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ABSTRACT

We present an algorithm that enables privacy-preserving speech recog-
nition transactions between multiple parties. We assume two com-
monplace scenarios. One being the case where one of two parties
has private speech data to be transcribed and the other partyhas pri-
vate models for speech recognition. And the other being thatof one
party having a speech model to be trained using private data of mul-
tiple other parties. In both of the above cases data privacy is desired
from both the data and the model owners. In this paper we will
show how such collaborations can be performed while ensuring no
private data leaks using secure multiparty computations. In neither
case will any party obtain information on other parties data. The pro-
tocols described herein can be used to construct rudimentary speech
recognition systems and can be easily extended for arbitrary audio
and speech processing.

Index Terms— Cryptography, Data Security, Speech Recogni-
tion

1. INTRODUCTION

Today’s networked world presents a variety of service models in
terms of client-server services. Speech recognition couldsurely be
a part of this, however privacy concerns have impeded the devel-
opment of this model. Individuals, and more so corporationsand
governments, are understandably reluctant to share private speech
data with other parties providing speech recognition services. In this
paper, we address this issue and provide a framework which can al-
low this cooperation by guaranteeing data privacy for both data and
speech recognition model providers.

To be more specific, we will present a formulation for securely
training and evaluating Hidden Markov Models (HMMs) between
multiple parties. We formulate it in such a way so that the owners of
the data will not have to share the data, the owner of the HMM will
not have to share the HMM parameters and at the end of the transac-
tion, the owner of the HMM will not know what the final computa-
tion result is. These results will only be revealed to the providers of
the speech data.

We will show how this type of secure multiparty computation
can be achieved using two scenarios. One scenario will involve an
HMM party training from private data of multiple other parties, the
other scenario will deal with the case where already trainedHMMs
will be applied on private data from other parties. The utility of these
scenarios is easy to see in collaborative speech recognition projects.
In the first case we can enable the consolidation of private speech
databases to train large speech recognition models while ensuring
data privacy. In the other case we can enable speech recognition as
a service model to off-site customers who need to maintain privacy
of their speech data and their transcriptions from both the service
provider and malicious network intruders.

Although these seem like impossible constraints to deal with,
they can be achieved using protocols for secure multiparty compu-
tations (SMC). Such protocols have been around since the early 80s
[8] and provide the tools by which to perform arbitrary computations
between multiple parties concerned with data privacy. Recently this
concept has been employed for simple machine learning taskssuch
as k-means and rudimentary computer vision applications [7, 2]; in
this paper we present a SMC formulation of training and evaluating
HMMs as applied on speech data.

2. PRELIMINARIES

2.1. Secure Two-party Computations

The speech-recognition example that we will present is a specific ex-
ample of asecure two-party computation. Consider the case where
Alice and Bob have private dataa andb respectively and they want
to compute the result of a functionf(a,b). Consider a trusted third-
party who can take the private data, compute the resultc = f(a,b),
and intimate the result to the parties. Any protocol that implements
an algorithm to calculatef(a,b) is said to besecure only if it leaks
no more information abouta andb than what one can gain from
learning the resultc from the trusted third-party. We assume asemi-
honest model for the parties where they follow the protocol but could
be saving messages and intermediate results to learn more about
other’s private data.1

To implement an algorithm securely, we will have to implement
each step of the algorithm securely and make sure the intermediate
results of these steps are also secure. If one of the steps is insecurely
implemented, either party could utilize the information towork their
way backwards to gain knowledge about the other’s private data.
Also, if the results of intermediate steps are available, there is a pos-
sibility that one could also get back to the original privateinputs. To
prevent this:

• we express every step of the algorithm in terms of a handful
of basic operations (henceforth called asprimitives) for which
secure implementations are already known, and

• we distribute intermediate results randomly between the two
parties such that neither party has access to the entire result.
For example, instead of obtaining the resultz of a certain
step, the parties receiverandom additive shares z1 and z2
(z1 + z2 = z). See figure 1 for a schematic illustration.

