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Abstract. In recent years, there has been a great deal of work in mod-
eling audio using non-negative matrix factorization and its probabilistic
counterparts as they yield rich models that are very useful for source
separation and automatic music transcription. Given a sound source,
these algorithms learn a dictionary of spectral vectors to best explain it.
This dictionary is however learned in a manner that disregards a very
important aspect of sound, its temporal structure. We propose a novel
algorithm, the non-negative hidden Markov model (N-HMM), that ex-
tends the aforementioned models by jointly learning several small spec-
tral dictionaries as well as a Markov chain that describes the structure
of changes between these dictionaries. We also extend this algorithm to
the non-negative factorial hidden Markov model (N-FHMM) to model
sound mixtures, and demonstrate that it yields superior performance in
single channel source separation tasks.

1 Introduction

A common theme in most good strategies to modeling audio is the ability to
make use of structure. Non-negative factorizations such as non-negative matrix
factorization (NMF) and probabilistic latent component analysis (PLCA) have
been shown to be powerful in representing spectra as a linear combination of vec-
tors from a dictionary [1]. Such models take advantage of the inherent low-rank
nature of magnitude spectrograms to provide compact and informative descrip-
tions. Hidden Markov models (HMMs) have instead made use of the inherent
temporal structure of audio and have shown to be particularly powerful in mod-
eling sounds in which temporal structure is important, such as speech [2]. In
this work, we propose a new model that combines the rich spectral representa-
tive power of non-negative factorizations and the temporal structure modeling
of HMMs.

In [3], ideas from non-negative factorizations and HMMs have been used by
representing sound mixtures as a linear combination of spectral vectors and also
modeling the temporal structure of each source. However, at a given time frame,
each source is represented by a single spectral vector rather than a linear combi-
nation of multiple spectral vectors. As pointed out, this has some virtue in speech
as it is monophonic but it can break down when representing rich polyphonic
sources such as music, for which one would resort to using standard NMF. In our
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proposed method, at a given time frame, a given source is represented as a linear
combination of multiple spectral vectors from one (of the many) dictionaries of
the source. This allows us to model finer details in an input such as variations in
a phoneme or a note. As shown in the results section, the performance improves
even for speech.

2 Models of Single Sources

In this section, we first briefly describe probabilistic spectrogram factorization
for modeling a single source. We then describe the non-negative hidden Markov
model (N-HMM) and parameter estimation for the model.

2.1 Probabilistic Spectrogram Factorization

The magnitude spectrogram of a sound source can be viewed as a histogram
of “sound quanta” across time and frequency. With this view, probabilistic fac-
torization [4], which is a type of non-negative factorization, has been used to
model a magnitude spectrogram as a linear combination of spectral vectors from
a dictionary. The model is defined by two sets of parameters:

1. P (f |z) is a multinomial distribution of frequencies for latent component z.
It can be viewed as a spectral vector from a dictionary.

2. P (zt) is a multinomial distribution of weights for the aforementioned dictio-
nary elements at time t.

Given a magnitude spectrogram, these parameters can be jointly estimated using
the Expectation–Maximization (EM) algorithm. As can be seen in the graphical
model representation in Fig. 1a, the weights of each time frame are estimated
independently of the other time frames, therefore failing to capture the temporal
structure of the sound source.
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Fig. 1: Probabilistic factorization models each time frame independently, whereas
the N-HMM models the transitions between successive time frames.
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2.2 Non-negative Hidden Markov Model

There is a temporal aspect to the proposed model, the N-HMM, shown in Fig.
1b. The model has a number of states, q, which can be interpreted as individual
dictionaries. Each dictionary has a number of latent components, z, which can
be interpreted as spectral vectors from the given dictionary. The spectral vector
z of state q is defined by the multinomial distribution, P (f |z, q).

As in traditional HMMs, in a given time frame, only one of the states is
active. The given magnitude spectrogram at that time frame is modeled as a
linear combination of the spectral vectors of the corresponding dictionary (state),
q. At time t, the weights are defined by the multinomial distribution P (zt|qt).

