating the speech &vigd are random variabless; is derived such that the mean
noise basis matrices &s=[b(*) b(™)]. Given the magnitude of square error betwee®? and S” is minimized. The optimal
DFT coefficients of the noisy speech at timye,, the problem gain is shown to be:
in (1) is now solved—withb held fixed—to obtain the noisy 9
NMF coefficientsv,. The NMF decomposition takes the form L = M,
v & by = [b® b™][(v()T (v{"))T]T, where T denotes & +1+200/€,
transposition. Finally, an estimate of the clean speech DRiherec is a constant that depends prj29] and¢, is called
magnitudes is obtained by a Wiener-type filtering as: the smoothed speech to noise ratio that is estimated using a
b)) decision-directed approach. For a theoretical compa$§¢8)
= ! — Oy, (2) to a usual Wiener filter see [29]. The conducted simulations
b()v{” + bmv(™ show that the results using= 1 are superior to those using
where the division is performed element-wise, ahdlenotes p = 2 (which is in line with previously reported observations,
an element-wise multiplication. The clean speech waveforeng., [24]) and that both of them are better than the restilts o
is estimated using the noisy phase and inverse DFT. Oaestate-of-the-art Wiener filter.
advantage of the NMF-based approaches over the HMM-based semi-supervised approach is proposed in [30] to denoise a
[16], [17] or codebook-driven [14] approaches is that NMHRoisy signal using NMF. In this method, a nonnegative hidden
automatically captures the long-term levels of the sigraisl Markov model (NHMM) is used to model the speech mag-
no additional gain modeling is necessary. nitude spectrogram. Here, the HMM state-dependent output
Schmidtet al. [28] presented an NMF-based unsupervisedensity functions are assumed to be a mixture of multinomial
batch algorithm for noise reduction. In this approach, it idistributions, and thus, the model is closely related tdpro
assumed that the entire noisy signal is observed, and tleen Itilistic latent component analysis (PLCA) [35]. An NHMM is
noise basis vectors are learned during the speech pausesidscribed by a set of basis matrices and a Markovian transiti
the intervals of speech activity, the noise basis matrixeigtk matrix that captures the temporal dynamics of the undeglyin
fixed and the rest of the parameters (including speech biadis @ata. To describe a mixture signal, the corresponding NHMMs
speech and noise NMF coefficients) are learned by minimiziage then used to construct a factorial HMM. When applied for
the Euclidean distance with an additional regularizatermt noise reduction, first a speaker-dependent NHMM is trained
to impose sparsity on the NMF coefficients. The enhanced a speech signal. Then, assuming that the whole noisylsigna
signal is then obtained similarly to (2). The reported resulis available (batch mode), the EM algorithm is run to simul-
show that this method outperforms a spectral subtraction &neously estimate a single-state NHMM for noise and also to
gorithm, especially for highly non-stationary noises. Hoer, estimate the NMF coefficients of the speech and noise signals
the NMF approach is sensitive to the performance of the voitée proposed algorithm doesn’t use a VAD to update the noise
activity detector (VAD). Moreover, the proposed algoritiim dictionary, as was done in [28]. But the algorithm requires
[28] is applicable only in the batch mode, which is usuallyhe entire spectrogram of the noisy signal, which makes it
not practical in the real world. difficult for practical applications. Moreover, the empéay
In [27], a supervised NMF-based denoising scheme $peech model is speaker-dependent, and requires a separate
proposed in which a heuristic regularization term is adaed $peaker identification algorithm in practice. Finally, gamto
the cost function. By doing so, the factorization is enfarcethe other approaches based on the factorial models, theotheth
to follow the pre-obtained statistics. In this method, tlasib in [30] suffers from high computational complexity.
matrices of speech and noise are learned from training dated linear nonnegative dynamical system is presented in [38]
offline. Also, as part of the training, the mean and covagante model temporal dependencies in NMF. The proposed causal
of the log of the NMF coefficients are computed. Using thesitering and fixed-lag smoothing algorithms use Kalman-
statistics, the negative likelihood of a Gaussian distidou like prediction in NMF and PLCA. Compared to the ad-hoc
(with the calculated mean and covariance) is used to regalarmethods that use temporal correlations to design regylarit
the cost function during the enhancement. The clean speéghctions, e.g., [27], [37], this approach suggests a Sodiche-
signal is then estimated &s = b(s)vis). Although it is not work to incorporate temporal dynamics into the system. Also
explicitly mentioned in [27], to make regularization maagd the computational complexity of this method is significgntl
ful the statistics of the speech and noise NMF coefficientg haess than [30].
to be adjusted according to the long-term levels of speedh an Raj et al. [39] proposed a phoneme-dependent approach to
noise signals. use NMF for speech enhancement in which a set of basis
In [29], authors propose a linear minimum mean squavectors are learned for each phoneme a priori. Given the/nois
error (MMSE) estimator for NMF-based speech enhancemergcording, an iterative NMF-based speech enhancer comhbine
In this work, NMF is applied toy? (i.e., y! = bv;, where with an automatic speech recognizer (ASR) is pursued to
p = 1 corresponds to using magnitude of DFT coefficientsstimate the clean speech signal. In the experiments, aimixt
and p = 2 corresponds to using magnitude-squared DFJf speech and music is considered and using a set of speaker-
coefficients) in a frame by frame routine. Then, a gain vdeiabdependent basis matrices the estimation of the clean speech
g; is estimated to filter the noisy signal &s:= (g; ©y?)'/?. carried out.
Assuming that the basis matrices of speech and noise are olNMF-based noise PSD estimation is addressed in [37]. In
tained during the training stage, and that the NMF coeffisierthis work, the speech and noise basis matrices are trained

