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Abstract. In this paper we present a probabilistic algorithm which fac-
torizes non-negative data. We employ entropic priors to additionally sat-
isfy that user specified pairs of factors in this model will have their cross
entropy maximized or minimized. These priors allow us to construct fac-
torization algorithms that result in maximally statistically different fac-
tors, something that generic non-negative factorization algorithms can-
not not explicitly guarantee. We further show how this approach can be
used to discover clusters of factors which allow a richer description of
data while still effectively performing a low rank analysis.

1 Introduction

With the recent interest in non-negative factorization algorithms we have seen
a rich variety of algorithms that can perform this task for a wide range of ap-
plications using various models. Empirically it has been observed that the non-
negativity constraint in conjunction with the information bottleneck that such
a low-rank factorization imposes, often results in data which is often interpreted
as somewhat independent. Although this is approximately and qualitatively a
correct observation, it is not something that is explicitly enforced in such al-
gorithms and thus more a result of good fortune than planning. Nevertheless
this property has proven to be a primary reason for the continued interest in
such factorization algorithms. The task of finding independence in non-negative
data has been explicitly tackled in the past using non-negative ICA and and
PCA algorithms [1, 2] but such models have not been as easy to manipulate and
extend as non-negative factorization models, which resulted in a diminished use
of explicit independence optimization for non-negative data.

In this paper we present a non-negative factorization approach that explic-
itly manipulates the statistical relationships between the estimated factors. We
recast the task of non-negative factorization as a probabilistic latent variable
decomposition on count/histogram data. Using this abstraction we treat the in-
put data as a multidimensional probability distribution and estimate an additive
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set of marginal distributions which would approximate it. This approach allows
us to implicitly satisfy the non-negativity constraint (due to the fact that we
estimate the factors as distributions), and at the same time allows for a conve-
nient handle on statistical manipulations. In this paper we extend the original
PLCA model [3], so that we can manipulate the cross entropy between the es-
timated marginals. This allows us to extract marginal distributions which are
pairwise either similar or dissimilar. We also show how this approach can help
in constructing more sophisticated analysis structures by enforcing the creation
of related cliques of factors.

2 The PLCA model

Probabilistic Latent Component Analysis (PLCA) decomposes a multidimen-
sional distribution as a mixture of latent components where each component is
given by the product of one-dimensional marginal distributions. Although we
will proceed by formulating the PLCA model using a two-dimensional input,
this can be easily extended to inputs of arbitrary dimensions which can be seen
as non-negative tensors. Given a two-dimensional input distribution P(z1,z2),
PLCA can be formulated as

P(z1,22) Z P(z)P(x1]2)P(22|2), (1)
2€Z

where z is a latent variable that indexes the latent components and takes values
from the set Z = {z1,29,...,2K}. Given a data matrix V, parameters can be
estimated by maximizing the log-likelihood given by

L= Z Viy za ZP (z]z1,22) log | P(2)P (x1|z)P(x2|z)} (2)
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Iterative update equations obtained by using the EM algorithm are given by:
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where equation (3) represents the Expectation step and equations (4) represents
the Maximization step of the EM algorithm. As shown in [3], the above formu-
lation can be expressed as a matrix factorization, where P(x1,z2) represents a
non-negative matrix and P(x1|z) and P(z2|z) are the factors along each of the
input’s dimensions.



3 Imposing Cross-Factor Constraints

In this section we describe how we can manipulate a statistical relationship
between two arbitrary sets of marginal distributions in our model. For simplicity
we will manipulate the relationship between two sets of marginals as observed
along the dimension of z;. Extending this to other or more dimensions is a trivial
extension of the following formulation.

Let the two sets of latent variables be represented by Z; and Z; where
Z,UZ,5 C Z. To impose our desired constraint, we need to make P(z1|z1) and
P(x1]%2) similar or dissimilar from each other. We can achieve this by modifying
the cost function of equation (2) by appending a metric that corresponds to
the dissimilarity between the distributions. During estimation, maximizing or
minimizing that cost function will result in biasing the estimation towards the
desired outcome.

One measure we can use to describe the similarity between two distributions
is the cross entropy. For two distributions q,, = P(x1]z) and p,, = P(x1]|zk),
cross entropy is given by

H(qz,,pz,) = — ) Plai]zi) log P(ai|zk). (5)
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Appending to the log-likelihood £ cross-entropies H(q.,,pz,) and H(p.,,d:;)
for all z; € 2, and z;, € 25, we obtain the new cost function as!
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where « is a tunable parameter that controls the extent of regularization.