This notion of modeling a given time frame with one (of many) dictionar-
ies rather than using a single large dictionary globally caters well to the non-
stationarity of audio signals. The idea is that as an audio signal dynamically
changes towards a new state, a new and appropriate dictionary should be used.
We capture the temporal structure of these changes with a transition matrix, de-
fined by, P (qt+1|qt). The initial state probabilities (priors) are defined by P (q1).
We also define a distribution P (v|q) which is a distribution of the energy of a
given state. It is modeled as a Gaussian distribution. It has been left out of the
graphical model for clarity. The overall generative process is as follows:

1. Set t = 1 and choose a state according to the initial state distribution P (q1).
2. Choose the number of draws (energy) for the given time frame according to

P (vt|qt).
3. Repeat the following steps vt times:

(a) Choose a latent component according to P (zt|qt).
(b) Choose a frequency according to P (ft|zt, qt).

4. Transit to a new state qt+1 according to P (qt+1|qt)
5. Set t = t + 1 and go to step 2 if t < T .

2.3 Parameter Estimation for the N-HMM

Given the scaled magnitude spectrogram, Vft, of a sound source4, we use the
EM algorithm to estimate the model parameters of the N-HMM. The E-step is
computed as follows:

P (zt, qt|ft, f ,v) =
α(qt)β(qt)

∑

qt
α(qt)β(qt)

P (zt|ft, qt) , (1)

where

P (zt|ft, qt) =
P (zt|qt)P (ft|zt, qt)

∑

zt
P (zt|qt)P (ft|zt, qt)

. (2)

P (qt, zt|ft, f ,v) is the posterior distribution that is used to estimate the dictio-
nary elements and the weights vectors. f denotes the observations across all time
frames5, which is the entire spectrogram. v denotes the number of draws over all

4 Since the magnitude spectrogram is modeled as a histogram, the entries should be
integers. To account for this, we weight it by an appropriate scaling factor.

5 It should be noted that ft is part of f . It is however mentioned separately to indicate
that the posterior over zt and qt is computed separately for each ft.
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time frames. The forward/backward variables α(qt) and β(qt) are computed us-
ing the likelihoods of the data, P (ft, vt|qt), for each state (as in standard HMMs
[2]). The likelihoods are computed as follows:

P (ft, vt|qt) = P (vt|qt)
∏

ft

(

∑

zt

P (ft|zt, qt)P (zt|qt)

)Vft

, (3)

where ft represents the observations at at time t, which is the magnitude spec-
trum at that time frame. The dictionary elements and their weights are estimated
in the M-step as follows:

P (f |z, q) =

∑

t VftP (zt, qt|ft, f ,v)
∑

ft

∑

t VftP (zt, qt|ft, f ,v))
, (4)

P (zt|qt) =

∑

ft
VftP (zt, qt|ft, f ,v))

∑

zt

∑

ft
VftP (zt, qt|ft, f ,v))

. (5)

The transition matrix, P (qt+1|qt), and priors, P (q1), are computed exactly as in
standard HMMs [2]. The mean and variance of P (v|q) are also estimated from
the data. The learned dictionaries and transition matrix for an instance of speech
data can be seen in Fig. 2. This model can be interpreted as an HMM in which

(a) Learned dictionaries (b) Transition matrix

Fig. 2: (a) Dictionaries were learned from speech data of a single speaker. Shown
are the dictionaries for 18 states, each state dictionary comprised of 10 elements.
Each of these dictionaries roughly corresponds to a subunit of speech, either a
voiced or unvoiced phoneme. (b) The learned transition matrix describes the
transitions between the learned dictionaries in Fig. 2a. As can be seen by the
strong diagonal, the algorithm correctly learns a model with state persistence.

the observation model P (ft|qt) is a multinomial mixture model:

P (ft|qt) =
∑

zt

P (ft|zt, qt)P (zt|qt) . (6)

However, this implies that for a given state, q, there is a single set of spectral
vectors P (f |z, q) and a single set of weights P (z|q). If the weights did not change
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across time, the observation model would collapse to a single spectral vector per
state. In the proposed model however, the weights P (zt|qt) change with time.
This flexible observation model allows us to model variations in the occurrences
of a given state. This idea has previously been explored for Gaussian mixture
models [5]. It should be noted that the proposed model collapses to a regular non-
negative factorization if we use only a single state, therefore only one dictionary.

3 Model for Sound Mixtures

In this section, we describe the non-negative factorial hidden Markov model (N-
FHMM) for modeling sound mixtures. We then describe how to perform source
separation using the model.