®)
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offline, after which a constrained NMF is applied to the noisy
spectrogram in a frame by frame basis. To utilize the time
dependencies of the speech and noise signalsi;drorm
regularization term is added to the cost function. This figna
term encourages consecutive speech and noise NMF coeffi-
cients to take similar values, and hence, to model the sgnal
time dependencies. The instantaneous noise periodogram is
obtained similarly to (2) by switching the role of speech
and noise approximates. This estimate is then smoothed over
time using an exponential smoothing to get a less-fluctgatin

estimate of the noise PSD, which can be combined with any P

algorithm that needs a noise PSD, e.g., Wiener filter.

Fig. 1. A schematic representation of (4) and (5) [34]. Eactetfrequency

bin of a magnitude spectrograri(;) is assumed to be a sum of some Poisson-
[1l. SPEECHENHANCEMENT USING BAYESIAN NMF distributed hidden random variable,(,).

In this section, we present our Bayesian NMF (BNMF)
based speech enhancement methods. In the following, an
overview of the employed BNMF is provided first, whichthe posterior distribution of the parameters are indepetde
was originally proposed in [34]. Our proposed extensions 8nd these uncoupled posteriors are inferred iteratively by
this BNMF to modeling a noisy signal, namely BNMF-HMMmMaximizing a lower bound on the marginal log-likelihood of
and Online-BNMF are given in Subsections IlI-A and IlI-Bdata.
respectively. Subsection IlI-C presents a method to coostr More specifically for this Bayesian NMF, in an iterative
informative priors to use temporal dynamics in NMF. scheme, the current estimates of the posterior distribsitaf

The probabilistic NMF in [34] assumes that an input matri are used to update the posterior distributiondBoénd V,
is stochastic, and to perform NMF 3s~ bv the following and these new posteriors are used to update the posteriors

model is considered: of Z in the next iteration. The iterations are carried on until
convergence. The posterior distributions #y. , are shown to
Yie = Z Zrit (4)  be multinomial density functions @enotes ’all the indices’),
K while for By; andV;; they are gamma density functions. Full
fzi (2hit) = PO (2hat; bravir) details of the update rules can be found in [34]. This vaoisl

= (bgvy) " e*bw“/ (zxit!), (B) approach is much faster than an alternative Gibbs sampiér, a
its computational complexity can be comparable to that ef th

whereZy;, are latent variable§?O (z; \) denotes the PmssonML estimate of the parameters (KL-NMF).

distribution, andz! is the factorial ofz. A schematic repre-
sentation of this model is shown in Fig. 1.

As a result of (4) and (53 is assumed Poisson-distributed®. BNMF-HMM for Simultaneous Noise Classification and
and integer-valued. In practice, the observed spectrogsamReduction

first scaled up and then rounded to the closest integer niamberin the following, we describe the proposed BNMF-HMM
to avoid large quantization errors. The maximum likelihoofoise reduction scheme in which the state-dependent output
(ML) estimate of the parameteds and v can be obtained density functions are instances of the BNMF explained in
using an EM algorithm [34], and the result would be identicahe introductory part of this section. Each state of the HMM
to the well-known multiplicative update rules for NMF using:orresponds to one specific noise type. Let us consider a set
Kullback-Leibler (KL-NMF) divergence [21]. of noise types for which we are able to gather some training
In the Bayesian formulation, the nonnegative factors aggta, and let us denote the cardinality of the setMjy We
further assumed to be random variables. In this hierarthiegn train a BNMF model for each of these noise types given
model, gamma prior distributions are considered to goveen tits training data. Moreover, we consider a universal BNMF
basis B) and NMF coefficient V) matrices: model for speech that can be trained a priori. Note that the
Fvi (i) = G (vigs i, 0ar [ biz ) considered speech model doesn't introduce any limitation i
(6) the method since we train a model for the speech signal in
Iy (bri) = G (bris i i /i) general, and we don’t use any assumption on the identity or
in which G (v; ¢,60) = exp((¢ — 1)logv — v/6 —logT' (¢) — gender of the speakers.
¢logh) denotes the gamma density function withas the  The structure of the BNMF-HMM is shown in Fig. 2. Each
shape parameter artlas the scale parameter, ahd¢) is state of the HMM has some state-dependent parameters, which
the gamma functiong, 0,4, and v are referred to as the are the noise BNMF model parameters. Also, all the states
hyperparameters. share some state-independent parameters, which consist of
As the exact Bayesian inference for (4), (5), and (6) speech BNMF model and an estimate of the long-term signal
difficult, a variational Bayes approach has been proposedtinnoise ratio (SNR) that will be used for the enhancement.
[34] to obtain the approximate posterior distributions®f To complete the Markovian model, we need to predefine an
and V. In this approximate inference, it is assumed tha&mpirical state transition matrix (whose dimensionjis x
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BNMF model of BNMF model of BNMF model of The state-conditional likelihood of the noisy signal camvno
babble noise factory noise traffic noise be computed by integrating ov# and V, as:

