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ABSTRACT

Nonnegative matrix factorization is an appealing techeitpr many
audio applications. However, in it's basic form it does ne¢ tem-
poral structure, which is an important source of informatio
speech processing. In this paper, we propose NMF-basednfjjte
and smoothing algorithms that are related to Kalman filgeend
smoothing. While our prediction step is similar to that oflidan
filtering, we develop a multiplicative update step which isrencon-
venient for nonnegative data analysis and in line with exisNMF
literature. The proposed smoothing approach introducesavoid-
able processing delay, but the filtering algorithm does mot @an
be readily used for on-line applications. Our experimergsmai
the proposed algorithms show a significant improvement tver
baseline NMF approaches. In the case of speech denoisihdaeit
tory noise at 0 dB input SNR, the smoothing algorithm outpens
NMF with 3.2 dB in SDR and around 0.5 MOS in PESQ, likewise
source separation experiments result in improved perfoceaue
to taking advantage of the temporal regularities in speech.

Index Terms— Nonnegative matrix factorization (NMF), Prob-
abilistic latent component analysis (PLCA), Predictiormporal
dependencies.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] is a technigueat de-
composes a honnegative matrix into a product of two nonhegat
matrices such that one contains basis vectors and the athtics
activations. NMF can be seen as a feature extraction metiaid t
discovers a low-dimensional representation in terms oft afska-
sis vectors. When applied to speech or music spectrograivi§, N
has been shown to produce promising results in differenlicpp
tions [2-5].

Since the basic NMF model ignores temporal correlatiorfs, di
ferent approaches have been used in the past to enhancectme-de
position to model time dependencies for audio signals. kame
ple, Virtanen [2] used a regularization term in NMF, motaty
the temporal dependencies of speech signals, to develomauno
ral sound source separation algorithm. A regularized NME alao
used in [6] where a heuristic regulation term was added tioNME
cost function that enforced temporal constraints as pa# nbise
reduction scheme. Another regularized NMF was proposed]in [
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in which anlz-norm penalty term was constructed and added to the
NMF cost function to encourage temporal smoothness betieen
NMF coefficients.

In a recently developed class of approaches, NMF and the hid-
den Markov model (HMM) are combined to model the temporal as-
pects in the NMF [3, 8, 9]. In order to develop a blind sourgease
ration or speech enhancement algorithm in this case, thels\éat
the two considered signals should be combined to form aratto
HMM. Therefore, even though these approaches are quitessicc
fulin modeling temporal dependencies, they are too contiouialy
expensive for an on-line algorithm. Moreover, the temparatiel-
ing in these methods cannot go beyond the first order Markainch
because of computational issues.

Bayesian NMF approaches can also provide an alternative way
to derive more meaningful factorizations for audio sign&dinear
minimum mean square error (LMMSE) estimator was proposed
in [10] for speech enhancement where the temporal dynangcs w
used in filter construction. In [11], an on-line speech ewkament
algorithm was proposed in which temporal aspects of the Wata
used to obtain informative prior distributions to be apgplia a
Bayesian NMF framework.

In this paper, we propose filtering and smoothing algoritfons
NMF strategies that are motivated by Kalman filtering and atmo
ing. We assume that the NMF coefficients are stochastic psese
and that they evolve through a vector autoregressive (VAB)eh
over time. Therefore, in addition to the basis matrix, theile be
some regression parameters associated with each signalproh
posed algorithm (for both filtering and smoothing) has twepst
First, we predict the current frame’s NMF coefficients givatiher
past observations (in filtering) or both past and future nlz®ns
(in smoothing), and second, we update the estimates gieeauh
rent observation. We propose a multiplicative update stéipecesti-
mates that can be interpreted using the HMM terminology. droe
posed scheme introduces a new way of thinking about the gmobl
that has not been considered in the current literature. Vkfgode
strate the strength of our method using both synthetic elesvgnd
real applications including denoising and speech sourngaragon.

2. PROPOSED METHOD

In this section, we present the proposed approach for a piliha
tic NMF in the context of probabilistic latent component lysi&s
(PLCA) [12]. In Subsection 2.1, we review the basic PLCA nlode



and define the required notations. The proposed approadheis g
in Subsection 2.2 for the filtering and in 2.3 for the smoaghanob-
lems, and finally, Subsection 2.4 illustrates how we can ggss@
mixed signal with these techniques.

