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ABSTRACT

We present an algorithm for separating multiple speakers from a
mixed single channel recording. The algorithm is based on a model
proposed by Raj and Smaragdis [6]. The idea is to extract certain
characteristic spectro-temporal basis functions from training data for
individual speakers and decompose the mixed signals as linear com-
binations of these learned bases. In other words, their model ex-
tracts a compact code of basis functions that can explain the space
spanned by spectral vectors of a speaker. In our model, we generate
a sparse-distributed code where we have more basis functions than
the dimensionality of the space. We propose a probabilistic frame-
work to achieve sparsity. Experiments show that the resulting sparse
code better captures the structure in data and hence leads to better
separation.

Index Terms— Separation, Speech enhancement, Minimum en-
tropy methods, MAP estimation

1. INTRODUCTION

The problem of separating speakers from a mixed single microphone
recording is an important but hard problem and is an active area of
research. Research in this area can be categorized into two major ap-
proaches. In the first, the aim is to identify the time-frequency com-
ponents of a mixed-signal that are dominated by a target speaker (eg
[7]). Signals are reconstructed from the resulting incomplete time-
frequency representations. The alternate approach attempts to con-
struct entire spectra for each of the speakers. Characteristic spectro-
temporal structures, or basis functions, are learned for each speaker
and mixed signals are decomposed into linear combinations of these
bases. Signals are reconstructed by recombining the learned bases
with appropriate weights that are estimated from the mixed-signal.

In this paper, we propose a new algorithm following the latter
approach that is based on a model proposed by Raj and Smaragdis
[6] (henceforth referred to as the RS model). We propose to utilize
sparse, overcomplete representations within the RS model to enable
the learning of basis functions which better represent the spectral
structure present in speech, thereby leading to significantly improved
speaker separation.

The paper is organized as follows. We first provide some back-
ground with a review of the RS model and a discussion of the con-
cepts of sparsity and overcompleteness in the following sections 1.1
and 1.2 respectively. We describe our model and algorithms in sec-
tion 2. We present results of experimental evaluation of the model in
section 3 and end with conclusions in section 4.

Fig. 1. Let Pt(f) represent the probability of observing frequency
f in analysis frame t. (a) Graphical model and equation for the un-
derlying process in the RS model for a single speaker. P (f |z) is the
probability of observing frequency f given hidden variable z, and
Pt(z) is the a priori probability of z in analysis frame t. (b) Graph-
ical model and equation for the underlying process in the RS model
for a mixture of speakers. Pt(s) is the a priori probability of the s-th
speaker and {zs} represents the set of values that z can take for that
speaker.

1.1. Latent Variable Model

Raj and Smaragdis [6] proposed an algorithm for single channel
speaker separation by latent variable decomposition of the speech
spectrogram. Each magnitude spectral vector in the short-time Fourier
transform of a speech signal is modeled as the outcome of a discrete
random process that generates frequency bin indices. In other words,
the magnitude spectrum of each frame represents a scaled histogram
of multiple draws from this random process. The discrete random
process is modeled as a mixture of multinomial distributions over
frequencies. The mixture weights of the component multinomials
vary from analysis frame to analysis frame. The component multi-
nomials are assumed to be speaker specific and are learned from
training signals for each speaker. Figure 1 provides graphical mod-
els and mathematical descriptions of the underlying random process.

We can formalize the model by associating a latent variable z
with every component multinomial. The conditional probabilities
for frequency f , P (f |z), are assumed to be constant for a given
speaker while the a priori probability of z at analysis frame t, Pt(z),
is assumed to vary with t. f takes the values of the discrete frequen-
cies of the FFT for the frame, while z takes on as many values as
there are component multinomials. One can intuitively think of the
component multinomials P (f |z) as basis functions and the latent



variable probabilities Pt(z) as the corresponding mixture weights
that together explain the t-th frame of the spectrogram Pt(f).