/ / Py B, (Yees by v | 20) dbdvs

//fykt (Yt | b, Ve, 21)

fB7Vt (b,Vt | xt) dbdvt. (8)

Iy (Ynt | xt)
State 2

The distribution ofy; is obtained by assuming that different
frequency bins are independent [5], [7]:

(1) BNMF model of speech

State-independent parameters:
(2) Estimate of long-term SNR

Fig. 2. A block diagram representation of BNMF-HMM with terstates. Iy, (ye | z) = H i Wt | @) - 9)
k

M) and an initial state probability vector. For this purpose, AS the first step of the enhancement, variational Bayes
we assign some high values to the diagonal elements of f#Proach is applied to approximate the posterior distiobst
transition matrix, and we set the rest of its elements to sofik the NMF coefficient vectoiV; by maximizing the varia-
small values such that each row of the transition matrix surign@! lower bound on (9). Here, we assume that the state-

to one. Each element of the initial state probability vedor dependent posterior distributions Bf are time-invariant and
also set tol /M. are identical to those obtained during the training. Moszpv

We model the magnitude spectrogram of the clean speé’(‘fﬂ use the temporgl dyngmics of noise r_:md _speech _to copstruct
and noise signals by (4). To obtain a BNMF model, we neélaformat!ve prior distributions foiV;, which is e>_<pla|ngd in
to find the posterior distribution of the basis matrix, angubsection lll-C. After convergence of the variationatteag,
optimize for the hyperparameters if desired. During tragpi we W|II_ hav_e the p_arameters (including expected valuesl)l@ft
we assign some sparse and broad prior distributior tmd posterior d|str|but|9ns oV, as well as the latent vanabl@.
V according to (6). For this purpose; and v are chosen The MMSE estimate [40] of the speech DFT magnitudes
such that the mean of the prior distribution fBr is small, €an be shown to be [15], [26]:
and its variance is very high. On the other hand,and M
6 are chosen such that the prior distribution Wf has a &, = E (S | y¢) = Lai=1 & (J\};t’xt)E(Skt | 2t,¥t)
mean corresponding to the scale of the data and has a high Zw,,=1 &t (vt )
variance to represent uncertainty. To have good initiibns (10)
for the posterior means, the multiplicative update rules f§vhere
KL-NMF are applied first for a few iterations, and the result 1
is used as the initial values for the posterior means. After S oo = frox (oo ly)
the initialization, variational Bayes (as explained bejois P (ye L) fx, (e [yi7h), (12)
run until convergence. We also optimize the hyperpararaeter | i1 1
using Newton’s method, as proposed in [34]. in which y,;~ = {y1,...y:—1}. Here, fx,(z, | yi77) s

In the following, the speech and noise random basis matric%@“pmed using the forward algorithm [41]. Since (8) can

are denoted bB(*) andB(™), respectively. A similar notation not be evaluated analytically, one can either use numerical

is used to distinguish all the speech and noise parametersM€tN0ds or use approximations to calculdfig, (yxe | ¢).

Let us denote the hidden state variable at each time frarl(rg%ts ag\gﬁﬁ?ntsﬁ:\éeinioCrgfl:\?fhg]trﬁg;ar?sgi’evﬁ tﬁngg
t by X:, which can take one of thd/ possible outcomes y g 9 P

z+ = 1,2,... M. The noisy magnitude spectrogram, given thg}IStrIbUtlorls ofB andV:
state X;, is modeled using (4). Here, we use the additivit ~ ;o
assumg)tion to approximatﬂ t(hc)a state-dependent diswibuai ’ P (e [ @) ~ P (e | B, w1, 20) (12)

the noisy signal, i.ey; = s; 4+ n;. To obtain the distribution whereb’ = E(B | y;, z;), andv, = E(V; | y;, =) are the

of the noisy signal, given the stat&;, the parameters of posterior means of the basis matrix and NMF coefficient vecto
the speech and noise basis matric&*( and B(™)) are that are obtained using variational Bayes. Other types iftpo
concatenated to obtain the parameters of the noisy basixmaipproximations have also been used for gain modeling in the
B. Since the sum of independent Poisson random variablegéhtext of HMM-based speech enhancement [17], [18].

