
Adaptive Front-ends for End-to-end Source
Separation

Shrikant Venkataramani, Jonah Casebeer
University of Illinois at Urbana-Champaign
svnktrm2, jonahmc2@illinois.edu

Paris Smaragdis∗
University of Illinois at Urbana Champaign

Adobe Research

Abstract

Source separation and other audio applications have traditionally relied on the use
of short-time Fourier transforms as a front-end frequency domain representation
step. We present an auto-encoder neural network that can act as an equivalent to
short-time front-end transforms. We demonstrate the ability of the network to learn
optimal, real-valued basis functions directly from the raw waveform of a signal and
further show how it can be used as an adaptive front-end for end-to-end supervised
source separation.

1 Introduction

Several neural network (NN) architectures and methods have been proposed for supervised single-
channel source separation [1, 2, 3, 4]. These approaches can be grouped together into a common
two-step workflow as follows. The first step of the separation procedure is to transform the time
domain signals into a suitable time-frequency (TF) representation using short-time Fourier transforms
(STFTs). The separation procedure forms the second step of the work-flow and is used to separate
the source from the interfering signals in the mixture. One approach to solve the separation problem
is to train a suitable neural network (NN) to estimate the contribution of the source in the mixture
spectrogram [5, 6, 7]. This estimate is then multiplied by the mixture phase and transformed into
the time domain by an overlap and add inverse STFT operation. Figure 1 gives the block diagram of
such a system using STFT as the front-end transform.

Figure 1: Joint block diagram of generalized NN
based source separation system using (i) STFT
(outer blue) and (ii) Proposed adaptive front-end
transform (inner red and green).

Figure 2: Modulus of Short-time cosine trans-
form (STCT) and smoothed STCT coefficients
(first 10 coefficients) for a sequence of piano
notes. The STCT coefficients exhibit variations
and need to be averaged across time by applying
a suitable smoothing filter.

These NN based source separation approaches suffer from the following drawbacks: (i) We restrict
the processing to magnitude spectrograms of the training and mixture signals. Consequently, these
approaches do not provide a reliable way to deal with complex numbers. This can be alleviated by

∗This work was supported by NSF grant 1453104.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

using a real front-end transform like the discrete-cosine transform (DCT). (ii) More importantly, the
unavailability of a NN equivalent to these front-end transforms hinders the development of end-to-end
separation systems that operate directly on the mixture and source waveforms. In this paper, we
investigate the use of alternative adaptive front-end transforms for supervised source separation.

2 Auto-encoder Transforms for Source separation

Given a time domain sequence x, the short-time transform operation of x can be expressed as a
generalized equation given by,

Xnk =

N−1∑
t=0

x(nh+ t) · w(t) · b(k, t) (1)

Here, Xnk represents the energy of the kth component in the nth frame, N represents the size of the
low pass window function w and h represents the hop size of the short-time transform. The functions
b(k, t) form the basis functions of the transformation. Recently, Sainath et.al [8], and Dieleman
and Schrauwen [9] have proposed the use of a convolutional layer as an alternative to front-end
STFTs. In this section, we expand upon the premise and develop a real valued, convolutional auto-
encoder transform (AET) that can be used as an alternative to front-end short-time transforms. The
encoder part of the auto-encoder (AE) acts as the analysis filter bank and produces the transformed
(spectrogram like) version of the input. The decoder performs the synthesis step to reconstruct the
time domain signal.

Figure 3: Outputs of front-end and smoothing convolutional layers and corresponding basis functions
for AET representation of a piano audio snippet with and without sparsity constraints. The AET basis
functions appear like small snippets of the input waveforms when sparsity constraints are imposed.

2.1 Analysis Encoder

Assuming a unit sample hop size, we can interpret (1) as a filtering operation,

Xnk =

N−1∑
t=0

x(n+ t) · F(k, t) (2)

Thus, we may replace the front-end transform by a convolutional neural network (CNN) such that the
kth filter of the CNN represents the kth row of F. The output of the CNN gives the TF representation
of the input signal with a unit hop size. In figure 2, we see that the spectral energies do not maintain
locality [10] and exhibit a modulation that could be dependent on the frequency, the window size and
the hop size parameters, when using real transforms like the short-time cosine transform. Thus, we
need a suitable temporal smoothing operation when using real transforms. This smoothing step can
also be interpreted as a CNN applied on |X|. However, since there are no non-negativity constraints
applied on the smoothing filters, the elements of the smoothed spectrogram M can potentially assume
negative values. To avoid this solution, we include a non-linearity g : R → R+, a mapping from

2

the space of real numbers to the space of positive real numbers. The output of this layer M can
be interpreted as the magnitude spectrogram of the input signal and P = X

M can be interpreted
as the corresponding phase. The phase component captures the high-frequency variations in the
coefficients which cannot be modeled in the smoothed spectrogram. In order to arrive at a subsampled
TF representation, we apply a max-pooling layer that replaces a pool of h frames by a single frame.
Note that all the convolution and pooling operations are one-dimensional i.e., the operations are
applied across the time-axis only.