As shown in the two-source graphical model in Fig. 3, the N-FHMM com-
bines multiple N-HMMs of single sources. The interaction model introduces a
new variable st that indicates the source. In the generative process, for each
draw of each time frame, we first choose the source and then choose the latent
component as before. In order to perform separation, we use trained models of
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Fig. 3: N-FHMM. The structure of two individual N-HMMs (one in the upper
half and one in the lower half) can be seen in this model.

individual sources. We train an N-HMM and learn the dictionaries and the tran-
sition matrix for each class of sound we expect to encounter in a mixture. We
then use the a priori source information in these trained models to resolve mix-
tures that involve such sources. The dictionaries and transition matrices of the
N-FHMM will therefore already be defined, and one will only need to estimate
the appropriate weights from the mixture.

In a given time frame t, each source is explained by one of its dictionaries.

Therefore, a given mixture is modeled by a pair of dictionaries, {q
(1)
t , q

(2)
t }, one

for each source (superscripts indicate the source). For a given pair of dictionaries,
the mixture spectrum is defined by the following interaction model:

P (ft|q
(1)
t , q

(2)
t ) =

∑

st

∑

zt

P (ft|zt, st, q
(st)
t )P (zt, st|q

(1)
t , q

(2)
t ) . (7)

As can be seen, the mixture spectrum is modeled as a linear combination of the
individual sources which are in turn modeled as a linear combination of spectral
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vectors from the given dictionaries. This allows us to model the mixture as a
linear combination of the spectral vectors from the given pair of dictionaries 6.

3.1 Source Separation

In order to perform separation, we need to first estimate the mixture weights,

P (zt, st|q
(1)
t , q

(2)
t ) for each pair of states. That can be done using the EM algo-

rithm. The E-step is computed as follows:

P (zt, st, q
(1)
t , q

(2)
t |ft, f ,v) =

α(q
(1)
t , q

(2)
t )β(q

(1)
t , q

(2)
t )

∑

q
(1)
t

∑

q
(2)
t

α(q
(1)
t , q

(2)
t )β(q

(1)
t , q

(2)
t )

P (zt, st|ft, q
(1)
t , q

(2)
t ) ,

(8)
where

P (zt, st|ft, q
(1)
t , q

(2)
t ) =

P (f |zt, st, q
(st)
t )P (zt, st|q

(1)
t , q

(2)
t )

∑

st

∑

zt
P (f |zt, st, q

(st)
t )P (zt, st|q

(1)
t , q

(2)
t )

. (9)

α(q
(1)
t , q

(2)
t ) and β(q

(1)
t , q

(2)
t ) are computed with a two dimensional forward–

backward algorithm [6] using the likelihoods of the data, P (ft, vt|q
(1)
t , q

(2)
t ), for

each pair of states. The likelihoods are computed as follows:

P (ft, vt|q
(1)
t , q

(2)
t ) = P (vt|q

(1)
t , q

(2)
t )

∏

ft

(

∑

st

∑

zt

P (ft|zt, st, q
(st)
t )P (zt, st|q

(1)
t , q

(2)
t )

)Vft

.

(10)
The weights are computed in the M-step as follows:

P (zt, st|q
(1)
t , q

(2)
t ) =

∑

ft
VftP (zt, st, q

(1)
t , q

(2)
t |ft, f ,v)

∑

st

∑

zt

∑

ft
VftP (zt, st, q

(1)
t , q

(2)
t |ft, f ,v)

. (11)

Once we estimate the weights using the EM algorithm, we compute the propor-
tion of the contribution of each source at each time–frequency bin as follows:

P (st|ft, f ,v) =

∑

q
(1)
t

∑

q
(2)
t

P (q
(1)
t , q

(2)
t |f ,v)

∑

zt
P (f |zt, s, q

(s)
t )P (zt, s|q

(1)
t , q

(2)
t )

∑

st

∑

q
(1)
t

∑

q
(2)
t

P (q
(1)
t , q

(2)
t |f ,v)

∑

zt
P (f |zt, s, q

(s)
t )P (zt, s|q

(1)
t , q

(2)
t )

,

(12)
where

P (q
(1)
t , q

(2)
t |f ,v) =

α(q
(1)
t , q

(2)
t )β(q

(1)
t , q

(2)
t )

∑

q
(1)
t

∑

q
(2)
t

α(q
(1)
t , q

(2)
t )β(q

(1)
t , q

(2)
t )

. (13)

This effectively gives us a soft mask with which we modulate the mixture spec-
trogram to obtain the separated spectrograms of the individual sources. In Eq.