)

Poisson, (4) leads to: To finish our derivation, we need to calculate the state-
\VEt oAk dependent MMSE estimate of the speech DFT magnitudes
fyir (ke | 24, b, vy) = L — (7) E(Skt | zt,yt). First, let us rewrite (4) for the noisy signal
Ykt: as:
where\,; = ). by;v;e. Note that although the basis matiix IO ) 1) 410w

is state-dependent, to keep the notations unclutteredkipe sy, . _ g _ Z (s) Z (n) _ E : .
kt = Okt + Nk - Z i + A it Zkz ;
writing this dependency explicitly. o ' e B — '
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whereI(®) andI(™) are the number of speech and noise bas { " Online Noise Basis Learning
vectors, respectively, giveX;. Then, ’

K
=>{ Buffer [
1

E(Skt|ze,y1) = E Zzlgjt) | 2,y
i=1

Speaker-Independent
BNMF model of
speech signal

BNMF with fixed
speech basis

Prepare priors
for noise basis

) Vi i s
I(b) —-—)| BNMF with fixed speech and noise basis MIV(I)SfEs::zmate —>
S
- YFE (z,gig | 2, yt) . (13) )

| Prepare priors for activations

-

i=1

The posterior expected values of the latent variables i) (1 | estimatelong-termsnR |
are obtained during variational Bayes and are given by [34,. <
eE(log Britlog Vit|ze.ye) Fig. 3. Block diagram representation of BNMF with online sibasis
E(Zkit | 21, y1) = TOHT™ _ plog Brs+1og V| )ykt- learning.y: and$; are the short-time spectral amplitudes of the noisy and
i=1 €08 BhiTI08 Vit|Tt,¥t enhanced speech signals, receptively, at time frarfie goal of the "Prepare
(14)  priors” boxes is to recursively update the prior distriba, which will be
Finally, using (14) in (13), we get also discussed in l1I-C.
ZI(S) eE(log Britlog Vit|xi,yt)
E (Skt | w¢,y¢) = = Ykt
’ Z(@;HW eE(log Byi+log Vi|ze,y¢) basis is then employed to enhance the noisy signal using the
1=

(15) BNMF approach, similarly to IlI-A with only one state in the

As mentioned before, the posterior distributionsBfandV. - HMM. We continue to use a universal speech model that is
are gamma density functions and the required expectedssaliearned offline.
to evaluate (15) are available in closed form. The time-doma To update the noise basis, we std¥e past noisy magnitude
enhanced speech signal is reconstructed using (10) and M¥T frames into a buffen € RfXNl, whereK is the length
noisy phase information. of y;. The buffer will be updated when a new noisy frame

Eqg. (15) includes Wiener filtering (2) as a special casarrives. Then, keeping the speech basis unchanged, vaahti
When the posterior distributions of the basis and NMF c®ayes is applied ta to find the posterior distributions of both
efficients are very sharp (which happens for large shage speech and noise NMF coefficients and noise basis matrix.
parameters in the gamma distribution(log Vi | z1,y:)  Let us denote the noise dictionary at time index 1

approaches the logarithm of the mean value of the posterggy Fooim (b(") | yt=1). To maintain a slowly varying ba-
distribution, log(E(Vi; | z¢,y:)). This can be easily verified ~ "B =h 1 71

. . i . (n) — .
by considering that for very large arguments the logarithS matrix, we flattenfy (b,—; | yi ') and use it as
provides an accurate approximation to the digamma functidhe prior distribution for the noise basis matrix at time
Therefore, for large posterior shape parameters (15) cgase Accordingly, using the notation from (6), we set™ =
asymptotically to (2). In this case, the mean values of the(B{")) = E (Bg"j)l |y§‘1), andw,(;;) is set to a high value
posterior distributions are used to design the Wiener .f||tere(wl(£) M s 1Lk =1, K= 1,...1M) to avoid

exV\I/iiit?anFli)S;egtLi(g t’ﬁ? égeCk:is'fé’Otrzeu?gotﬁset'c Q;Sr?orrneg{a?verfitting. With a high value for the shape parameter, the
pricitly. purpose, P P posterior distributions are flattened only slightly to abta

probability as: quite sharp prior distribution. Therefore, the posteriofshe
noise basis matrix are encouraged to follow the prior paster
unless the noise spectrogram changes heavily. Fig. 3 shows

7thf(ytaxt|yiil) . - . .
a simplified diagram of the online BNMF approach. The top

_ To reduce fluctuations, it is helpful to smooth (16) over, . of the figure (dashed-line box) illustrates the onlinise
time. Other likelihood-based classification technlques;{ehabasiS learning.

been used in [14], [16] for HMM-based and codebook-driven . . .
. . ._Two points have to be considered to complete the online
denoising approaches. In [14], a long-term noise PSD is . , . :
. ; . . learning. As we don't expect the noise type to change rapidly
computed using a separate noise PSD tracking algorithm an . . .
. ) . we can reduce the computational complexity by updating the
is used to select one of the available noise models to enhance

the noisy signal. Alternatively, in [16], a single noise HMM 21s€ dictionary less frequently. Also, as an inherent grtyp

. . . . Oof NMF, good initializations can improve the dictionaryiea
is selected during periods of speech pauses and is used to : !
Ing. To address these two issues, we use a simple approach

enhance the noisy signal until the next speech pause w Yased on a sliding window concept. Let us define a local buffer

a new selection is made. Our proposed classification in (1 c fom that stores the lasi, observed noisy DFT

neither needs an additional noise PSD tracking algoritton, m—_ ~ . .
. . o magnitudes. Every time we observe a new frame, the columns
requires a voice activity detector.