2.1. Background

PLCA is a probabilistic formulation of NMF in which the digiu-

tion of an input vector is approximated as a convex comtmnabif

some weighted marginal distributions. A latent variableé$ined
to refer to the index of the underlying mixture component thes
generated an observation, and the probabilities of diftevatcomes
of this latent variable determine the weights in the mixture

past observations, which are denotedsly= {x1,...x;}. Here,
we assume that the basis mattixs obtained using some training
data and is kept fixed thereafter. We assume that the coefficie
vectors are modeled by an'-th order vector autoregressive (VAR)
model as:

M
vy = Z AmViem +ug 5 (4)
m=1
X¢ = 7vYibvi+wye, (5)

where A, is thel x I autoregressive coefficient matrix associated
with m-th lag, u: is the process noise, and; is the observation

We denote the magnitude spectrogram of the speech by a raneise in the model.

dom matrixX with elementsX;: where f is the frequency index
andt is the time index, and the realizations ky= [z ;]. Also, we
refer to thet-th column ofX by X;. The random vectoX; is as-
sumed to be distributed according to a multinomial distidou[13]
whose parameter vector is denotedy with the expected value
given as: E(X;) = v0;. Here,v; = Zf x ¢ is the total num-
ber of draws from the distribution at tinte The f-th element 0®,
(0¢+) indicates the probability thaf-th row of X will be chosen in
a particular draw from the multinomial distribution.

Let us define the scalar random varialdle that can take one
of the F' possible frequency indiceg = 1,... F as its outcome.
The f-th element 0, is now given asf;, = p(®, = f). Also,

Even though (4) and (5) represent a complete state-spacel mod
that can be easily converted to a first order VAR model, noatieg
ity of v; andx; prohibits the direct application of Kalman filtering.
Following, we present an alternative approach that has digtien
and an update step as with Kalman filtering. The predictiothef
coefficient vectow,, givenx! ™", is denoted byr.:—1 and is simply
obtained as:

M
Vijt—1 = g Amvt—m\t—mv (6)
m=1

wherev,_,, ;. is the updated estimate o ., givenx,~™. As
the update step, the basic PLCA model is applied (by iteydi))

let Vi denote a scalar random latent variable that can take one @f gptain the correction term that is denotediby Now, we update

the I possible discrete values= 1,...1. Using the conditional
probabilitiesp(®: = f) is given by

I

Ope=p(®=[)=> p(®=[|Vi=i)p(Vi=1).

i=1

@)

We define a coefficient matrix with elements;: = p(V; = 14),
and a basis matriv with elementss; = p(®: = f | Vi = 19).

In principle, b is time-invariant and includes the possible spectral

structures of the speech signal. Eq. (1) is nhow equivalemtiiten
as:0; = bvy.

the estimate of; as

N B . -
Vs = (Vt\t71) O 7

Zi ({lt\tfl)ﬁ OAY

where(-)? and® denote element-wise power and product operators,
respectively is the prior strength and might not be equal one, and
the normalization is performed to ensure tkat is a probability
vector. v, is a probability vector where each of its elements is pro-
portional to the similarity between the corresponding $asgctor

and the observatiog: . The multiplicative update in (7) is similar to

@)

An observed spectrogram can be approximated as the ex- he forward algorithm in an HMM, where the observation likebd

pected value of the underlying multinomial distribution =as ~

E(X:) = v+0:. Consequently, the nonnegative factorization is writ-

ten as:x; ~ y:bv; or x; = y:bv; + w: wherew, is an additive
noise.

The basis and coefficient matricds &ndv) can be estimated
using the expectation-maximization (EM) algorithm [13he€Titera-
tive update rules are given by:

Vit 32 ; byi (e /1)
Do vie 2o bypi(wpe/Ege)
bi 2, vit (g1 /E11)
2 b 30, vit (wpe/Epe)

Vit <

@)

byi (3)

is replaced withv,. Thereforeyv, |, can also be seen as the posterior
probability of the latent variables (hidden states in the MV

The VAR coefficientsA,,,,m = 1,... M, can be estimated in
different ways (e.g., [14, ch. 11]). In this paper, we camy & sub-
optimal approach to estimate these matrices for simplitiegv (™
denote the matrix/, in which the columns are shifted by, i.e.
v;’f) = vittm. Then,A,, is estimated ast,, = v(™v " where
T represents the matrix transpose. The columnsglgf are then
normalized to sum to one, and hencg/, can also be interpreted
as a transition matrix in a multimatrix mixture transitioistdibution
(MTD) model [15].