6 We deal with P (zt, st|q
(1)
t

, q
(2)
t

) rather than dealing with P (zt|st, q
(1)
t

, q
(2)
t

) and

P (st|q
(1)
t

, q
(2)
t

) individually (as shown in the graphical model) so that we will have
a single set of mixture weights over both sources.
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12, we sum the contribution of every pair of states. This implies that the recon-
struction of each source has contributions from each of its dictionaries. However,

in practice, P (q
(1)
t , q

(2)
t |f ,v) tends to zero for all but one {q

(1)
t , q

(2)
t } pair, effec-

tively using only one dictionary per time frame per source. This happens because
the dictionaries of individual source models are learned in such a way that each
time frame is explained almost exclusively by one dictionary. The provision of
having a small contribution from more than one dictionary is sometimes helpful
in modeling the decay of the active dictionary in the previous time frame.

4 Experimental Results

We performed speech separation experiments on data from the TIMIT database.
Specifically, we performed separation on eight pairs of speakers. Each speaker
pair consists of one male and one female speaker. We first used nine sentences
of each speaker as training data and learned individual N-HMM model param-
eters as described in Sec. 2.3. Specifically, for each speaker, we first obtained a
spectrogram with a window size of 1024 and a hop size of 256 (at Fs=16,000).
We then learned a model of the spectrogram with 40 dictionaries with 10 la-
tent components each (K=10). We then repeated the experiment with 1 latent
component per dictionary (K=1). After training, we combined the models into a
joint model as described in Sec. 3. We constructed test data by artificially mixing
one unseen sentence from each speaker at 0dB and performed separation7. The
separation yields estimated magnitude spectrograms for each source. We used
the phase of the mixture and resynthesized each source.

As a comparison, we then performed the same experiments using a tradi-
tional non-negative factorization approach. The experimental procedure as well
as the training and test data are the same as above. After thorough testing, we
found that the optimal results were obtained in the non-negative factorization
approach by using 30 components per speaker and we therefore used this for the
comparison to the proposed model. The separation performance increases up to
using 30 components. When more components are used, the dictionary of one
source starts to explain the other source and the separation performance goes
down. It should be noted that this is equivalent to using the proposed models
with 1 dictionary of 30 components per speaker.

We evaluated the separation performance in terms of the metrics defined in
[7]. The averaged results over the eight pairs of speakers are as follows:

SDR (dB) SIR (dB) SAR (dB)
N-FHMM (K=10) 6.49 14.07 7.74
N-FHMM (K=1) 5.58 12.07 7.26
Factorization 4.82 8.65 7.95

As shown in the table, the performance of the N-FHMM (by all metrics) is better
when we use 10 components rather than 1 component. This shows the need to use
a dictionary to model each state rather than a single component. We found no
appreciable improvement in performance by using more than 10 components per
dictionary. We see an improvement over factorizations in the overall performance

7 Examples at https://ccrma.stanford.edu/~gautham/Site/lva_ica_2010.html
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of the N-FHMM (SDR). Specifically, we see a large improvement in the actual
suppression of the unwanted source (SIR). We however see a small increase
in the introduced artifacts (SAR). The results intuitively make sense. The N-
FHMM performs better in suppressing the competing source by enforcing a
reasonable temporal arrangement of each speaker’s dictionary elements, therefore
not simultaneously using dictionary elements that can describe both speakers.
On the other hand, this exclusive usage of smaller dictionaries doesn’t allow
us to model the source as well as we would otherwise (with 1 component per
dictionary being the extreme case). There is therefore an inherent trade-off in
the suppression of the unwanted source and the reduction of artifacts.

Traditional factorial HMMs that use a Gaussian for the observation model
have also been used for source separation [8, 9]. As in [3], these methods model
each time frame of each source with a single spectral vector. The proposed model,
on the other hand, extends non-negative factorizations by modeling each time
frame of each source as a linear combination of spectral vectors. As shown above,
this type of modeling can be advantageous for source separation.

5 Conclusions

We have presented new models and associated estimation algorithms that model
the non-stationarity and temporal structure of audio. We presented a model for
single sources and a model for sound mixtures. The performance of the proposed
model was demonstrated on single channel source separation and was shown to
have a much higher suppression capability than similar approaches that do not
incorporate temporal information. The computational complexity is exponen-
tial in the number of sources (as with traditional factorial HMMs). Therefore,
approximate inference algorithms [6] such as variational inference is an area for
future work. Although the model was only demonstrated on source separation in
this paper, it can be useful for various applications that deal with sound mixtures
such as concurrent speech recognition and automatic music transcription.
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