in m are shifted to the left and the most recent frame is stored

. ] . ] at the rightmost column. When the local buffer is full, i.&75

B. Online Noise Basis Learning for BNMF new frames have been observed, a number of frames (let's say
We present our scheme to learn the noise basis matrix frgnframes) that have the lowest energies are chosen to update

the noisy data in this subsection. The online-adapted noitbe main buffem. Note that to do this we don’t use any voice

t—1
f($t|y5)* f(Yt,$t|y1 ) ' (16)




MOHAMMADIHA et al. SPEECH ENHANCEMENT USING NMF 7

Magnitude spectrogram of the noisy mixture at 0 dB input SNR

‘ update the basis matrix in each short-time frame. In thig/vie

< 60001 - variational Bayes is applied to each noisy frame to obtaén th
40001 | HELRMS 1L 1e) 0 8 of 1 1 posterior distribution of both the NMF coefficients and the

et e LY B30I PRGN noise basis matrix. However, our simulations showed that th

100 200 300 400 500 600 700 800 900 1000 approach is not robust enough to changes in the noise type.

In fact, to capture the noise spectrogram changes and at the

Expected value of the posterior distribution of the noise basis

xy 8000 same time not overfit to a single frame, a tradeoff has to be
< 6000 . . . . . -

2 4000 | considered in constructing the priors for the noise dicign

S ool which was difficult to achieve in our simulations.

[

L0

100 200 300 400 500 600 700 800 900 1000 . . .
Short time frame index. Frame length=32 ms C. Informative Priors for NMF Coefficients
Fig. 4. Demonstration of the noise basis adaptation. Theptogel shows To apply variational Bayes to the noisy 5|gnal, we use the

a mixture magnitude spectrogram in which a sinusoidal nsigeal (having temporal dependencies of data to assign prior distribatfon

two harmonics corresponding to the horizontal lines) iseadtb a speech the NMF coefficientsV. Both BNMF-based methods from

signal at 0 dB input SNR. The bottom panel depicts a singlsendasis _ _ ; ;

vector over time that is adapted using the noisy mixture. Beetext for ”I_A and _”I B use this approach to recurswely l,deate the

more explanation. prior distributions. To model temporal dependencies asd al
to account for the non-stationarity of the signals, we obtai

prior for V; by widening the posterior distributions &f;_;.

activity detector. Hence, the columnstirare shifted to the left Recalling (6), let the state-conditional prior distritmrts be:
and new data is stored on the rightmost columns of the bufféri. (vit | #¢) = G(vit; Git[e], Oit[ae] /die[2:]) where state
We now apply the KL-NMF om for few iterations, and use dependency is made explicit through the notatjep. For
the obtained basis matrix to initialize the posterior meahs this gamma distribution we have:

the noise basis matrix. Then, the iterations of variati®@sles i

. i N X . Var(‘/;t | $t> 1
(using both speech and noise basis matrices) are continued® (Vit | #¢) = 03t 4], = ;

; E (Vi | @) v Pit [4]
until convergence. (17)

One of the important parameters in our online leaming {§here vaf-) represents the variance. We assign the following

N1, size of the main buffer. Although a large buffer reduc&gcuyrsively updated mean value to the prior distribution:
the overfitting risk, it slows down the adaption speed of the

basis matrix. The latter causes the effect of the previoiseno it [#¢] = abi¢—1 [ve] + (1 — ) E (Vie—1 | y1-1,2:), (18)

to fade out slowly, which will be illustrated in the followdn \yhere the value of: controls the smoothing level to obtain the

example. In our experiments, we sdt = 50, No = 15, prior. Note that due to the recursive updatifig,is dependent
q = 5. Our approach of the basis adaption is independent §f 4| the observed noisy dasg .

the underlying SNR. _ _ _ ~In (17), different shape parameters are used for the speech
Fig. 4 provides a demonstration of the online noise basgisid noise NMF coefficients, but they are constant over time.
learning using a toy example. For this example, a noisy $igMfhus, ¢;; = ¢;;-1 = ...¢n, also ¢y = ¢ for i =

(at 0 dB SNR) is obtained by adding two different sinusoidal .. () and b = ¢ for i = 1) 4 1,... 1) 4 (™),
noise signals to the speech waveform at a sampling rateéreover, different noise types are allowed to have difiere
16 kHz. A frame length of 32 ms wit50% overlap and shape parameters. In this form of prior, the ratio between th
a Hann window was utilized to implement the DFT. Wetandard deviation and the expected value is the same for all
learned a single noise basis vectdf({ = 1) from the noisy the NMF coefficients for a source signal. The shape parameter
mixture. As depicted in the lower panel of Fig. 4, the noisg represents the uncertainty of the prior which in turn corre-
basis is adapted correctly to capture the changes in the najgonds to the non-stationarity of the signal being procksse
spectrum. BNMF-based speech enhancement resulted to ane can learn this parameter in the training stage using the
dB improvement in source to distortion ratio (SDR) [42] andlean speech or noise signals. Hence, at the end of thertgaini
a 0.9 MOS improvement in PESQ [43] for this example.  stage, the shape parameters of the posterior distributibal