2.3. Smoothing

wherex; = ~:bv; is the model approximation that is updated after
each iteration. Note that, given the basis mabsixn (2), the up-
date equation of; is independent of all the other time instance
Therefore, the time dependencies can not be modeled uging (2

The smoothing problem arises when we want to estimate a co-
o, efficient vectorv, given both past and future data, iex] =

{x1,...X¢t,X¢+1,...x7}, WhereT is the total number of observa-

tions. This estimate is referred to @i (in contrast, the estimate

using filtering was denoted by, in (7)).

For this purpose, the PLCA algorithm is applieds§ to find
the coefficient matrixv. Then, a forward prediction matrix with
columns given byv,,_, and a backward prediction matrix with

2.2. Filtering

The goal of the proposed filtering approach is to develop alinen
algorithm to estimate a coefficient vectoy given all the current and



columns given byit‘T are obtained as:

M
Vt\t—l = E Amotfmv

(8)
m=1
M
5\t\T = Z AnVism . 9)
m=1

In principle, to evaluate (8) and (9) it suffices to have asdes
observations fromt — M throught + M. Therefore, the algorithm
will introduce a delay of\/ short time frames. Since our estimation
approach of the VAR model parameters makes similar to a tran-
sition matrix, (9) can be seen as an adaption of the HMM baokwa
algorithm [16]. The updated estimatewfis now given as:

(;\t\T ©) \A’t\t71>5 O Vi

& 6 (10)
2 ()\t\T @‘A’t\tq) O Vi

Vi =

2.4. Source Separation Using the Proposed Method
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Fig. 1. Magnitude spectrograms of the original inputs (top row),
the separated sources using PLCA (middle row) and the degara
sources using the proposed algorithm (bottom row). Foiblétyi
reasons we only show the frequency rafge 2 kHz.

To separate unknown sources from a given mixture, we can lear

the basis matrices and VAR coefficient matrices for all thvelved
sources off-line, and then concatenate them properly toeintha
mixed signal.

Denote the coefficient vector of the mixed signalday which
is estimated using (7) or (10). Let =~ stm be the observed
mixture, wheresy, ; represents thé-th column of thek-th source’s
spectrogram. The spectrogram of each source is estimated by

(11)

where division is performed element-wide,, is the basis matrix
of the k-th source, andry ;. is a coefficient vector that includes a
subset of the elements of that are associated with,, . Eq. (11) is
known as the Wiener reconstruction and is widely used withANM
based source separation (e.g., [5]).

3. EXPERIMENTS AND RESULTS

The proposed filtering/smoothing and the basic PLCA algor#
were applied to three different problems. In this sectioa,present
the results and discuss the effect of different model pararse®n
the performance. We used the magnitude spectrogram offspeec
noise signals as the input to the algorithms. The sepasatbdhced
time-domain signals were obtained using the phase of thedviix
put signal and the overlap-add procedure. In our experisniegite
we consider three tasks: the separation of structured bsigeals,
speech denoising, and source separation.

3.1. Separation of Speech and Its Time-reversed Version

We applied the smoothing algorithm (10) to a mixed signalnetiee
mixture was obtained as the sum of a temporally structureéap
signal (see Fig. 1) and its time-reversed version at a sampéite
of 8 kHz. The discrete Fourier transform (DFT) with a framegth

The top panels of Fig. 1 show the spectrogram of the original
signals. Since the basis matrices for the two source sigmalef-
fectively similar, basic PLCA or any other standard NMF aition
will not be able to separate the sources. We see that by obgerv
the separated sources which unfortunately closely resethelmix-
ture signal (see second row panels in Fig. 1). The bottomIparfie
Fig. 1 show the extracted source spectrograms using (1@3hvaine
obtained using parametefld = 4 and = 1. Because there is a
specific temporal structure that the two sources have (etmend-
ing or descending pitch), we can tell the two sounds apapities
the fact that they have spectrally identical basis matridgdss ex-
periment verifies the benefit of temporal modeling in a diffisep-
aration task. The separation performance in this case imdral
dB improvement in source to distortion ratio (SDR) [17], ietihe
basic PLCA leads to only 0.5 dB improvement, which is effesdi
no separation.

3.2. Speech Denoising

We consider a noise reduction application where the despedch
signal is corrupted by an additive noise. A speaker-dep@nalg-
proach is followed here in which a separate basis matrixaisidid
for each speaker and each noise type beforehand. The exmrim
was done for 100 randomly chosen speakers with differendeysn
from the TIMIT database [18], where 9 out of the 10 availalge-s
tences were used for training speech model and the othezrsent
was used for testing.

