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ABSTRACT

We present a neural network model that learns to produce music
scores directly from audio signals. Instead of employing common-
place processing steps, such as frequency transform front-ends, har-
monicity and scale priors, or temporal pitch smoothing, we show
that a neural network can learn such steps on its own when pre-
sented with the appropriate training data. We show how such a
network can perform monophonic transcription with very high ac-
curacy, and how it also generalizes well to transcribing polyphonic
music.

Index Terms— Music transcription, deep learning, end-to-end
systems, seq2seq

1. INTRODUCTION

Automatic music transcription has been a long standing problem in
audio analysis. Since the earliest attempts more than years ago [1],
we have seen a large variety of approaches employing a wide set of
technical tools [2, 3, 4, 5, 6, 7, 8, 9, 10]

One potential point of contention in this pursuit, is the amount
of user-guidance in the design of such systems. Quite often, al-
gorithm designers make assumptions which, although sensible, are
not necessarily optimal. For example, it is customary to use a short-
time Fourier transform front-end (or equivalents), to assume certain
pitch quantizations corresponding to musical scales, to expect har-
monicity in sounds, to apply some smoothing in the resulting pitch
estimates, etc. In this paper we consider the design of a system
that is largely free from any such assumptions, and optimally learns
all the necessary steps to perform transcription by being only pre-
sented with pairs of audio waveforms and their corresponding music
scores (in text form). We show that doing so results in a system that
automatically learns a harmonic-like front-end, and other common
music transcription structures on its own. Because this is done in
the framework of an adaptive system, these structures are adapt to
being optimal for this task, thereby putting to end questions such as
what is the optimal front-end for transcription, the setting of various
parameters, etc.

This system is designed using a deep learning architecture. It
is based on a seq2seq model [11] preceded by a convolutional layer
[12] that acts as a front-end. The system is presented with windows
of raw waveform data, and for each window it produces as an output
a 1-hot encoding of a music score using the Lilipond language [13].

A key advantage of this approach is the explicit avoidance of
forced intermediate parametric representations (such as frequency
decompositions or piano roll representations), which can often com-
plicate the translation to a musical score and can be the source of
additional errors and ambiguity.
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2. TRANSCRIPTION AS SEQUENCE TO SEQUENCE
TRANSLATION

One of the great advantages of deep learning methods is the abil-
ity to easily design “end-to-end” systems. These are systems that
do not use explicit intermediate representations (e.g. features, or
explicit latent variables), and can instead accept unprocessed input
data in the format that they are collected, and produce an output
in the desired final form. In the context of music transcription that
would imply receiving an audio waveform and directly producing a
music score. In this section we will describe a network architecture
that is able to do so.

2.1. Representing the data

Before continuing with the description of the proposed network, let
us discuss how we will be representing the input and output data.
The input audio data will be represented using one-second long real-
valued sequences with 8192 samples, scaled between−1 and 1. For
now, we will assume that each such window will correspond to one
bar of music, and for the sake of simplicity we assume 4

4 measures.
To start with, we will consider only piano notes, but later on we
will present results on additional instruments as well. The reason
why we start with piano, is that it is an instrument that allows for
a relatively strict 1-to-1 mapping between sound and score. Bowed
and wind instruments can introduce pitch embellishments which are
not represented in the score and thereby present an ambiguity in the
training data. It is highly likely that with enough training data, the
necessary invariances to these embellishments can be learned, but
that’s an issue that outside of the introductory scope of this paper.

For the output data, we want to obtain a direct representation of
a score, as opposed to a set of pitch probabilities, or some interme-
diate representation that does not have a deterministic mapping to
a score. In order to explicitly represent an output score we use the
Lilypond music notation language [13], which is a text-based com-
puter language that is used to generate music scores. The way that
we will represent the output text will be using a 1-hot encoding, i.e.
a sequence of sparse vectors, of which each element corresponds
to a unique character, and where the only non-zero element will be
indicating which character is to be active at any point in time. For
an brief illustration of the Lilypond language and the subsequent
encoding see figure 1.

2.2. Network architecture

Having defined the format of the data we will use, we will now
describe the structure of a deep network that is capable of accepting
waveform inputs and producing a 1-hot text output representing a
score. We split the representation into two parts; first the part that
will be equivalent to a front-end, and then the part that is responsible



2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY

      f’8 e’’2 d’4 cis’8 →

1

durations

notes

“ ‘ “ raises octave, “ , ” lowers octave

accidentals

a
b
c
d
e
f
g
2
4
8
‘ 
,

is

Figure 1: An example of the output representation. On the top right
we see the score we wish to express, in the top left we see its de-
scription using the Lilypond language, and on the bottom we see
the 1-hot encoding of that text description. Our approach produces
the latter representation which deterministically maps to a score.

for translating the latent representation of the input sequence to a
Lilypond text sequence.