As Fig. 4 demonstrates, the proposed online learning h#g NMF coefficients are calculated and their mean value is
introduced a latency of around 15 frames in the adaption @iken for this purpose. Using this approach for the speech
the noise basis. In general, this delay depends on Bath signal results inp(®) = 3 ~ 5. However, the noise reduction
and the time alignment of the signals, but it is always uppeimulations suggest that having an uninformative prior for
bounded by2 N, —¢ short-time frames. Moreover, Fig. 4 showsspeech (a small value fai(*)) leads to a better performance
a side effect of the sliding window where the effect of thenless the noise signal is more non-stationary than thechpee
previous noise is fed out slowly (depending on the pararsetgignal, e.g., keyboard or machine gun noises. Therefore, in
Ni, N> and ¢). However, in a practical scenario, the effecbur experiments we used a relatively flat prior for the speech
of this latency and slow decay are not as clear as this tBWF coefficients ¢(*) < 1) that gives the speech BNMF
example because the noise characteristics change gradualbdel greater flexibility.
and not abruptly. Our experiments show that the optimal amount of smoothing

An additional approach to adapt the noise basis is to (18) depends on the long-term SNR (or global SNR). For
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As reviewed in Section Il, the method introduced in [30]
factorizes the whole spectrogram of the noisy signal, and
therefore, is not causal. In order to make it more practieal,
considered two causal extensions of this work and evaluated
their performance in this section. The first extension is a
supervised approach that works frame by frame. Here, we
trained one universal NHMM (100 states and 10 basis vectors
0% 1o % o s x ) per state) for speech and one single-state NHMM for each

Long~term SNR (dB) noise type. To achieve causality, we simply replaced the
Fig. 5.  An empirical a-SNR curve, which is used in our experiments.forward'backward algorithm with the forward algorithm in
The figure shows that for low input SNRs (high noise levels)igh ldegree Which the NMF coefficients from the previous timestamp were
of smoothing should be applied to update the mean values ®fptfor jsed to initialize the current ones. As the other extension,
distributions for NMF coefficients (18), and vice versa. . . . . L
we adapted an online noise dictionary learning, similady t
Section IlI-B.

° ° °
» o -

Smoothing factor (o)

o
N
T

low SNRs (high level of noise) a strong smoothing ¢ 1)
improves the performance by reducing unwanted fluctuatioAs Noise Reduction Using a-Priori Learned NMF Models

while for high SNRs a milder smoothing:(— 0) is preferred.  \we evaluated five variants of NMF-based enhancement

The latter case corresponds to obtaining the mean V@&lugnethods for three noise types. The considered noise types in

directly using the information from the previous time frame;|yde factory and babble noises from the NOISEX-92 database

Here, in contrast to [31], we use an SNR-dependent value {af7] and city traffic noise from Sound Ideas [48]. Although

the smoothing factor. Fig. 5 shows an— SNR curve that 5| of these three noises are considered non-stationary;ith

we obtained using computer simulations and was used in Qkiffic noise is very non-stationary since it includes mgainl

experiments. horn sounds. We implemented five NMF-based algorithms
To calculate the long-term SNR from the noisy data, Wgcluding:

implemented the approach proposed in [44] that works well 1) BNMF-HMM: we used (10) in which the noise-type is

enough for our purpose. This approach assumes that the not known in advance.

amplitude of the speech waveform is gamma-distributed aith ) General-model BNMF: we trained a single noise dic-

shape parameters fixed at 0.4, and that the background noise tionary by applying BNMF on a long signal obtained

is Gaussian-distributed, and that speech and noise are inde by concatenating the training data of all three noises.

pendent. Under these assumptions, authors have modeled the For the enhancement, (15) was used regardless of the

amplitude of the noisy waveform with a gamma distribution underlying noise type.’

and have shown that the maximum likelihood estimate of the ) Oracle BNMF: this is similar to BNMF-HMM but the

shape parameter is uniquely determined from the long-term

SNR [44]. only difference is that instead of the proposed classifier

an oracle classifier is used to choose a noise model for
enhancement, i.e., the noise type is assumed to be known
IV. EXPERIMENTS AND RESULTS a priori and its offline-learned basis matrix is used to
We evaluate and compare the proposed NMF-based speech €nhance the noisy signal. Therefore, this approach is an
enhancement systems in this section. The experiments are ideal case of BNMF-HMM.
categorized as supervised and unsupervised speech enhancd® Oracle ML: this supervised method is the maximum
ment methods. In Subsection IV-A, we evaluate the noise likelihood implementation of the Oracle BNMF in which
reduction systems where for each noise type we have access to KL-NMF in combination with (2) is used to enhance the

some training data. Evaluation of the unsupervised dempisi noisy signal. Similar to the previous case, an oracle clas-
schemes is presented in IV-B, where we assume that we don’t  sifier is used to choose a noise model for enhancement.
have training data for some of the noise types. The term ML reflects the fact that KL-NMF arises as

