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A Parameter estimation for Latent Variable Model

In this appendix, we derive update equations for the latent variable model as described in Section 2.

The model is given by equation (1) as reproduced below:

Pn(f) =
∑

z

P (f |z)Pn(z).

The goal is to estimate the parameters of the model such that they best explain the collection of all
observationsVnf , whereVnf represents the counts off in thenth data set in the collection. The
parameters to be estimated areP (f |z) andPn(z). z is the hidden variable andf is the feature
observed at any particular draw from the distributionPn(f). The subscriptn signifies that the
generative distributionPn(f) and mixture weightsPn(z) are specific to thenth data set. We use a
maximum likelihood formulation of the problem. The log-likelihood of all the observed data sets is
given by

P =
∑

n

∑

f

Vfn log Pn(f). (9)

The maximum-likelihood method estimates parameters such that the log-likelihood is maximized.

The standard procedure for maximum likelihood estimation in latent variable models is the Expecta-
tion Maximization (EM) algorithm. EM alternates two steps:(1) an expectation (E) step where the
a posteriori probabilities of the latent variables are computed based onthe current estimates of the
parameters, and (2) a maximization (M) step, where parameters are updated such that the expected
complete data log-likelihood is maximized.

For the E-step, we obtain thea posteriori probability for the latent variable as

Pn(z|f) =
Pn(z)P (f |z)

∑

z Pn(z)P (f |z)
. (10)

In the M-step, we maximize the expected complete data log-likelihood. LetΛ represent the set of
parameters of the model, i.e.Λ = {P (f |z), Pn(z)}. The expected log-likelihood can be written as

L = Ez̄|f̄ ;Λ log P (f̄ , z̄), (11)

wheref̄ and z̄ represent the set of all observations off andz in the draws that generated all data
sets. The complete data likelihood can be written as

P (f̄ , z̄) ∝
∏

j,n

Pn(fj , zj) =
∏

j,n

Pn(zj)P (fj |zj), (12)

1



wherefj andzj are the observed values of variablesf andz in thej-th draw. Hence, we can write
the functionL as (ignoring the constant terms)

L = Ez̄|f̄ ;Λ

∑

j,n

log Pn(fj, zj)

=
∑

j,n

Ezj |fj ;Λ log Pn(fj , zj)

=
∑

j,n

Ezj |fj ;Λ log Pn(zj) +
∑

j,n

Ezj |fj ;Λ log P (fj|zj)

=
∑

j,n

∑

z

P (z|fj) log Pn(z) +
∑

j,n

∑

z

P (z|fj) log P (fj |z). (13)

In the above equation, we can change the summation over drawsj to a summation over featuresf
by accounting for how many timesf was observed, i.e. thef -th entry in the observed data set1. The
expected log-likelihood can now be written as

L =
∑

n

∑

f

γVfn

∑

z

Pn(z|f) log Pn(z) +
∑

n

∑

f

γVfn

∑

z

Pn(z|f) log P (f |z). (14)

In order to take care of the normalization constraints, the above equation must be augmented by
appropriate Lagrange multipliersτn andρz,

Q = L +
∑

n

τn

(

1 −
∑

z

Pn(z)
)

+
∑

z

ρz

(

1 −
∑

f

P (f |z)
)

(15)

Maximization ofQ with respect toPn(z) andP (f |z) leads to the following sets of equations
∑

f

γVfnPn(z|f) + τnPn(z) = 0, (16)

∑

n

γVfnPn(z|f) + ρzP (f |z) = 0. (17)

After eliminating the Lagrange multipliers, we obtain the M-step re-estimation equations

P (f |z) =

∑

n VfnPn(z|f)
∑

f

∑

n VfnPn(z|f)
, Pn(z) =

∑

f VfnPn(z|f)
∑

z

∑

f VfnPn(z|f)
. (18)

B Maximum Likelihood and KL minimization

Maximimum likelihood method estimates parameters such that the log-likelihoodP , given by equa-
tion (9), is maximized. We can rewrite this as

P =
∑

n

(

∑

f

Vfn

)

∑

f

Vfn
∑

f ′ Vf ′n
log Pn(f) (19)

Vfn/
∑

f ′ Vf ′n represents the normalized histogram for thenth data set. Representing this term by
V̄fn,

P =
∑

n

(

∑

f

Vfn

)

∑

f

V̄fn log

(

Pn(f)

V̄fn

)

+
∑

n

(

∑

f

Vfn

)

∑

f

V̄fn log(V̄fn) (20)

=
∑

n

(

∑

f

Vfn

)

∑

f

V̄fn log

(

Pn(f)

V̄nf

)

+ C (21)

= −
∑

n

(

∑

f

Vfn

)

KL(V̄fn, Pn(f)) + C (22)

1Since observed dataset is modeled as a histogram, entries should be integers. To account for this, we weight
the data by an unkown scaling factorγ
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whereC is a constant term that is not dependent onPn(f).

argmaxVfn
P = argminVfn

∑

n

(

∑

f

Vfn

)

KL(V̄fn, Pn(f)) (23)

MaximizingP with respect toPn(f) is therefore equivalent to minimizing the sum of the KL dis-
tances between the normalized histogramsV̄fn andPn(f) for each data set, scaled by the total
number of draws in that data set.