The spectrum of a mixed signal is modeled as the outcome of
repeated draws from a two-level random process. Within each draw,
the process first draws a speaker from the mixture (represented by
latent variable s in figure 1(b) ), then a specific multinomial for
the speaker (latent variable z), and finally a frequency index from
the multinomial. To separate the spectrum for each speaker within
an analysis frame, we obtain estimates of the mixture weights for
each speaker given the speaker-specific multinomial distributions
that were learned from training data. The separated spectrum for the
speaker within the frame is finally obtained as the expected value
of the number of draws of each frequency index from the mixture
multinomial distribution for the speaker.

1.2. Sparsity and Overcompleteness

The idea of sparsity originated from attempts at understanding the
general information processing strategy employed by biological sen-
sory systems (eg [4]). The assumption is that the goal of sensory
coding is to transform the input in such a manner that reduces the
redundancy present among the elements of the input stream. Typi-
cally, the input space has some structure (is not completely random)
and the idea is to take advantage of this redundancy to produce more
efficient representations of the environment.

There are two approaches with which one can utilize the redun-
dancy of the inputs. In a compact code, the goal is to represent all
the likely inputs with a relatively small number of vectors with min-
imal loss in the description of the input (eg. minimal mean-squared
error). In such a code, the dimensionality of the representation is re-
duced. Principal Components Analysis (PCA) is an example of that
approach.

In a sparse-distributed code, the number of elements in the code
is at least as large as the dimensionality of the input. In other words,
the code is overcomplete. However, the number of elements of the
code needed to describe a particular instance of the input is mini-
mized. The goal is to obtain a code where only a few elements are
required to explain a given input.

1.3. Sparsity and Overcompleteness for Speaker Separation

The application of the concepts of sparsity and overcompleteness to
speaker separation is best explained through the following hypothet-
ical example: assume that the complete set of speech spectra that a
talker can generate is known for two talkers. All spectral vectors in
any mixed recording are obtained by linearly combining one spec-
trum each from the respective sets of the two talkers.

The set of all possible spectral vectors for any talker may be
viewed as the set of bases for that talker. The set must, by nature,
be overcomplete since there are many more vectors than there are
dimensions in the vectors. A spectral vector from a mixed signal
may be explained as a linear combination of the bases from the two
talkers. However, such an explanation would be uninformative since
the vector may be equally well explained by several combinations of
bases. However, if it is also required that the explanation be sparse,
i.e. that the vector be explained using the smallest number of bases,
the set of possible solutions reduces – in the best case it will only
include the solution that describes the vector as a combination of the
two bases vectors (one from each talker) that actually combined to
form it, thereby permitting exact separation of the two talkers from
the mixed spectrum. Such a solution which would not be possible
using compact basis sets.

More generally, a finite overcomplete basis set may estimated
for a talker by stipulating the all spectral vectors in a training set be
explained through the sparsest combinations of bases from the set. It
may be expected that decomposition of spectra from mixed speech
signals using such bases sets will result in better separation than may
be possible using compact basis sets.

2. SPARSE OVERCOMPLETE DECOMPOSITION MODEL

We first introduce some matrix notations that will help with the ex-
position. For a given speaker, let the two-dimensional distribution
corresponding to the spectrogram be represented by the F × T ma-
trix V. Let all the K component multinomial distributions be repre-
sented by the F ×K matrix W with the k-th column corresponding
to the k-th multinomial distribution i.e. Wfk = P (f |z = k). Let
the probabilities of the latent variables at all frames by represented
by the K × T matrix H where Hkt = Pt(z = k). Every column of
H, just like every column of W, corresponds to a probability distri-
bution and hence sums to unity. With this notation, the model given
by equation (a) in figure 1 can be equivalently written as V = WH.
Finally, we shall refer to the columns of W as basis functions and
the t-th column of H as mixture weights or just weights for frame t.

There are two stages in speaker separation algorithms: learn-
ing the parameters of each speaker from training data, and using the
learned parameters to separate speakers from mixed signals.

Consider the training stage. The RS model is given by equation
(a) of figure1. Our model is described by the same equation. The
crucial difference lies in how we estimate parameters. The RS model
produces a compact code. The goal of RS model in the training
stage is to find matrices W and H given a F × T spectrogram N.
Implicit in the model is the assumption that there is a reduction in
dimensionality i.e. K < F . In the examples given in [6], F = 513
and K = 100.