In our simulations, all the signals were down-sampled to 16  the maximum likelihood solution of (4) and (5).
kHz and the DFT was implemented using a frame length of5) Oracle NHMM: this is basically the supervised causal
512 samples and.5-overlapped Hann windows. The core test ~ NHMM, as explained earlier in IV. Similar to cases
set of the TIMIT databasel 92 sentences) [45] was exploited (3) and (4), the noise type is assumed to be known in
for the noise reduction evaluation. The signal synthesis wa  advance.
performed using the overlap-and-add procedure. SNR wasThe number of basis vectors in the noise models were set

For all the BNMF-based methods, a universal speakarsing simulations performed on a small development set. For
independent speech model with 60 basis vectors is learrBdMF and KL-NMF methods, we trained 100 basis vectors
using the training data from the TIMIT database. The choider each noise type. Also, 200 basis vectors were learned for
of dictionary size is motivated by our previous study [46]1the general noise model. For NHMM, a single state with 100
Moreover, for the BNMF-based approaches the long-term SNiasis vectors were learned for factory and city traffic noise
was estimated using [44] and we used Fig. 5 to apply an SN®hile 30 basis vectors were pre-trained for babble noiseesin
dependent smoothing to obtain the priors. it provided a better performance.
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° Fig. 7. PESQ and Segmental SNR (SegSNR) improvements gaindide
-5dB 0dB 5dB 10d8 supervised enhancement systems. Legend of this figure iksimo that of

Input SNR Fig. 6

Fig. 6. BSS-Eval measures [42] to evaluate and compare thengsed
NMF-based denoising algorithms. The BNMF-based schemesiescribed

in Subsection 1lI-A. Here, the prefix "Oracle” is used for theriants where Fig. 7 provides the experimental results using segmental
B e e ol 06 sueerl, SNR (SegSNR) [49, ch. 10], which s limited (0 the range
systems are shown. [—10dB, 30dB|, and perceptual evaluation of speech quality
(PESQ) [43]. As it can be seen in the figure, the BNMF-
based methods have led to the highest SegSNR and PESQ
) improvements. These results verify again the excellenteeof
The performance of the NMF-based methods is compareddRmr strategies. Moreover, it is interesting to note tha th
a speech short-time spectral amplitude estimator usingrsupg\HMM method has not been very successful in improving the
Gaussian prior distributions [7], which is referred to a_SS&T uality of the noisy speech with respect to the PESQ measure.
GenGamma. Here, we used [12] to track the noise PSD,rq study specifically the classification part of the BNMF-
and we sety = v = 1 since it is shown to be one of y\p algorithm, we analyzed the output of the classifier.
the best alternatives [7]. This algorithm is consideredum Ofiq g provides the result of this experiment. To have a elear
simulations as a state-of-the-art benchmark to Compare"\'%presentation, the probability of each noise type in (56) i
based systems. smoothed over time and is depicted in Fig. 8. Here, the
Fig. 6 shows the source to distortion ratio (SDR), source ttassifier is applied to a noisy signal at 0 dB input SNR. The
interference ratio (SIR), and source to artifact ratio (3#&Bm underlying noise type is given as the titles of the subplass.
the BSS-Eval toolbox [42]. SDR measures the overall quality can be seen in the figure, the classifier works reasonably
of the enhanced speech while SIR and SAR are proportioma&ll in general. Most of the wrong classifications correspon
to the amount of noise reduction and inverse of the speeiththe case where the true noise type is confused with the
distortion, accordingly. For SDR and SIR, the improvemenktsabble noise. One reason for this confusion is due to the@atu
gained by the noise reduction systems are shown. Sevasfibabble noise. If the short-time spectral properties & th
interesting conclusions can be drawn from this figure. noise are not very different from those of babble, the unibn o

The simulations show that the Oracle BNMF has led tgPeech and babble basis vectors can explain any noisy signal
the best performance, which is closely followed by BNMFPY providing a very good fit to the speech part. However, as
HMM. The performance of these two systems is quite clo§&own in Fig. 6 and Fig. 7, this confusion has reduced the
with respect to all three measures. This shows the supgriof€rformance only very marginally.
of the BNMF approach, and also, it indicates that the HMM-
based classification scheme is working successfully. AstottB. Experiments with Unsupervised Noise Reduction