C Parameter estimation: sparse latent variable model

The model is given by the equation

Pn(f) =
∑

z

P (f |z)Pn(z).

The set of parameters to be estimated areP (f |z) andPn(z) i.e. Λ = {P (f |z), Pn(z)}. We impose
ana priori probability on the parameters given by

P (Λ) ∝
∏

z

eᾱ
P

f
P (f |z) log P (f |z)

∏

n

eβ̄
P

z
Pn(z) log Pn(z),

whereᾱ andβ̄ are parameters indicating the extent of sparsity desired onP (f |z) andPn(z) respec-
tively. The log-prior (logarithm of the abovea priori probability) can be written as

ᾱ
∑

z

∑

f

P (f |z) logP (f |z) + β̄
∑

n

∑

z

Pn(z) log Pn(z), (24)

We usemaximum a posteriori estimation and use the EM algorithm.

For the E-step, we compute thea posteriori probability of the latent variable as before:

Pn(z|f) =
Pn(z)P (f |z)

∑

z Pn(z)P (f |z)
. (25)

In the M-step, instead of maximizing the log-likelihood, wemaximize the log-posterior (the loga-
rithm of thea posteriori probability of the model parameters). The log-posterior tobe maximized is
given by

L = Ez̄|f̄;Λ log P (f̄ , z̄) + log P (Λ) (26)

wheref̄ and z̄ represent the set of all observations off andz in the draws that generated all data
sets. The first term of equation (26), corresponding to the log-likelihood, can be derived as shown in
the previous appendix and is given by equation (14). The second term corresponding to the log-prior
is given by equation (24). Hence, we can write the functionL as (ignoring the constant terms)

L =
∑

n

∑

f

γVfn

∑

z

Pn(z|f) logPn(z) +
∑

n

∑

f

γVfn

∑

z

Pn(z|f) logP (f |z)

+ᾱ
∑

z

∑

f

P (f |z) logP (f |z) + β̄
∑

n

∑

z

Pn(z) log Pn(z). (27)

Here,γ is a parameter that weights the data whileᾱ andβ̄ are parameters weighting the prior.

In order to take care of the normalization constraints, the above equation must be augmented by
appropriate Lagrange multipliersτn andρz,

Q = L +
∑

n

τn

(

1 −
∑

z

Pn(z)
)

+
∑

z

ρz

(

1 −
∑

f

P (f |z)
)

(28)

Maximization ofQ with respect toPn(z) andP (f |z) leads to the following sets of equations
∑

n VfnPn(z|f)

P (f |z)
+ α + α log P (f |z) + ρz = 0, (29)

∑

f VfnPn(z|f)

Pn(z)
+ β + β log Pn(z) + τn = 0, (30)
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whereα = ᾱ/γ andβ = β̄/γ. We have replaced two parameters weighting the data and prior
separately (γ andᾱ for equation (29),γ andβ̄ for equation (30)) by a single parameter that weights
the prior with respect to the data (α andβ in equations (29) and (30) respectively).

Now, consider solving forPn(z). Equation (30) can be written as

ωz

Pn(z)
+ β + β log Pn(z) + τn = 0, (31)

whereωz represents
∑

f VfnPn(z|f). The above set of simultaneous transcendental equations for
Pn(z) can be solved using the Lambert’sW function ( [3]) as proposed by [1].

Lambert’sW function is an inverse mapping satisfying

W(y)eW(y) = y =⇒ logW(y) + W(y) = log y

As shown in [1], we can sety = ex and work backwards towards equation (31) as follows,

0 = −W(ex) − logW(ex) + x

=
−1

1/W(ex)
− logW(ex) + x + log q − log q

=
−q

q/W(ex)
+ log q/W(ex) + x − log q

Settingx = 1 + τn/β + log q andq = −ωz/Pn(z), the above equation simplifies to equation (31):

0 =
ωz/β

−(ωz/β)/W(−ωze1+τn/β/β)
+ log

−ωz/β

W(−ωze1+τn/β/β)

+1 +
τn

β

=
ωz/β

Pn(z)
+ log Pn(z) + 1 +

τn

β

which implies that

P̂n(z) =
−ωz/β

W(−ωze1+τn/β/β)
, (32)

where equations (31) and (32) form a set of fixed-point iterations for τn, and thus the M-step for
finding Pn(z). [1] points out that these equations typically converge in 2-5 iterations. [2] provides
details about how to compute the lambert’sW function.

We can similarly solve forP (f |z) by solving the set of transcendental equations given by equa-
tion (29) using Lambert’sW function. It can be shown that it can be estimated as

P̂ (f |z) =
−ξ/α

W(−ξe1+ρz/α/α)
, (33)

where we have letξ represent
∑

n VfnPn(z|f). Equations (29) and (33) form a set of fixed-point
iterations and correspond to the M-step updates forP (f |z).
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