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ABSTRACT

We propose a method based on the probabilistic latent component
analysis (PLCA) in which we use exponential distributions as priors
to decrease the activity level of a given basis vector. A straightfor-
ward application of this method is when we try to extract a desired
source from a mixture with low artifacts. For this purpose, we pro-
pose a maximum a posteriori (MAP) approach to identify the com-
mon basis vectors between two sources. A low-artifact estimate can
now be obtained by using a constraint such that the common basis
vectors in the interfering signal’s dictionary tend to remain inac-
tive. We discuss applications of this method in source separation
with similar-gender speakers and in enhancing a speech signal that
is contaminated with babble noise. Our simulations show that the
proposed method not only reduces the artifacts but also increases
the overall quality of the estimated signal.

Index Terms— Source Separation, Nonnegative Matrix Fac-
torization (NMF), PLCA, Dictionary Learning, Artifact Reduction

1. INTRODUCTION

A popular class of dictionary learning approaches is nonnegative
matrix factorization (NMF) in which nonnegative dictionaries are
learned from the magnitude or power spectrogram of the speech
signals denoted by X. This factorization is written as X ~ BV,
where B and V are usually referred to as the basis and activation
matrices. Since the basic NMF has many degrees of freedom, re-
searchers have used different constraints to obtain more semantic
factorizations with a better performance in a considered application
[1,2,3,4].

In the probabilistic formulations of NMF, some prior distribu-
tions are considered over the basis or the activation matrices. These
prior distributions may be motivated, e.g., by the temporal depen-
dencies of the audio signals. The goal of this prior information is to
guide NMF by making some combination of the basis vectors more
likely. For instance, to employ the time correlation of the audio sig-
nals, a constraint or a prior distribution is usually designed to govern
the activations, e.g., [3]. Thus, having the result of the factorization
at the current time instance, we put a prior over the activations for
the next time instance that encourages the same pattern of activities
as in the current time.

In this paper, we consider a source separation problem in which
the underlying sources have some common basis vectors, i.e., some
of the the basis vectors are shared between two sources. In prac-
tice this happens, e.g., when we try to separate speech signals from
a mixture in which two speakers have the same gender, or when a
speech signal is mixed with a multitalker babble noise [5]. Conse-
quently, these problems are among the hardest ones in the NMF-
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based approaches. As a result of having a common set of basis vec-
tors, NMF can not correctly separate the sources and depending on
the initial conditions one of the sources will steal some parts of the
other one. This will lead to artifacts in the separated signals. In a de-
noising problem, we may prefer to reduce the noise as far as it does
not introduce artifacts in the speech. Similarly for a source separa-
tion problem, we may have a preference over one of the speakers
and then our goal would be to separate one of the sources with low
artifacts. One approach to achieve this is to learn the basis matrix
of the interfering signal such that its similarity with the known basis
matrix of the target signal is minimized [6].

Another solution to separate a desired source with low artifacts
is that we discourage the activation of the common basis vectors
in the basis matrix of the interfering source. By doing so, we let
the basis vectors of the desired source to take over and explain the
mixture signal. To the best of our knowledge, there is not any work
in the NMF community that investigates this solution. In this paper,
we consider probabilistic latent component analysis (PLCA) [7] and
propose an algorithm that can be used for this purpose.

In this paper, we argue that the Dirichlet distribution is not suit-
able as a prior to estimate the nonnegative elements in PLCA, even
though it is the conjugate distribution for this purpose. We instead
propose to use an exponential distribution as the prior and show that
it can be used to force some basis vectors to be inactive. Moreover,
we derive a MAP approach to identify a set of the common basis
vectors and use that to separate a desired source with arbitrarily low
artifacts. We demonstrate the application of this method in a simple
toy example and also in speech denoising and speech source separa-
tion for speakers with same and different genders. Our experiments
show that the presented approach leads to a higher quality for the
estimated signal by reducing the artifacts.

2. PROPOSED SOLUTION

In the following we first describe the basic PLCA approach. Then,
we present our algorithm in which we use exponential distributions
as priors for the activations. We discuss how this approach can be
used to prevent (reduce) the activity of a given subset of the basis
vectors. Additionally, we describe an approach to find a set of the
common basis vectors between two underlying sources in Section
2.4. This information is then combined with the algorithm from
Section 2.2 to design a source separation or speech enhancement
algorithm in which we can recover a source with as low artifacts as
desired.

