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Abstract. The use of high level information in source separation algo-
rithms can greatly constrain the problem and lead to improved results
by limiting the solution space to semantically plausible results. The au-
tomatic speech recognition community has shown that the use of high
level information in the form of language models is crucial to obtain-
ing high quality recognition results. In this paper, we apply language
models in the context of speech separation. Specifically, we use language
models to constrain the recently proposed non-negative factorial hidden
Markov model. We compare the proposed method to non-negative spec-
trogram factorization using standard source separation metrics and show
improved results in all metrics.

1 Introduction

The cocktail party problem is a classical source separation problem in which the
goal is to separate speech of multiple concurrent speakers. This is a challenging
problem, particularly in the single channel case. It would therefore be beneficial
to use any high level information that is available to us. Specifically, if it is
known that the speakers follow a certain grammar (constrained sequences of
words), this information could be useful. We refer to this as a language model.
This is routinely used in automatic speech recognition [1] and is in fact crucial
to obtaining recognition results with high accuracy.

Non-negative spectrogram factorization algorithms [2] are a major research
area in the source separation community and have been quite successful. They
provide rich models of the spectral structure of sound sources by representing
each time frame of the spectrogram of a given source as a linear combination of
non-negative spectral components (analogous to basis vectors) from a dictionary.
However, they model each time frame of audio as independent and consequently
ignore an important aspect of audio – temporal dynamics. In order to address this
issue, we proposed the non-negative hidden Markov model (N-HMM) [3] in which
we model a given source using multiple dictionaries of spectral components such
that each time frame of audio is explained by a linear combination of spectral
components from one of the dictionaries. This gives us the rich spectral modeling
capability of non-negative spectrogram factorizations. Additionally, we learn a
Markov chain that explains the temporal dynamics between the dictionaries.
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The dictionaries therefore correspond to states of the Markov chain. We model
mixtures by combining N-HMMs of individual sources into the non-negative
factorial hidden Markov model (N-FHMM).

There has been some other work [4,5,6] that extends non-negative spectro-
gram factorizations to model temporal dynamics. Ozerov [4] and Nakano [5]
modeled the temporal dynamics between individual spectral components rather
than dictionaries. They therefore model each time frame of a given source with
a single spectral component rather than a linear combination of spectral com-
ponents and can thus be too restrictive. Smaragdis [6] introduced a model that
does allow linear combinations of spectral components with transitions between
dictionaries. However, it also allows all spectral components of all dictionaries
to be active at the same time, which is often not restrictive enough.

Since we use a hidden Markov model structure, we can readily use the ideas
of language modeling from automatic speech recognition in the context of source
separation. That is the context of this paper. Specifically, we constrain the
Markov chain of each individual source to explain a valid grammar.

There has been some previous work [6,7,8] on modeling concurrent speakers
using hidden Markov models and factorial hidden Markov models with language
models. However, the goal has been concurrent speech recognition of multiple
speakers. These papers report speech recognition performance and are presum-
ably optimized for this. On the other hand, our goal is high quality source
separation and we make design decisions for this goal. Also, to the best of our
knowledge, no previous work on using language models for multiple concurrent
speakers has reported source separation metrics.

2 Models of Individual Speakers

In this section, we explain how we learn models of individual speakers. We first
describe the Non-negative hidden Markov model (N-HMM). We then explain
how to learn N-HMMs for individual words of a given speaker. Finally, we explain
how to combine these individual word models into a single N-HMM according
to the rules of the grammar, as dictated by the language model.

2.1 Non-negative Hidden Markov Model

Non-negative spectrogram factorizations (Fig. 1a) include non-negative matrix
factorization (NMF) and their probabilistic counterparts such as probabilistic
latent component analysis (PLCA). These models use a single dictionary of
non-negative spectral components to model a given sound source. Specifically,
they explain each time frame of the spectrogram of a given source with a linear
combination of spectral components from the dictionary. These models however
ignore two important aspects of audio – non-stationarity and temporal dynam-
ics. To overcome this issue, we proposed the N-HMM (Fig.1b) [3]. This model
uses multiple dictionaries such that each time frame is explained by any one of
the several dictionaries (accounting for non-stationarity). Additionally it uses
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a Markov chain to explain the transitions between dictionaries (accounting for
temporal dynamics).

(a) Non-negative Spectrogram
Factorization

(b) Non-negative Hidden Markov
Model with left to right transitions

Fig. 1: Comparison of non-negative models. Non-negative spectrogram factoriza-
tion uses a single large dictionary to explain a sound source, whereas the N-HMM
uses multiple small dictionaries and a Markov chain.