The denoising algorithms were evaluated for two babble acd f
tory noises taken from the NOISEX-92 database [19]. All iijaals
were down-sampled to 16 kHz. The frame length and overlagttien
in the DFT analysis were set to 64 and 60 ms, respectively. We
learned 60 basis vectors for speech and 20 and 30 basis wvéator
babble and factory noises, respectively.

First, we start by presenting an overall result of the deéngis

of 128 ms, 75% overlap, and a Hann window was applied to obtain performances for both the smoothing and filtering algorgh8ince

the magnitude spectrogram of the signals as the input to ME N

speech and noise signals have different temporal chaistater we

algorithms.60 basis vectors were trained for each source and werehose to use different powerg)(in (7) or (10) for speechfspeecy

used in PLCA and the proposed algorithm.

and noise Bnoise) coefficients. These should be set experimentally,
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Fig. 3: Performance of denoising algorithms for a noisy signal@t a
dB input SNR.

and we will discuss it shortly using Fig. 2. The performarcmea-
sured using SDR, source to interference ratio (SIR), andcsoto
artifact ratio (SAR) [17]. We also evaluated the perceptuadlity
of the enhanced speech using PESQ [20]. Fig. 3 presentsdhksre
for a noisy signal at a 0 dB input signal to noise ratio (SNR)eve
we have used! = 1, Bspeech= 0.5, Bnoise = 0.2 for filtering, and
Bspeech= 0.9, Pnoise = 0.6 for smoothing.

Table 1. Performance of the algorithms for speech source separa-
tion.

[ Algorithm | SDR (dB) | SIR (dB) | SAR (dB) ]
Baseline PLCA 4.8 8.5 8.2
Filtering 5.5 11 7.8
Smoothing 5.7 125 7.5

formance. However, it has made the algorithm more robustéo t
value of Bnoise. Also, the previously usefneise = 0.6 falls into the
optimal range of3noise

3.3. Speech Source Separation

The last application we consider here is monaural speecttesou
separation. We applied the proposed algorithms to 50 nexgig-
nals for randomly-chosen different-gender speaker pds Oix-
tures from the TIMIT database. The DFT analysis and therggtti
of model parameters including the number of speech bastengec
M, andBspeechwere done as described in Subsection 3.2.

Table 1 summarizes the results in terms of BSS-EVAL mea-
sures [17]. Including the temporal dynamics has increasBdoBt
reduced SAR compared to the baseline. This is consistehtwyiait
was also observed in noise reduction in 3.2. In this casegithec-
tion in SAR is small and almost negligible while the SIR iny&e
ment is significant. Considering the SDR as a measure of lbvera
speech quality, the evaluation shows that the performanseirix

The results show a significant improvement in SDR, which re<creased up to 0.9 dB due to the smoothing algorithm.

sults in better overall quality of demised speech, as coetptr the
baseline PLCA. Moreover, the evaluation shows that apglyire
temporal dynamics has increased the SIR whereas the SARewas
duced compared to the baseline. In fact, the algorithms leavi® a
fair trade-off between removing noise and introducingacts in the

4. CONCLUSION
r

In this paper we introduced an approach to take advantagenof t
poral dependencies of sounds when performing NMF-styl@iden

enhanced signal. The PESQ values also confirm a very gooel quahg and separation. Although we developed the algorithmgutiie

ity improvement using the proposed algorithms. Specificallthe
case of the factory noise and with the smoothing algorithBS® is
improved by around 0.5 MOS compared to the baseline. Additio
ally, the figure illustrates that the smoothing algorithrs peoduced
slightly better SDR and PESQ values than the filtering apgroa

Finally, let us consider the smoothing approach appliechéo t
babble case and study the effect of the model ordéy &nd prior

PLCA terminology, adaption of the scheme to NMF and its vésa
is straightforward. The proposed two-step estimation @gghn for
the NMF coefficients makes use of both temporal continuity f&n
delity of an observation at a given time instant. We demauettthe
improvements that we obtained by the developed method inusr
applications using experimental means. Noticeably, wevelldhat
our method can lead to improved results in source separatien

strength @) on the performance. Fig. 2 shows three objective meawhen the basis matrices of the two underlying sources actipatly

sures as functions of the model ordéd (= 1, 2,3,4) and noise
prior strength Bnoise) While Bspeech = 0.9. As the figure shows, in-
creasing the model order frointo 4 has not changed the peak per-

the same. This allows us to attack mixture problems with cesir
that can be very similar in spectral characteristics andedisble
only through their temporal structure.
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