2.1. PLCA: A Review

PLCA is a probabilistic nonnegative matrix factorization in which
the speech magnitude spectrogram is modeled as a count data and
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is assumed to have a multinomial distribution:

Xt ~  Mult (0,5) s
I
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where x; is the vector of the DFT magnitudes at time frame ¢, f
is the frequency index, 0y is the f-th element of 6;, and z is the
hidden variable that can take an integer value from {1...7}. An
NMF approximation of x; can be obtained as the expected value of
its distribution:

Xt = Xt = 104, (H
where g: = 37 xy¢. The set of the I probability vectors p (f[z)
are the basis vectors and can be found using an expectation-
maximization approach. In the E step of the algorithm, the posterior
probabilities of the hidden variables (z) are computed as:
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In the M step of the algorithm the basis vectors and the weights are
updated as:
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2.2. PLCA with Exponential Priors

We can impose constraints on PLCA to use our a-priori knowledge.
In this paper, we focus on prior distributions over the activations.
Since Dirichlet distribution is the conjugate prior of the multino-
mial, we first give the update rules for this case. Let 3, be an I-
dimensional vector with elements 3.+ = p+(z). The Dirichlet prior
for B3, is given as:

p(B,) o [ pi(2)* Y,

where a; > 0, z € {1...1} are the parameters of the Dirichlet
distribution. The E step of the algorithm (2) and the update rule of
the basis vectors (4) remain the same as before. The update of the
weights however changes to:

_Speppe (2| f) tos -1
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where )\; is a Lagrange multiplier and is used to ensure that p; (2)
is a probability vector. Computing A is trivial in this case and is
given as the sum of the numerator of (5) over z.

The problem of the Dirichlet prior is that it does not naturally
fit to the estimation of the nonnegative elements p; (z) and can lead
to a negative value in the right hand side of (5). One way to avoid
this problem is to put a threshold on (5) such that its minimum value
is limited to be a very small positive number. Here, we propose to
use an exponential distribution as the prior that does not suffer from
this problem, and at the same time provides a single parameter to
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control the activity of each basis vector individually. The form of
this prior is given by:

I

p(B) o [[e @/, ©)

z=1

where ¢ = {«.. } is the vector of scale or inverse rate parameters.
The update rule of the activations can be obtained by using the EM
algorithm in which the M step is given by:

S (=] 1)

X+ 1/a M

pe(2) =

Computation of the Lagrange multiplier \; is not trivial in (7) be-
cause the denominator is not the same for different latent compo-
nents z as it was in (5). However, since \; is a scalar variable we
can use a simple iterative algorithm, e.g., Newton’s method, to find
its optimal value.

In contrast to (5), (7) leads to nonnegative estimates for the ac-
tivations for any value of the hyperparameters cc. Now consider a
simple problem where we are interested to force a certain basis vec-
tor to be inactive. To do this using the Dirichlet priors, we have to
boost the activity of all the other basis vectors since to ensure non-
negativity we should avoid choosing o, < 1. Using the exponential
priors, we only need to use a small hyperparameter in the prior dis-
tribution corresponding to the given basis vector. In this case o
can approach to 0 without making any theoretical problem.

2.3. Example: Separation of Sources with One Common Basis
Vector

We consider a source separation problem to illustrate how the ex-
ponential distribution can be used to avoid certain type of activa-
tions. In this toy example, we generate 3-d nonnegative data for
two sources. Let e; denote a 3-d indicator vector whose ¢-th ele-
ment is 1 and the rest of its elements are zero. We considered two
basis vectors per each source from which one is shared between the
sources: B = [ e; e Jand B® = [ ex e3 ]. Wealso
added small nonnegative random noise to the basis matrices. Data
was generated by multiplying the bases by an activation vector with
elements sampled from a uniform distribution in the interval [0, 1].
For our example, this procedure yielded to:

. 0.03
xV =1 063 |,x? =] 032
0.07 0.65
These vectors together with the mixture
0.33
x =x® + x® = 0.95 |,
0.72

are shown in Figure 1. Note that to be on the 2-d simplex, all of
these vectors are normalized to sum to one. Applying our proposed
method with & = [1 1 0.5 1]' leads to the estimates which are
shown in the figure. Numerically, we got:

0.3 0.03
V=1 09 [,x2 =1 005
0.08 0.64
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Figure 1: This example shows the original sources, the mixture and the
estimated sources on a 2-d simplex. To be on the simplex, all the vectors are
normalized to sum to one. e; is a 3-d indicator vector whose i-th element
is 1. Each source has two basis vectors from which e is shared between
them. Since the shared basis vector will introduce artifacts in the estimate of
the desired source (estimate 1), a prior is constructed such that a big portion
of the mixture’s second element is taken as the corresponding component in
“Estimate 1”.

As we can see in Figure 1 also, first source has taken over and the
second dimension of its estimate (0.93) is very close to the corre-
sponding element in the mixture (0.95). If we use PLCA here (with
the same initial value for the activation of the similar bases), the
second dimension will be divided almost equally between two es-
timates (see Figure 1), which means that we lose some part of the
desired source.

2.4. Identifying Common Bases

We need to know which basis vectors are shared between sources
to use the algorithm given in Section 2.2. In the following, we de-
scribe a maximum a-posteriori (MAP) approach to get this informa-
tion. Let us assume that we have trained I; and I> basis vectors for
the desired source (source 1) and the interfering source (source 2),
respectively, using some training data. Our goal in this section is to
develop an approach to identify a subset of basis vectors that belong
to the interfering source and can also explain the desired source with
a given accuracy. This subset can be actually seen as the common
set of bases between two sources. By having this information, we
can construct the vector o to automatically prevent the activity of
this subset. This will reduce artifacts in the estimate of the desired
source.

We start by concatenating small development sets of both of
the sources (clean signals) as: X = [X) X®)], where we have
Ty and T observations (columns) in X and X, respectively.
Also, we concatenate the basis vectors of the two sources to obtain
a larger basis matrix to explain both of the sources. We now apply

'Each element in c reflects our preference of having this basis vector
active. If we set an element to a value smaller than the average of c, that
basis vector is encouraged to be inactive. The choice of 0.5 was arbitrary in
this example.
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PLCA to the concatenated signal X with the basis matrix being
fixed. The probability of choosing a basis vector, given the source,
can be written as:

T +T2

p(z | s(j)) _ Z p (z,t ‘ 8(]’))
t=1
e N ICDIO
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where T',(;) includes the indices of the observations from s and
for these observations we have: p(s') | t) = 1. To get the last line
we have used a uniform distribution for ¢ as p(t) = 1/(T1 + T2),
and also we have p(s")) = T; /(T1 + Tb).

To get a MAP classifier, we can use the Bayes’ theorem (with a
flat prior over the sources) to obtain the probability of each source
given a basis vector. For j = 1, this results to:

p (s<1> | z) = 2ty P (2) /Th

ZteTﬁ(l) pe (2) /Ty + ZteTs(z) pe (2) [T

To identify the basis vectors from the dictionary of 52 that can
also explain s, we now compare p(s() | 2), z € {[1+1... I, +
I} with a given threshold 0 < v < 1. If p(s*) | 2) was larger than
v, it means that this basis vector can also explain s® good enough.
‘We should avoid the activity of this basis vector in a given mixture
so that its similar basis vector that belongs to s takes over and
explains the mixture. v = 1 recovers the basic PLCA, and v = 0
corresponds to outputting the mixture signal as the estimate of the
desired source. Thus, v = 0 will neither suppress the interfering
signal nor will introduce any artifacts in the final estimate.

3. EXPERIMENTS USING SPEECH DATA

We consider two problems to demonstrate the application of the pro-
posed algorithm. In our experiments with the source separation and
noise reduction, we used speech signals from the TIMIT and babble
noise from the NOISEX-92 databases. Here, we considered instan-
taneous mixtures of sources where the mixed signal is obtained by
adding the speech and noise waveforms, or by adding the speech
signals of two speakers. All the signals were down-sampled to 16
kHz. The discrete Fourier transform (DFT) with a frame length of
64 ms, 50% overlap, and a Hann window was used in our simula-
tions.