We now present primitives that will be used in the rest of the
paper. Based on how they are implemented, one can achieve differ-
ent levels of security and computational/communication efficiency.

1In amalicious model, no assumptions are made about the parties’ behav-
ior. Enforcing security is harder in such a case but can be done by accom-
panying the protocols with zero-knowledge proofs that protocols are being
followed. A detailed discussion is out of scope of this paper.



Fig. 1. Implementing an algorithm securely. The algorithm takes in
private inputsa andb. Algorithm is split into steps that can be im-
plemented as secure primitives (shown as grey boxes). Intermediate
results are distributed as random additive shares and feed into the
following steps. Final resultc is obtained by both parties.

In general, there is a trade-off between security and efficiency. In
the following subsections, letx = [x1 . . . xd] andy = [y1 . . . yd]
denoted-dimensional vectors owned by Alice and Bob respectively.

Secure Inner Products (SIP ): Givenx andy, the secure inner
product protocol produces scalarsa andb such thata+b = xT y. We
shall denote this computation bySIP (x,y). We use cryptographic
[3, 4] protocols for this primitive.

Secure Maximum Index (SMAX): Given x and y, Alice
would like to know the index of the maximum element in the vector
sumx + y. Neither party should get to know the actual value of the
maximum. We denote this computation asj = SMAX(x,y).

For this primitive, we use the permute protocol proposed by [1].
Givenx andy and a permutationπ chosen by Alice (Bob should not
learnπ), the protocol enables Alice and Bob to obtain additive shares
of the permuted sum. In other words, they obtain vectorsq ands

such thatq + s = π(x + y). Alice chooses a random numberr and
sendsq−r to Bob. Bob sends the index of the maximum element in
q+s−r to Alice who then computes the real index using the inverse
of the permutationπ. Neither party learns the value of the maximum
element and Bob does not learn the index of the maximum element.

Secure Maximum Value (SV AL): Givenx andy, the secure
maximum value protocol producesa and b such that their sum is
equal to the maximum element inx + y. Let us denote this asa +
b = SMAX(x,y). For this primitive, we use the minimum finding
protocol presented in [1].

Secure Logsum (SLOG): This primitive unlike the others above,
is introduced here only because it simplifies the presentation of pro-
tocols later. It is not a cryptographic primitive. Givenx andy such
that x + y = ln z = [ln z1 . . . ln zd], the protocol produces two
scalarsq ands such thatq + s = ln(

Pd

i=1
zi). Let us denote this

by q + s = SLOG(x,y).
One can obtainq + s as the logarithm of the inner product of

exponentiated vectorsex andey as follows: Alice chooses a random
q and computesSIP (ex−q, ey) with Bob. Bob obtains the resultφ.
Bob hass = lnφ = −q + ln(

Pd

j=1
exj+yj ) and Alice hasq.

Gaussian Mixture Likelihood (GML): In [6], we proposed
protocols for classification using gaussian mixture models. One of
the protocols presented can be used to find the log-likelihood of
data given a gaussian mixture model. If Bob has a gaussian mix-
ture modelb(x) and Alice has data vectorx1, the protocol generates
additive shares of the log-likelihoodlog b(x1). See [6] for a detailed
description.

2.2. Hidden Markov Models

Hidden Markov Models find use in a wide range of applications,and
have successfully been used in speech recognition. There are there
fundamental problems for HMM design, namely: the evaluation of
the probability of (likelihood) of a sequence of observations given a
specific HMM; the determination of a best sequence of model states;
and the adjustment of model parameters so as to best account for the
observed signal. The first problem is one of scoring how well agiven
model matches a given observation sequence. The second problem
is one in which attempt to uncover the hidden part of the model. The
third problem is the problem of training. Algorithms for theabove
three problems are well known and described in detail in [5].

2.3. Problem Formulation

Suppose Bob has a trained HMM with all the model parameters
learned. Let the HMM be characterized as follows:

• N states{S1, . . . , SN}. Let the state at timet beqt.