We use the EM algorithm again to estimate all the parameters. The E-step
remains the same as given by the equation (3). Since the terms appended to £
in the new cost function does not involve P(f|z) or P(z), the update equations
for them remain the same as given by equations (4).

Consider the estimation of q,, = P(x1]%;) for a given value of . Adding a
Lagrange multiplier term and differentiating the new cost function with respect
to P(x1]z;) and setting it to 0, we obtain

Dy Var,aa Plzil1,m2) —ad 0, Pz
P(z1]2)

) —aZlogP(x1|zk) +A=0 (6)
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! This cost function is equivalent the log-posterior obtained in a MAP formulation
where the exponential of the cross-entropy is used as a prior.



which implies that

S Vi Plaiken, 1) — a3 Plarlar) = Plar]z) (oY log Plaa]z,) = A).
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where A is the Lagrange multiplier. Treating the term log P(z1|zy) as a constant
and utilizing the fact that >  P(z1|z;) = 1, we can sum the above equation
with respect to x1 to obtain
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Utilizing this result in equation (6), we obtain the update equation as?
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Since P(z1|zk) is treated as a constant during the estimation of P(x1|z;) (and
similarly P(x1]z;) treated as a constant while estimating P(x1]|zx)), the updates
for P(z1]2;) and P(x1|z) should be alternated between iterations. The above
update equation works well when we attempt to perform minimization of the
cross-entropy between marginals. It does however present a problem when we
attempt to perform cross-entropy maximization while attempting to produce
maximally different marginal distributions. To do so we would use a positive «
which can potentially result in the outcome of equation 7 to be negative-valued.
This is of course an inappropriate estimate for a distribution and would violate
its implicit non-negative nature. The easiest way to deal with this problem is
to discard any negative valued estimates and replace them with zeroes. In other
experiments, more rigorously motivated approaches such as those employed in
discriminative training methods [5], which prevent negative probability estimates
by employing additive correction terms were observed to result in no appreciable
difference in estimates.

Finally we note that the estimation equations as presented can be very effec-
tive in imposing the cross-entropy prior, sometimes counteracting the fit to the
data. In practical situations we found it best to progressively reduce the weight
of the prior across the EM iterations.

Examples of cross entropy manipulation To show the performance of the
above estimation rules let us consider a simple non-negative factorization prob-
lem. As the input we use the magnitude spectrogram of a drums recording shown
in figure 3.1. In this input we can clearly see the different types of drums in the

2 When « is positive, the update equation for P(z1|z;) can also be derived as follows.
We construct a lower bound @’ for Q by removing all the H(q.,, p-, ) terms from Q.
Since Q' < @, we can estimate parameters by maximizing Q" instead of maximizing
Q. Adding a lagrangian to Q" and taking derivatives w.r.t. P(z;|2;), it can be easily
shown that the resulting update equation is given by equation (7).
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Fig. 3.1. The drums recording spectrogram we used as an input for the examples in
this paper. In it one can clearly see each instrument and a factorization algorithm
is expected to discover individual instruments by taking advantage of their distinct
spectral and temporal positioning.
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Fig. 3.2. The results of analyzing the same input with various prior weights. The
examples from left to right column show the results with a maximal dissimilarity prior
to a maximal similarity prior. The middle column is the case with no prior. The top
row shows the reconstruction in each case, the middle row the extracted horizontal
marginals and the bottom row their KL divergence.



mixture aided by their distinct spectral and temporal profiles. A factorization
algorithm is expected to be able to distinguish between the various drum sounds
for the same reasons. We performed the analysis using the same starting condi-
tions but imposing a cross-entropy prior on the marginals corresponding to the
time axis. The results of these analyses are shown in figure 3.2. The top row
shows the reconstruction of the input, the middle row shows the extracted time
marginals and the bottom row shows their mutual KL divergence (we chose to
display the KL divergence since it is a more familiar indicator of relationship
between distributions as opposed to the cross entropy). Each column of plots is
a different analysis with the prior weight shown in the top. From left to right
the prior goes from imposing maximal dissimilarity to maximal similarity. The
middle column has no prior imposed. One can clearly see from the plots that
for large positive values of the prior’s weight we estimate a much more sparse
set of marginals, and one where their respective KL divergence is maximal. As
the prior weight is moved towards large negative values we gradually observe
the discovery of less sparse codes, up to the extreme point where all extracted
marginals are very similar.