2.2.1. Adaptive front-end

Traditionally, music transcription systems start with some form of
a harmonic transform. This is a sensible type of front-end since the
main feature that informs transcription is pitch, and pitch can be best
detected with a frequency-type decomposition. We will start with a
similar step, but we will not assume a particular type of transform.
We will instead use an adaptive filterbank, or in the deep learning
parlance, a convolutional layer. As is traditional, we also subse-
quently apply an activation function (a ReLU [14]), which acts as
a kind of rectifier. We therefore start by transforming the input se-
quence using:

c[f, t] = max

(
L∑
k

x[t− k]q[f, k], 0

)
, f ∈ {1, . . . , F} (1)

where x[t] is the input sequence as described above, and q[f, k] is a
set of F filters of length L. In this step we effectively convolve the
input with this set of filters and keep the F rectified outputs c[f, t].
Unlike traditional transcription systems though, we will not specify
the filters q[f, t] ourselves, we will instead adapt them in order to
optimally perform transcriptions tasks. In this work we use 128
filterbanks of size 256 samples.

2.2.2. A sequence to sequence model

Having expanded the input waveform to a multidimensional se-
quence we now turn to the problem of translating this sequence to a
sequence of one of 1-hot vectors that represent the desired Lilypond
score. Before we address this process we make one more observa-
tion, the input sequence is of length 8192 samples but the output
sequence will only contain a handful of characters. Therefore we
can safely downsample the output of the filterbank in order to re-
duce the computational burden of this network. We will do so using
another common deep learning construct, the maxpooling process
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Figure 2: Flow graph of the proposed network architecture. The
leftmost components represent the front-end processing, the mid-
dle components result in a state vector that represents the necessary
information in the entire input waveform, and the rightmost com-
ponents use that vector as a seed to synthesize the text of a score
description language.

[15]. In our case, this is defined as:

cm[f, t/P ] = max(c[f, t], . . . , c[f, t+ P ]) (2)

Where P represents the amount of downsampling that this opera-
tion performs. For the experiments in this paper we used P = 64,
resulting in a filterbank output with 128 time steps.

The subsequent sequence to sequence translation is not neces-
sarily straightforward. We note that although the resulting max-
pooled sequence is of fixed length, the desired output is one of vari-
able length, meaning that we cannot use straightforward transforms
to map one onto the other. Keeping with the deep learning theme,
we will use the seq2seq model [11], which is able to find maps be-
tween arbitrary length sequences. The model is defined using two
parts, the encoder and the decoder. The encoder is a set of Recur-
rent Neural Net (RNN) layers defined as:

ei[t] = tanh
(
W

(e)
i · ei−1[t] +V

(e)
i · ei[t− 1] + b

(e)
i

)
(3)

Where i ∈ {1, . . . , E}, and e0[t] = [cm[1, t], . . . , cm[F, t]]>. The
parameters of this model correspond to the variables W

(e)
i , V(e)

i

and b
(e)
i . The (e) superscript denotes that these parameters belong

to the encoder stage. The number of layers E is user-defined, and
for our experiments we used E = 2. The input to the first layer is
simply the multidimensional sequence that the maxpooling opera-
tion produces. From the final layer of the encoder we only keep the
output vector at the last time step eE [T ]. The creation of this vector
is influenced by all the preceding time steps (due to the recurrent
nature of the layers before it), and it can be seen as a vector that
summarizes the input data.

Likewise, the decoder stage is defined as a sequence of RNNs
as well:

di[t] = tanh
(
W

(d)
i · di−1[t] +V

(d)
i · di[t− 1] + b

(d)
i

)
(4)

Where i ∈ {1, . . . , D}, and d0[t] = eE [T ], i.e. the input is simply
a repetition of the last output of the encoder stage. For the experi-
ments in this paper we used D = 1. At the end of this set of layers
we are presented with a new sequence dD[t], which can be arbitrar-
ily long depending on how many times we repeatedly feed eE [T ]
as an input (something that we will specify below).
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Figure 3: Training profile for a single-octave range experiment.
This plot shows the probability of a substitution, insertion, or dele-
tion of a note over adapting to increasingly more training examples.