The graphical model of the N-HMM is shown in Fig.2. Each dictionary corre-
sponds to a state q. At time t, the N-HMM is in state qt. Each spectral component
of a given dictionary q is represented by z. A given spectral component is a dis-
crete distribution. Therefore, spectral component z of dictionary q is represented
by P (f |z, q). The non-negativity in the N-HMM comes from the fact that the
parameters of a discrete distribution are non-negative by definition. Since each
column of the spectrogram is modeled as a linear combination of spectral com-
ponents, time frame t (modeled by state q) is given by the following observation
model:

P (ft|qt) =
∑
zt

P (ft|zt, qt)P (zt|qt), (1)

where P (zt|qt) is a discrete distribution of mixture weights for time t. The tran-
sitions between states are modeled with a Markov chain, given by P (qt+1|qt).

Ft

Qt Qt+1

Ft+1

vt+1vt

Zt Zt+1

Fig. 2: Graphical model of the N-HMM

2.2 Word Models

Given an instance of a word, we can estimate the parameters of all of the distri-
butions of the N-HMM using the expectation–maximization (EM) algorithm [3].
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In this paper, we extend this idea to learn word models from multiple instances
of a given word as routinely done in speech recognition [1]. We compute the E
step of EM algorithm separately for each instance. The procedure is the same as
in [3]. This gives us the marginalized posterior distributions P (k)

t (z, q|f, f) and
P

(k)
t (qt, qt+1|f) for each instance k. We use these in the M step of the EM algo-

rithm. Specifically, we compute a separate weights distribution for each instance
k as follows:

P
(k)
t (zt|qt) =

∑
ft
V

(k)
ft P

(k)
t (zt, qt|ft, f)∑

zt

∑
ft
V

(k)
ft P

(k)
t (zt, qt|ft, f)

, (2)

where V (k)
ft is the spectrogram of instance k. However, we estimate a single set

of dictionaries of spectral components and a single transition matrix using the
marginalized posterior distributions of all instances as follows:

P (f |z, q) =
∑

k

∑
t V

(k)
ft P

(k)
t (z, q|f, f)∑

f

∑
k

∑
t V

(k)
ft P

(k)
t (z, q|f, f)

, (3)

P (qt+1|qt) =
∑

k

∑T−1
t=1 P

(k)
t (qt, qt+1|f)∑

qt+1

∑
k

∑T−1
t=1 P

(k)
t (qt, qt+1|f)

. (4)

We restrict the transition matrix to use only left to right transitions.

2.3 Combining Word Models

Once we learn N-HMMs for each word of a given speaker, we combine them into a
single speaker dependent N-HMM. We do this by constructing a large transition
matrix that consists of each individual transition matrix. The transition matrix
of each individual word stays the same. However, the transitions between words
are dictated by a language model. Each state of the speaker dependent N-HMM
corresponds to a specific dictionary of that speaker. Therefore, this N-HMM also
contains all dictionaries of all words.

3 Model of Mixtures

We first describe how to combine models of individual speakers into a model of
speech mixtures. We then explain how to use this model for speech separation.
Finally, we describe the pruning that we use to reduce computational complexity.

3.1 Combining Speaker Dependent Models

We model a mixture of two speakers using the non-negative factorial hidden
Markov model (N-FHMM) [3]. Given the N-HMM of two speakers, we can com-
bine them into an N-FHMM. We use the dictionaries and the Markov chains of
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the N-HMMs of the two speakers. A given time frame is then explained using any
one dictionary of the first speaker and any one dictionary of the second speaker.
Specifically, the given time frame is modeled using a linear combination of the
spectral components of the two appropriate dictionaries. This is illustrated in
Fig. 3.

Dictionaries 

of Speaker 1

Dictionaries 

of Speaker 2

Dictionary of 

Speech Mixture

Q
(1)
t = 1

Q
(2)
t = 1

Q
(1)
t = 1

Q
(2)
t = 1Q

(2)
t = 2 Q

(2)
t = 2

Q
(1)
t = 2 Q

(1)
t = 2

Fig. 3: Combining dictionaries of two sources to model a mixture. In this simple
example, each source has two dictionaries so there are a total of four ways of
combining them.

The graphical model of the N-FHMM is shown in Fig. 3. An N-HMM can be
seen in the upper half of the graphical model and another one can be seen in the
lower half. The interaction model (of the two sources) introduces a new variable
st that indicates the ratio of the sources at a given time frame. P (st|q(1)t , q(2))
is a Bernoulli distribution that depends on the states of the sources at the given
time frame. The interaction model is given by:

P (ft|q(1)t , q
(2)
t ) =

∑
st

∑
zt

P (ft|zt, st, q(st)t )P (zt, st|q(1)t , q
(2)
t ), (5)

where P (ft|zt, st, q(st)t ) is spectral component zt of state q
(st)
t of source st.