2.2 Synthesis Decoder

The next step is to synthesize the signal back into the time domain. This can be achieved by inverting
the operations performed by the analysis encoder while computing the forward transform. The first
step of the synthesis procedure is to undo the effect of the lossy pooling layer. We use an upsampling
operator by inserting as many zeros between the frames as the pooling duration as proposed by
Zieler et.al., [11]. The unpooled magnitude spectrogram is then multiplied by the phase using an
element-wise multiplication to give an approximation X̂ to the matrix X. We invert the operation
of the first transform layer by a convolutional layer to implement the deconvolution operation. This
convolutional layer thus, performs the interpolation between the samples. Essentially, the output
of the analysis encoder gives the weights of each basis function in representing the time domain
signal. The synthesis layer reconstructs each component by adding multiple shifted versions of the
basis functions at appropriate locations in time. This inversion procedure is similar to the filterbank-
summation technique of inverting the subsampled STFT representation of a sequence [12]. The
weights (filters) of the final convolutional layer give the AET basis functions (see figure 3).

2.3 Visualizing Adaptive Front-ends

Having developed the convolutional auto-encoder for AETs, we can now understand the nature of the
basis functions and the spectrograms obtained. Figure 3 illustrates these on a simple piano snippet
consisting of 3 distinct notes. We apply a 32-dimensional AET transformation i.e., the front-end
convolutional layer is assumed to have 32 filters. The filter size and hop are chosen to be 1024
samples and 16 samples respectively. The entire time domain sequence x is given as an input to the
network in a single batch and the parameters of the network are updated according to the RMSProp
algorithm [13]. We apply a softplus non-linearity to the convolutional smoothing layer. To train the
auto-encoder, we minimize the mean squared error between the input sequence and its reconstruction
x̂. The output of the front-end convolutional layer, the output of the convolutional smoothing layer
and the corresponding AET basis functions are shown in figure 3 (top). Imposing additional sparsity
constraints on the output of the front-end convolutional layer X allows the network to learn a sparser
spectrogram-like representation, as shown in figure 3 (bottom). Thus, the AET learns adaptive basis
functions tailored to the input waveform in trying to represent the input sequence.

2.4 End-to-end Source Separation

Figure 1 shows the application of AET analysis and synthesis layers for end-to-end supervised source
separation. The forward and inverse transforms can be directly replaced by the AET analysis and
synthesis networks in a straightforward manner. In our experiments, the separation network consisted
of a cascade of 3 dense layers with 512 hidden units each, each followed by a softplus non-linearity.
We train the network by giving the mixture waveform at the input and minimize the mean squared
error between the network output and the clean waveform of the source. Thus, the network learns to
estimate the contribution of the source given the raw waveform of the mixture.

3 Experiments

We evaluate the separation performance for three types of front-ends: STFT, AET and orthogonal-
AET for source separation. We compare the results based on the BSS_EVAL metrics. [14]. For
training the neural networks, we randomly selected 10 male-female speaker pairs from the TIMIT
database [15]. In the database, each speaker has a total of 10 recorded sentences. For each pair,
we mix the sentences at 0 dB. This gives 10 mixture sentences per pair and a total of 100 mixture
sentences overall. For each pair, we train on 8 sentences and test on the remaining two. Thus, the

3

Figure 4: Comparison of source separation performance on 20 speech on speech mixtures in terms of
BSS_EVAL parameters. We compare the separation performance for multiple front end transforms
viz., STFT, AET and orthogonal AET. The embedded boxplot (thicker black line) indicates the
inter-quartile range. We see that opting for an adaptive front-end results in a significant improvement
in source separation performance over STFT front-ends.

network is trained on 80 mixture sentences and evaluated on the remaining 20 mixture sentences. We
use a batch size of 16 and a dropout-rate of 0.2. All the transforms were computed at a window-size
of 1024 samples at a hop of 16 samples. The smoothing layer was selected to have a length of 5
frames. We used a cost function that directly optimizes the signal to distortion ratio (SDR) instead.
For a reference signal y and an output x we would maximize:

max SDR(x, y) = max
〈xy〉2

〈yy〉 〈xx〉 − 〈xy〉2
≡ min

〈yy〉 〈xx〉 − 〈xy〉2

〈xy〉2
∝ min

〈xx〉
〈xy〉2

(3)

Thus, maximizing the SDR is equivalent to maximizing the correlation between x and y, while
producing a minimum energy output.