4 Group-wise analysis

A powerful use of the above priors is that of performing a group-based analysis,
similar to the concept of the multidimensional independent component analysis
[4]. This means factorizing an input with a large number of components which are
grouped in a smaller set of cliques of mutually related components. To perform
this we need to partition the marginals of an analysis in groups and then use the
prior we introduced to request minimal cross-entropy between the marginals in
the same groups and maximal cross-entropy between the marginals from different
groups. This will result in a collection of marginal groups in which elements of
different groups are statistically different, whereas elements in the same group
are similar.

To illustrate the practical implications of this approach consider the follow-
ing experiment on the data of figure 3.1. We partitioned the twelve requested
marginals in six groups of two. We performed the analysis with no priors, then
with priors forcing the time marginals from separate groups to be different, then
with priors forcing time marginals in the same group to be similar, and finally
with both types of priors. All simulations were run with the same initial con-
ditions. The results of these analyses are shown in figure 4.3. Like before each
column shows different measures of the same analysis. The left most shows the
case where no priors were used, the second one the case where the within group
similarity was imposed, the third one where out of group dissimilarity was im-
posed and the rightmost one where both within group similarity and out of group
dissimilarity were imposed. The top row shows the resulting reconstruction, the
second row shows the discovered time marginals and the third row shows the
KL divergence between the time marginals. Also shown in the titles of the top
figures is the KL divergence between the input and the model reconstruction.
Occasionally when we impose a prior in the model we observe a slight increase



which signifies that the model is not representing the input as accurately. Qual-
itatively this increase is usually fairly minor however and is expected since the
model is not optimizing just the fit to the input data anymore. Observing the
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Fig. 4.3. Analysis results with various values of cross entropy priors. The variables a
and (3 are the out-of-group dissimilarity and in-group similarity prior weights, and they
were applied on the horizontal factors only. Each column of plots shows the results of
a different analysis with its o and (3 values shown over the top figures of each column.
The top figures show the resulting reconstructions and on their title we show the KL
divergence between the input and the reconstruction. The middle figures show the
resulting horizontal factors and the bottom figures show the KL divergence values
between all factor pairs.

results we can clearly see that when we impose the within group similarity the
extracted marginals belonging to the same group are more similar than oth-
erwise. But by doing so we also implicitly encourage more similarity across all
marginals since there is nothing to stop two different groups latching on the same
instrument. In contrast when we use the out of group dissimilarity prior we see
that we get very dissimilar marginals in the outputs, while some of them be-



longing in the same group happen to have some similarity. Imposing both of the
previous priors at the same time results in a more desirable output where each
group contains marginals which are dissimilar from marginals of other groups,
yet similar to the marginals in the same group. Effectively we see the extracted
marginals from the same groups latching on to different parts of the same drum
sounds. Also shown at the top of each plot column is the KL divergence between
the input and the model. We see that there is no significant deterioration in the
fit when imposing these priors. More aggressive values of these priors will result
in a worse fit, but an even stronger statistical separation (or not) between the
extracted marginals.

In this particular case since the audio stream contains elements with time
correlation we used that as the dimension in which the cross-entropy manipula-
tion was performed. This would also be supplemented by using neighboring time
samples in order to look for temporal causality as well. In other cases however
we might prefer to impose priors on all dimensions as opposed to only one. The
estimation process is flexible enough to deal with any number of dimensions and
to impose priors that either minimize or maximize cross-entropy on any arbitrary
dimension subset.

5 Conclusions

In this paper we presented a non-negative data factorization approach which
allows us to discover factors which can be mutually similar or dissimilar. In order
to do so we reformulated the nonnegative factorization process as a probabilistic
factorization problem and introduced new priors that can minimize or maximize
the cross-entropy between any of the discovered marginals. The cross-entropy
was shown to be an appropriate measure of similarity which allows us to express
arbitrary relationships between any of the estimated marginals. We’ve shown
that using this approach we can perform analysis which is slightly more akin to
ICA than NMF by extracting maximally different marginals, and also that we
can extract groups of components which contain highly relevant marginals but
bear little relation to other groups.
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