In contrast, the goal of our model is to produce a sparse-distributed
code. The first requirement is that the basis set be overcomplete i.e.
K ≥ F . An overcomplete basis set by itself can result in more than
one feasible solution. We will have to explicitly enforce sparsity so
that we get unique solutions. Below, we show how we enforce spar-
sity during estimation to produce a sparse-distributed code of basis
functions. This forms the crux of our contribution in this paper.

We use the concept of entropic prior introduced in [1] to enforce
sparsity. Given a probability distribution θ, entropic prior is defined
as

Pe(θ) = e−H(θ) (1)

where H(θ) = −
P

i θi log θi is the entropy of the distribution. A
sparse representation, by definition, has few “active” elements which
means that the representation has low entropy. Hence, imposing this
prior during maximum a posteriori estimation is a way to minimize
entropy during estimation which will result in a sparse θ distribution.
If we want a sparse distributed set of basis functions, we need to
impose sparsity on the distributions over the latent variable z for all
frames i.e. on every column of H.

We use the Expectation-Maximization algorithm to derive the
update equations. Let Λ represent the parameters of the model and
super-script (i) denote the i-th iteration. Let N be the spectrogram
available as training data. P (Λ) represents the prior knowledge we
have about the parameters i.e.

log P (Λ) = β
X

t

X

z

Pt(z) log Pt(z)
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Fig. 2. Examples of a subset (fifty) of basis functions learned for a
male speaker. The left panel corresponds to the compact code where
100 bases were learned in total. The mid-panel corresponds to a
sparse-distributed code where 1000 basis functions were learned by
imposing sparsity. The rightmost panel shows a subset of 1000 basis
functions learned without the imposition of sparsity. The sparse code
shows harmonic structure present in speech while the overcomplete
code without sparsity resembles a set of impulse distributions.

where β is a parameter indicating the degree of sparsity desired. We
can write the E-step as

Pt(z|f) =
Pt(z)P (f |z)

P

z′ Pt(z′)P (f |z′)
, (2)

and the M-step as

P (f |z) =

P

t NftPt(z|f)
P

f ′

P

t Nf ′tPt(z|f ′)
, (3)

α
P

f NftPt(z|f)

Pt(z)
+ β + β log Pt(z) + λ = 0 (4)

where λ is a Lagrange multiplier and α is an unknown scaling factor
(so that all entries of αN are integers). For simplicity, we write it as

ωz

θz
+ β + β log θz + λ = 0 (5)

where ωz = α
P

f NftPt(z|f) and θz = log Pt(z). We need to
solve for θz for all t. [1] proposes a method to solve the above system
of simultaneous transcendental equations for θz using the Lambert
W function [3], an inverse mapping satisfying logW(u)+W(u) =
log u. Rearranging the terms in (5), one can derive

θ̂z =
−ωz/β

W(−ωze1+λ/β/β)
(6)

Equations (5) and (6) form a set of fixed-point iterations that typi-
cally converge in 2-5 iterations [1]. Details on computing the Lam-
bert W function can be found in [2].

The final update equations are given by equations (2), (3) and
the fixed-point equations (5) and (6). Factors α and β weight the
relative contributions of data and prior respectively. They have to be
chosen empirically based on the application domain and the particu-
lar problem being solved.

Once we have trained basis functions for each speaker, we can
use them to separate speakers from a mixed single channel recording.
The algorithm is identical to the separation stage of the RS model
and one can refer to [6] for equations.

Original Sample 1 Original Sample 2

Reconstruction 1 − Sparse Code Reconstruction 2 − Sparse Code

Reconstruction 1 − Compact Code Reconstruction 2 − Compact Code
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Time 

Fig. 3. Examples spectrograms of reconstructions from a mixture
with female and male speakers. Sample 1 corresponds to the female
speaker and sample 2 corresponds to the male speaker. One can no-
tice that reconstructions with the sparse code are better than recon-
structions with the compact code, especially for the male speaker in
this example.

3. EXPERIMENTAL EVALUATION

Experiments were conducted to evaluate the speaker separation per-
formance of the proposed algorithm on synthetic mixtures. We eval-
uated on six pairs of speaker combinations: two pairs were female/male,
two were male/male and two were female/female.