In order to obtain the desired 1-hot representation we add one
more processing step. We use a simple softmax layer on the output
of the decoder stage, i.e.:

z[t] = softmax (W · dD[t] + b) (5)

Where softmax(x)i =
exi∑
j e

xj and W and b are the layer param-

eters. The softmax operation ensures that the output vectors will
sum to 1, hopefully containing only one non-zero element as the
desired targets do. Once the sequence of output vectors indicates
a sequence of characters that implies the end of the Lilypond score
(either a “}” character, or in the case of polypohonic music the se-
quence “>>}”), we stop feeding new inputs and halt the process.
The entire network is illustrated in figure 2.

It is important to note at this point that there is no constraint
that guarantees that the output will result in a valid Lilypond state-
ment. This model will produce a sequence of characters, which
might compile (or not). We do not take any extra steps to post-
process the score in order to correct the syntax. In practice we
obtain good enough convergence that the majority of outputs are
well-formed score descriptions.

2.2.3. Training details

Given that we specified this entire process using neural network
primitives, we can simply provide a set of training data composed
out of waveforms and their corresponding 1-hot score representa-
tions, and thus estimate the optimal values for all the layer parame-
ters. For training this network, we use the RMSProp algorithm [16]
and also apply 25% dropout at every layer [17]. In order to avoid
numerical saturation issues we also add a batch normalization layer
[18] after the front-end section. As is common, instead of using
RNN layers as defined above, we use LSTM layers [19] which are
more amenable to efficient gradient-style training, whilst providing
the conceptual processing of RNNs.

The training data was synthetically generated. We generated
random melodies for which we computed both their score (as a 1-
hot vector of Lilypond statements), and their corresponding wave-
form using a MIDI synthesizer. For evaluation we kept a set of 1024
melodies which were never used in the training data. The smallest
durations used in the melodies were eighth notes. The range of
notes, and the sound generation parameters were dependent on the
experiment, and are described separately below.
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Figure 4: Front-end filter comparison between 1- and 7-octave train-
ing sets. In both plots we show the magnitude Fourier transform of
each filter, ordered by dominant frequency. It is clear that both cases
learn pitch-detecting filters, but the filters for the 7-octave training
data (on the right) span a wider range than the 1-octave case (left).

3. EXPERIMENTS

We will now show some of the results we obtained, a small-range
simple monophonic example, a large-range monophonic example,
a polyphonic example, and examples that stress the ability of this
algorithm to generalize. To evaluate how close the predicted score
was to the real score we will present a breakdown of the Levenshtein
edit distance between the two scores. We will report the probabili-
ties of the network’s prediction to substitute P (sub), delete P (del),
or insert P (ins) a note as compared to the ground truth note se-
quence.

3.1. Monophonic music

In order to show how this model can learn melodies, and what fea-
tures it clings on we will start with a simple example in which the
input contains monophonic melodies with a one-octave range, using
only eighth, quarter and half notes. Using these parameters we note
that the number of possible melodies is 729,601,488. Upon train-
ing on only 1,500,000 samples we see that we can achieve near-
perfect transcription performance on unseen data. This is an impor-
tant point to make since it highlights that despite the extremely large
space of possibilities this network rapidly learns to generalize and
represent musical structure. The summary of the training process
on this data is shown in figure 3. Note that, initially, the network
being unable to make any meaningful predictions, or to produce a
syntactically correct score, exhibits a high probability of deleting
notes. As the model parameters adapt, we see that it starts trading
deletions with substitution mistakes, which over time are also min-
imized until we get good performance. Insertions are generally a
rare mistake with this system.

We then repeat the same experiment with seven octaves in or-
der to see how well this model can deal with larger note ranges. The
space of melodies in this case balloons to 2,690,655,004,956,240.
Training on only 1,280,000 samples, we obtain the final valida-
tion set edit probabilities of P (sub) = 0.006, P (ins) = 0.001,
P (del) = 0, which once again imply near flawless performance.
To get some sense of how this model makes mistakes, we show the
note confusion matrix in figure 5. A surprising feature of this al-
gorithm is that we don’t see prominent octave confusion mistakes.
An interesting comparison with the preceding example takes place
in the front-end filters that are learned. In figure 4 we show the