3.1 Results and Discussion

The corresponding violin plots that show the distribution of the BSS_EVAL metrics from our
experiments are shown in figure 4. We see that the use of AETs improves the separation performance
in terms of of all metrics compared to an STFT front-end. We additionally see that when using the
orthogonal AET we obtain additional performance gains, overall in the range of 2dB for SDR, 5dB in
SIR and 3dB in SAR. One possible reason for the increased performance of the orthogonal AET could
be the reduction in the number of trainable parameters caused by forcing the synthesis transform to
be the transpose of the analysis transform, which in turn reduces the possibility of over-fitting to the
training data. The above trends appear consistent for both the cost-functions considered.

4 Conclusion and Future Work
In this paper, we develop and investigate a convolutional auto-encoder based front-end transform
that can be used as a replacement to STFTs. The adaptive front-end comprises a cascade of three
layers viz., a convolutional front-end transform layer, a convolutional smoothing layer and a pooling
layer. We have shown that AETs are capable of automatically learning adaptive basis functions
and discovering data-specific frequency domain representations directly from the raw waveform
of the data. Finally, the use of AETs allows us to interpret source separation and possibly other
applications as an end-to-end neural network capable of outperforming current approaches that rely
on fixed front-ends. In future work, we plan to investigate alternative neural network architectures
and unpooling strategies to propose multi-layer front-end transforms.

4

References

[1] P. Smaragdis and S. Venkataramani, “A neural network alternative to non-negative audio models,”
CoRR, vol. abs/1609.03296, 2016. [Online]. Available: http://arxiv.org/abs/1609.03296

[2] P. S. Huang, M. Kim, M. Hasegawa-Johnson, and P. Smaragdis, “Deep learning for monaural
speech separation,” in 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2014, pp. 1562–1566.

[3] P. Chandna, M. Miron, J. Janer, and E. Gómez, “Monoaural audio source separation using deep
convolutional neural networks,” in International Conference on Latent Variable Analysis and
Signal Separation. Springer, 2017, pp. 258–266.

[4] S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, and Y. Mitsufuji, “Improving
music source separation based on deep neural networks through data augmentation and network
blending,” in IEEE International Conference on Acoustics, Speech and Signal Processing, 2017.

[5] M. Kim and P. Smaragdis, “Adaptive denoising autoencoders: A fine-tuning scheme to learn
from test mixtures,” in International Conference on Latent Variable Analysis and Signal Sepa-
ration. Springer, 2015, pp. 100–107.

[6] E. M. Grais, M. U. Sen, and H. Erdogan, “Deep neural networks for single channel source
separation,” in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on. IEEE, 2014, pp. 3734–3738.

[7] E. M. Grais and M. D. Plumbley, “Single channel audio source separation using convolutional
denoising autoencoders,” arXiv preprint arXiv:1703.08019, 2017.

[8] T. N. Sainath, R. J. Weiss, A. W. Senior, K. W. Wilson, and O. Vinyals, “Learning the speech
front-end with raw waveform cldnns,” in INTERSPEECH. ISCA, 2015, pp. 1–5.

[9] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,” in 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp.
6964–6968.

[10] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, “Convolutional neural
networks for speech recognition,” IEEE/ACM Transactions on audio, speech, and language
processing, vol. 22, no. 10, pp. 1533–1545, 2014.

[11] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Euro-
pean conference on computer vision. Springer, 2014, pp. 818–833.

[12] J. O. Smith, Spectral Audio Signal Processing. http://ccrma.stanford.edu/ jos/sasp/.
[13] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture 6a

overview of mini–batch gradient descent.”
[14] C. Févotte, R. Gribonval, and E. Vincent, “Bss_eval toolbox user guide–revision 2.0,” 2005.
[15] J. S. Garofolo, L. F. Lamel, J. G. F. William M Fisher, D. S. Pallett, N. L. Dahlgren, and V. Zue,

“Timit acoustic phonetic continuous speech corpus,” Philadelphia, 1993.

5

http://arxiv.org/abs/1609.03296

	Introduction
	Auto-encoder Transforms for Source separation
	Analysis Encoder
	Synthesis Decoder
	Visualizing Adaptive Front-ends
	End-to-end Source Separation

	Experiments
	Results and Discussion

	Conclusion and Future Work