A set of about 135 utterances comprising approximately 16 min-
utes of speech was used as training data for each speaker. Signals
were sampled at 16 kHz and short-term Fourier transforms were
generated with an FFT point size of 1024, hop size of 256 between
frames, and a hanning window. The dimensionality of each spectral
vector was 513 (F = 513) and they were modeled by a mixture of
1000 multinomial distributions (K = 1000). Factors α and β of
equation (5) were empirically chosen to be 1 and 0.7 respectively.
Thus, a set of 1000 multinomial distributions were learned from the
training data for each speaker (sparse-distributed code).

We also evaluated the RS model on the same data. As in the
original paper, we used a set of utterances of approximately 30 sec-
onds as training data for each speaker. A set of 100 multinomial
distributions were learned from the data for each speaker (compact
code). Figure 2 shows examples of basis functions learned for a male
speaker. The left and mid panels correspond to compact and sparse-
distributed codes respectively. Also shown are basis functions that
result when sparsity is not imposed in the overcomplete case.

For a given pair of speakers, mixed signals were obtained by
digitally adding test signals for both speakers. The length of the
mixed signal was set to the shorter of the two signals. The compo-
nent signals were all normalized to 0 mean and unit variance prior
to addition, resulting in 0 dB SNR for each speaker. A set of five
mixed recordings were obtained for every pair of speakers consid-
ered. Mixed signals were separated using both the sparse-distributed
code and the compact code according to the separation stage of the
RS model. Figure 3 show example spectrograms of reconstructions
for a mixture with male and female talkers. .

The quality of speech separation is hard to evaluate reliably. We
provide two measures that have been used in the literature. Let O

and R represent the magnitude spectrograms of the original test sig-
nal and the reconstructed signal of the i-th speaker in the mixture.



Fig. 4. Evaluation results in terms of SNR improvements (in dB, left panels) and SER (in dB, right panels) for the sparse distributed code
(in BLUE) and for the compact code (in RED). The Y-axis corresponds to SNR1 (SER1 in the right panels) in dB and X-axis corresponds
to SNR2 (SER2 in the right panels). Each point corresponds to a particular experiment. Different symbols used for the points represent
different speaker combinations in the mixture. Each point in Panel (D) is the average of the corresponding points in the first three panels.

Let N and Φ represent the magnitude and phase of the mixture spec-
trogram. Define a function

g(X) = 10 log10
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We define the SNR improvement for the i-th speaker [6] as

SNRi = g(R) − g(N) (8)

The second metric, Speaker Energy Ratio (SER) [5] is based on cor-
relations between reconstructed and original signals. It is given by

SERi = 10 log10
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!

(9)

where cij is the correlation between the reconstructed time signal for
the i-th speaker and the original signal for the j-th speaker.

Results of our experiment are summarized in figure 4. For every
speaker pair, separation was evaluated using both the sparse code
and the compact code for five different mixtures. Every point in the
figures corresponds to the result of one experiment. In the panels
on the left, we plot the SNR improvements of the two reconstructed
signals against each other while in the panels to the right, we plot the
speaker energy ratios. Points in blue correspond to results with the
sparse code while points in red correspond results from the compact
code. All the results for a given speaker pair are represented by
the same symbol and different symbols have been used for different
speaker pairs.

Results show that the sparse code performs significantly and
consistently better than the compact code on the basis of both met-
rics. Perceptual tests confirm this. We also performed an experiment
where we used 1000 basis functions trained without the imposition
of sparsity. The resulting basis functions resemble more like im-
pulse distributions across frequencies instead of capturing the har-
monic structure present in speech. As expected, the separation per-
formance was poor but we don’t report the results here due to lack
of space. A few examples of separated signals can be obtained at
http://cns.bu.edu/∼mvss/courses/speechseg/.

4. CONCLUSIONS

In this paper, we have proposed an algorithm to train sparse-overcomplete
bases in the framework of a mixture multinomial model for speaker
separation. It is demonstrated that that the quality of speaker sepa-
ration obtained with sparse-overcomplete basis functions is superior
than what one can obtain with a compact set of bases.
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