3.1. Source Separation

We learned 30 basis vectors using a set of training sentences for
each speaker. The results presented here are averaged over 40 pairs
of randomly-selected speakers. We aim to separate the speech sig-
nal from the first source with low artifacts. Hence, we first find a
subset of the basis vectors belonging to the second source that can
also explain the first source, and then we set the corresponding el-
ements in o to 0.5. All the other elements are given a value of
1.

We study the performance of the algorithm for the same gender
(male-male or female-female) and different gender scenarios. The
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Figure 2: Results of source separation for female-female (top panel), male-
male (middle panel), male-female (bottom panel) speakers. v = 1 corre-
sponds to the basic PLCA. Results show that by reducing the threshold a
lower-artifact estimate is obtained for the desired source.

performance of the separation is measured using the source to dis-
tortion ratio (SDR), source to interference ratio (SIR) and source to
artifact ratio (SAR) [8]. The results are shown in Figure 2. A high
value of SAR corresponds to a low-artifact estimate.

Our simulations show that by reducing the threshold () we
get a higher SAR in all scenarios. In fact, the lower we set the
threshold, the more number of basis vectors (from the interfering
source) are recognized as the common bases and we put a prior that
motivates these basis vectors to remain inactive. As a result, the
corresponding parts of the mixture signal are taken in the favor of
the desired source and we lose less and less of the desired signal.

Figure 2 shows that the performance is maximized in terms of
SDR and SIR at a threshold equal to 0.5. For SIR, by increasing
threshold we first get a higher suppression of the interfering signal.
But when we set a very high value for the threshold, we get lower
suppression. This might be explained by noting that with a proper
value of v, some shared basis vectors (of the interference signal) are
inactive while the other basis vectors get higher activations, which
results in a stronger suppression. Considering SDR, we again see
that we get the best quality for v = 0.5.

Another interesting result that can be seen in Figure 2 is that for
the Male-Female configuration we do not get any improvement in
SDR by using our algorithm. However, we can recover the desired
source with lower artifacts. This is intuitive since we do not expect
many common basis vectors in this case.

3.2. Reducing Babble Noise

As our second experiment, we consider a noise reduction problem
where a speech signal is degraded by a babble noise. As discussed
earlier, we expect the two sources to share some basis vectors. So
we apply our method to reconstruct the speech signal with low ar-
tifacts and better quality. Here, we learned 30 and 50 basis vectors
for the speech and babble signals, respectively. The results are aver-
aged over 40 speech signals from different speakers and are shown
in Figure 3.

The experimental results are similar to the ones in Figure 2.
Again, we see that the SAR value is reducing as a monotonic func-
tion of the threshold « while SIR and SDR exhibit a maximum
around v = 0.3 ~ 0.5. Our informal listening tests were consistent
with these results.

October 20-23, 2013, New Paltz, NY

8

3 .

— 6 10
y —~

g g, g
% 1 % 5:( 5 »
(2] 2 w

0 0 0

0 0.5 1 0 0.5 1 0 0.5 1

Threshold (y) Threshold (y) Threshold (y)

Figure 3: Speech denoising results for the babble noise. Similar to Figure
2, the lower the threshold is, the lower the artifacts are. A trade-off between
noise suppression and artifact absence is obtained for v = 0.3 where the
SDR is maximum. Input SNR is 0 dB.

4. CONCLUSIONS

In this paper, we discussed a source separation problem in which
the sources share some basis vectors. We proposed a PLCA-based
approach to extract a desired source with an arbitrarily low artifacts.
This was achieved by keeping the common basis vectors from the
interfering source’s dictionary inactive. We developed a MAP ap-
proach to automatically detect the similar basis vectors. We con-
sidered applications of the proposed method in speech source sep-
aration and noise reduction. Our simulations show that when the
underlying speakers have the same gender or the speech is contam-
inated with babble noise (for which we expect to see a sufficient
number of common basis vectors) the proposed method can be used
to reduce the artifacts and increase the quality in the estimate of the
desired source.
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