interesting result is that except for the Oracle ML, the othe 15 supsection is devoted to investigating the perforreanc
NMF-based techniques outperform STSA-GenGamma. TBeihe unsupervised NMF-based speech enhancement systems.
ML-NMF approach gives a poor noise reduction particularli this purpose, we considered 6 different noise typesiihcl
at high input SNRs. These results were confirmed by oWy factory and babble noises from the NOISEX-92 database
informal listening tests. [47], and city traffic, highway traffic, ocean, and hammer
Moreover, the figure shows that the Oracle NHMM andoises from Sound Ideas [48]. Among these, ocean noise
General-model BNMF methods lead to similar SDR valuesan be seen as a stationary signal in which the noise level
However, these two methods process the noisy signal diffehanges up tot20 dB. All the signals were concatenated
ently. The NHMM method doesn’t suppress a lot of noise bisefore processing.
it doesn’t distort the speech signal either (i.e., SAR ishhig We evaluated three NMF-based enhancement systems using
This is reversed for the General-model BNMF. Furthermora,general speech model, which is learned similarly to Subsec
comparing BNMF-HMM and General-model BNMF confirmdion IV-A. We considered Online BNMF (Subsection 111-B)
an already reported observation [14], [16] that using mamnd Online NHMM (as explained earlier in Section 1V). Ad-
small noise-dependent models is superior to a large noisktionally, we included the BNMF-HMM in the comparison.
independent model. The considered BNMF-HMM model was identical to that of
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5 o5l | Fig. 9. SDR and SIR improvements and SAR measure [42] to aeland
3 compare the unsupervised NMF-based denoising algoritkmsthe Online
& ok i e o i i i s e o] BNMF and Online NHMM variants, the noise basis matrix is et online
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 from the noisy data, explained in IlI-B. The results are aged over different
Short time frame index. Frame length=32 ms noise types. For the BNMF-HMM approach, similar to Fig. 6lyahree noise
l = = = prob. of factory prob. of babble ****' ' prob. of city traffic‘ models are learned.

Fig. 8. Result of the noise classifier where (16) is smoothest time and is

plotted for a mixture at 0 dB input SNR. The underlying noigeetis given in . .
the titles of the subplots (which corresponds to factony, affic, and babble Moreover, Fig. 9 shows that STSA-GenGamma prOVIdeS a

noises, respectively, from top to bottom). In each subgita, probability of higher-quality enhanced speech signal than the Wiener. filte
thr(_ee__noise classes (factory, city traffic_,_and babble B()_isee shown. For This is reported frequently in the literature, e.g. [7]
visibility, two small segments are magnified and shown inftbere. . . - : .
Another interesting result that can be seen in Fig. 9 is that
Online BNMF outperforms the BNMF-HMM. The difference
Subsection IV-A, i.e., we learned only three models fordagt N the performance is even larger with respect to SegSNR and
babble and city traffic noises. For the other noise types, tR&SQ, shown in Fig. 10. As it is shown in this figure, Online
method is allowed to use any of these models to enhance BdMF outperforms the BNMF-HMM (and the other methods)
noisy signal according to (10). Furthermore, we included twVith & large margin.
state-of-the-art approaches in our experiments: The STSA-To have a better understanding on how Online BNMF and
GenGamma approach, identical to that of Subsection IV-BNMF-HMM schemes behave for different noise types, we
and a Wiener filter in which the noise PSD was estimat&yaluated SDR and PESQ over short intervals of time. To do
using [12] and a decision-directed approach [50] was useds®, the noisy and enhanced speech signals were windowed
implement the filter. Here, the final gain applied to the noispto segments of 5 seconds and then for each segment a
signal was limited to be larger than 0.1, for perceptualoras SDR and PESQ value was calculated. Fig. 11 shows such
[51]. results as a function of window index. The boundary of the
For the online BNMF and online NHMM algorithms, weunderlying noise types is shown in green in six different
learned(™ = 30 basis vectors for noise. Learning a largéevels in which segments belong to factory, babble, citffitia
basis matrix is this case can lead to overfitting since téghway traffic, ocean, and hammer noises, respectively fro
dictionary is adapted given a small number of observatiolgft to right. As can be seen in the figure, for the first three
(N1 = 50 in our experiments). This was also verified in oupoise types for which a noise-dependent BNMF model is
computer simulations. Hence, in contrast to the supervisk@rned offline the BNMF-HMM approach works marginally
methods for which we learned 100 basis vectors for each noibéetter than the Online BNMF. But, for the last three noise
we learned a smaller dictionary for online algorithms. types Online BNMF outperforms BNMF-HMM significantly.
Fig. 9 shows the objective measures from BSS-Eval [42] fdihe difference is highest for the hammer noise; this is due to
different algorithms. As it can be seen in the figure, Onlineur observation that the hammer noise differs more fromeeith
BNMF has outperformed all the other systems. This methdactory, babble or city traffic noises than highway traffic or
introduces the least distortion in the enhanced speeclalsighcean noises do. Therefore, neither of the pre-trained lmode
while performing moderate noise reduction. On the othedhartan explain the hammer noise well, and as a result, the dveral
Wiener filter and STSA-GenGamma reduce the interferiprformance of the BNMF-HMM degrades whenever there is
noise greatly with the cost of introducing artifacts in thegut @ large mismatch between the training and the testing signal
signal. A final remark about the Online BNMF and BNMF-HMM
Online NHMM outperforms the Wiener and STSA-can be made considering the computational complexity. In
GenGamma algorithms at low input SNRs with respect to SD&ur simulations (where we didn't use parallel processing
but for high input SNRs the performance of the algorithm iechniques), Online BNMF runs twice as fast as BNMF-HMM
the worst among all the competing methods. Also, the amoumith three states. Moreover, our Matlab implementatiorhef t
of noise suppression using Online NHMM is the least amor@nline BNMF runs in approximately 5-times real time in a
different methods. PC with 3.8 GHz Intel CPU and 2 GB RAM.
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