3.2 Speech Separation

P (zt, st|q(1)t , q
(2)
t ) combines the new distribution P (st|q(1)t , q(2)) and the weights

distributions of each source into a single weights distribution of the mixture.
Since the dictionaries and the Markov chain of each source are already specified,
if we learn the weights distribution of the mixture, we can estimate soft masks
to separate the two sources. This is done using the EM algorithm. Details on
how to estimate the masks and then separate the sources can be found in [3].
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Fig. 4: Graphical model of the N-FHMM

3.3 Pruning

At every time frame, we need to compute the likelihood of every possible state
pair (one state from each source). This causes the computational complexity
of the N-FHMM to be exponential in the number sources. This can lead to
intractable computation. However, we do not need to consider state pairs that
have a very small probability. Specifically, we prune out all of the state pairs
whose posterior probability γ(q(1)t , q

(2)
t ), is below a pre-determined threshold. In

our experiments, we set this threshold to −1000 in the log domain. Even though
it is an extremely small number, this pruned out around 99% of the state pairs.
This is due to the heavy constraining of the language model.

For each speaker, we used an N-HMM of 127 states (more details are in Sec.
4). Therefore, there are a total of 16129 possible state pairs. With our pruning,
we need to consider less than 250 state pairs in most time frames. With the
number of states that we used, this corresponds to computation complexity that
is linear in the number of sources.

4 Experimental Results and Discussion

We performed experiments on a subset of the data from the speech separation
challenge [9]. The test data from the challenge does not contain ground truth,
without which we cannot compute source separation metrics. Therefore, we di-
vided the training data into a training set and a test set. We trained N-HMMs for
10 speakers using 450 of the 500 sentences from the training set of each speaker.
The remaining 50 sentences were used to construct the test set. We segmented
the training sentences into words in order to learn individual word models as de-
scribed in Section 2.2. We used one dictionary (state) per phoneme. This is less
than what is typically used in speech recognition. However, we did not want to
excessively constrain the model in order to obtain high quality reconstructions.
We used 10 spectral components per dictionary as this number was previously
found to give good results in N-HMMs [3].

We then combined the word models of a given speaker into a single N-HMM
according to the language model, as described in Section 2.3.
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We performed speech separation using the N-FHMM on speakers of different
genders and the same gender3. For both categories, we constructed 10 test mix-
tures from our test set. The mixing was done at 0dB. We evaluated the source
separation performance using the BSS-EVAL metrics [10]. As a comparison, we
performed separation using a non-negative spectrogram factorization technique
(PLCA) [2]. When using PLCA, we used the same training and test sets that
we used with the proposed model. However, we simply concatenated all of the
training data of a given speaker and learned a single dictionary for that speaker,
which is customary when using non-negative spectrogram factorizations [2]. We
used a dictionary size of 100 spectral components as this gave the best separa-
tion results. This is more than used in our previous paper [3] since the database
used in this paper has much more training data for each speaker. The proposed
method has the advantage (over PLCA) of using language information. However,
the point that we are trying to make is that language information can lead to
improved speech separation results.

Our results are shown in Table 1. The proposed model outperforms PLCA in
all metrics of both categories. Specifically, we see a 7-8dB improvement in source
to interference ratio (SIR) while still maintaining a higher source to artifacts ratio
(SAR). This means that we are achieving much higher amounts of separation
than PLCA and also introducing less artifacts. The source to distortion ratio
(SDR), which reflects both of these things is therefore also higher.

Another observation is that when we compare the performance of the N-
FHMM in the two categories, we see only a small deterioration in performance
from the different gender to the same gender case (0.5-1 dB in each metric). With
PLCA, however, we see a greater deterioration in SIR and SDR (2-3 dB). This
is because the dictionaries of the two sources are much more similar in the same
gender case than in the different gender case. With the N-FHMM, the language
model helps disambiguate the sources. However, only the spectral information is
used in the case of PLCA.

Table 1: Source separation performance of the N-FHMM and PLCA.

Different Gender SIR SAR SDR
N-FHMM 14.91 10.29 8.78
PLCA 7.96 9.08 4.86

Same Gender SIR SAR SDR
N-FHMM 13.88 9.89 8.24
PLCA 5.11 8.77 2.85

The introduction of constraints, priors, and additional structure in non-
negative models often leads to improved separation quality (higher SIR), when
compared to PLCA or NMF. However, this usually leads to more artifacts (lower
SAR). Ozerov [4] noted this with the FS-HMM. We have improved results in
both metrics. The reason is that the language model only attempts to determine
the correct dictionary to explain each source but not the exact fitting of the
spectral components of the given dictionary to the data. Once this dictionary of
each source is determined for a given time frame, the algorithm fits the corre-
sponding spectral components to the mixture data to obtain the closest possible
3 Examples at https://ccrma.stanford.edu/~gautham/Site/lva_ica_2012.html
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reconstruction of the mixture. This flexibility after determining the appropriate
dictionary avoids excessive artifacts.

5 Conclusions

We presented a method to perform high quality speech separation using language
models in the N-HMM framework. We showed that use of the language model
greatly boosts source separation performance when compared to non-negative
spectrogram factorization. The methodology was shown for speech but it can be
used in other contexts in which high level structure information is available such
as incorporating music theory into the N-HMM framework for music separation.
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