2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 15-18, 2017, New Paltz, NY

del 2 4 8 88
Prediction

ins

2

4

8

In
pu

t

Duration confusion matrix

del 20 40 60 80
Prediction

ins

20

40

60

80
Pitch confusion matrix

Figure 5: Confusion matrices for a single-voice monophonic piano
dataset covering seven octaves. The ins and del entries denote inser-
tions and deletions respectively. Note that there are very few pitch
errors, and no consistent error patterns. Likewise we see that there
are very few note duration estimation errors (an interesting error
is that rarely the 8 is repeated forming a syntactically nonsensical
duration of 88)

learned filters from the one-octave example, vs. the 7-octave ex-
ample. Note that in each case the dominant frequency elements of
these filters predominantly lie in the range in which the training data
fundamental frequencies are. Whereas the one-octave filters mostly
exhibit energy in the range between C4 and C5, we see that for the
7-octave data this range is expanded. Additionally, as a stress test
we added various sources of variance in the data to examine the
ability of this model to deal with more uncertainty. We did so by
randomly detuning the notes in the audio stream (less than half a
semitone), and for each training sample we add random amounts of
reverberation, and chorusing effects, as well as training on multiple
piano types. We also added 50% dropout to the input, meaning that
a random half of the input samples were set to zero. Compared to
the 1-octave example above, the probability of edits now becomes
P (sub) = 0.024, P (ins) = 0.002, P (del) = 0.002, i.e., slightly
worse, but qualitatively the same and still very accurate. We also
trained this system on melodies of different input lengths – 8192 to
10240 samples – obtaining edit probabilities of P (sub) = 0.008,
P (ins) = 0.001, P (del) = 0, which shows the model is fully ca-
pable of handling musical performances at varying speeds. By dy-
namically changing the amount of maxpooling in order to produce
filterbank outputs of the same length, we were also able to train on
sequences of 8192 samples, and correctly recognize sequences of
arbitrary sample lengths.

3.2. Polyphonic music

Of course, monophonic melodies are not a particularly difficult
challenge, and a question of significant interest is whether this
model can perform just as well in the case of polyphonic inputs.

In order to test for that, we setup an experiment with two si-
multaneous voices. This case necessitates a different format in the
output. To define two voices using the Lilypond specification, the
output sequence has to be comprised of two consecutive sequences,
each containing the notes of each voice [13]. This makes for an
interesting sequence to sequence mapping problem. Previously,
there was some correspondence between the timing of the audio
data and the score (early notes appear at the early parts of both the
sequences). In the polyphonic case, because in we need to outline
the two melodies consecutively, this direct temporal mapping isn’t
present. A note in the beginning of the input might influence the
beginning of the output, or its middle. Thankfully, this is an issue
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Figure 6: Confusion matrices for a polyphonic transcription exam-
ple with two overlapping melodies defined over a range of two oc-
taves. The left plots shows the duration confusions, and the right
plot shows the pitch confusions.

to be resolved by the training process and does not necessitate any
actions from our part, but creates a more challenging problem that
sometimes necessitates larger layer sizes.

There is an additional complication when using polyphonic in-
puts. If we use the same instrument sound for both voices, we would
introduce identifiability problems since the same input waveform
could map to multiple Lilypond descriptions. For example, if we
swap notes between the two voice melodies the score would stay
the same but the Lilypond text file would be different. This issue
can be resolved by appropriately redefining our cost function, but
that is outside the scope of this paper. For now, in order to demon-
strate the ability to parse polyphonic music we will use a different
instrument for each voice, so that the network can use timbre to map
the appropriate note to the correct voice. This will allow us to also
test the ability of this method to deal with non-piano sounds. Both
voices will use notes in the range of C4 to C6 and we will use a
piano and a human chorus sound as the two instrument types.

The results of this experiment are shown in figure 6. We can see
that they are slightly worse, but qualitatively equivalent to the previ-
ous experiments, albeit achieving convergence takes more iterations
than before. The resulting network resulted in edit probabilities of
P (sub) = 0.031, P (del) = 0.004, and P (ins) = 0.001.

4. CONCLUSIONS

In this paper we presented an approach to directly estimate a music
score from a raw waveform. In doing so we presented an algorithm
that appears to be quite resilient to many nuisances and does not
suffer from common shortcomings of transcription systems. Ad-
ditionally, this approach removes the need for intermediate repre-
sentations, which can often constraint or degrade performance if
they are poorly chosen. Finally, deploying this algorithm involves a
minimal amount of fine-tuning, or codifying human intuition (often
a source of problems!) which makes it a very attractive alternative.

We see this work as a stepping stone towards fully functional
end-to-end transcription systems. The model that we proposed is
still a proof of concept. It can only transcribe a single bar at a time,
it has not been tested on varying time signatures, does not know
about the intricacies of key signatures, how to add expressive infor-
mation in scored, etc. However, we feel that these issues can we be
easily addressed with further modifications and expanded training
data. We believe that that such an approach can lead to significant
performance advantages, in addition to offering an alternative ap-
proach to the long-standing established methods.
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