• The state transition probability distributionA = {aij} where

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N. (1)

• The observation symbol probability distribution in statej given
by a mixture of Gaussians

bj(x) =

M
X

m=1

cjmN (µjm,Σjm), 1 ≤ j ≤ N, (2)

wherex is the variable,cjm is the mixture coefficient for the
m-th mixture in statej, andN (µjm,Σjm) is a gaussian with
mean vectorµjm and covariance matrixΣjm.

• The initial state distributionπ = {πi} where

πi = P [q1 = Si] 1 ≤ i ≤ N. (3)

We useλ to denote the entire parameter set of the model.
Let Alice have an observation sequenceX = x1x2 . . .xT . We

will show how Alice can securely computeP (X|λ), the probabil-
ity of the observation sequence given the model, using theforward-
backward procedure. Once there is a secure way of computing like-
lihoods, it is easy to see how it can be extended to applications like
speech recognition. Suppose Bob has trained several HMMs which
characterize various speech sounds. Each HMM will correspond to
a speech recognition unit. Let Alice’s observation vector correspond
to a small snippet of speech sound (we assume that Alice knows
the features that Bob has used to train his HMMs on and has repre-
sented her sound sample in terms of those features - otherwise these
features can be computed securely as well). Alice and Bob canob-
tain additive shares of the likelihood of Alice’s observation sequence
for every speech recognition unit of Bob. They can then engage in
theSMAX protocol and find out the unit that corresponds to Al-
ice’s sound snippet. We will also show how one can securely learn
the best sequence of model states using theviterbi algorithm. And
finally, we will show how one can train HMM parameters using data
from a private database.

3. SECURE FRAMEWORK

Consider the computation of a function

z = f(x1y1, x2y2, . . . , xnyn) = Φ
1≤i≤N

xiyi (4)



whereΦ is a generic operator. For everyi, let Alice and Bob have ad-
ditive shares oflog xi andlog yi. They can receive additive shares
of z by usingSLOG, SV AL or SMAX when the operator is a
summing operatorΣ, a maximum operatormax, or a maximum in-
dex operatorargmax respectively. With the above basic operations,
one can implement protocols for all problems of HMM.

3.1. The Forward-Backward Procedure

Consider the forward variableαt(i) defined as

αt(i) = P (x1x2 . . .xt, qt = Si|λ) (5)

We can solve forαt(i) inductively and calculateP (X|λ) as follows:

1. Initialization:

α1(i) = πibi(x1), 1 ≤ i ≤ N

Input : Bob has the mixture distribution that definesbi(x)
and the initial state distributionπ = {πi}; Alice hasx1.
Output : Alice and Bob obtain vectorsQ andR such that
Qi +Ri = lnα1(i).

(a) Alice and Bob performGML on their data to obtain
vectorsU andV. Notice thatUi + Vi = ln bi(x1).

(b) Alice forms the vectorQ = U. Bob forms vectorR,
where for eachi, Ri = Vi + lnπi. Thus,Qi + Ri =
ln bi(x1) + lnπi = lnα1(i).

2. Induction:

αt+1(j) =
“

N
X

i=1

αt(i)aij

”

bj(xt+1)

where 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

Input : Alice and Bob have vectorsQ andR such thatQi +
Ri = lnαt(i). Alice and Bob haveUj andVj such thatUj +
Vj = ln bj(xt+1). Bob has the vectoraj = [a1j , a2j , . . . , aNj ].
Output : Alice and Bob obtainQ̄ andR̄ such thatQ̄ + R̄ =
lnαt+1(j).

(a) Alice and Bob engage in the secure logsum protocol
with vectorsQ and(R + ln aj) to obtainy′ andz′ i.e.
y′ + z′ = SLOG(Q,R + ln aj).

(b) Alice obtainsQ̄ = y′ + Uj , Bob obtainsR̄ = z′ + Vj .

3. Termination:

P (X|λ) =

N
X

i=1

αT (i).

Input : Alice and Bob have vectorsQ andR such thatQi +
Ri = lnαT (i).
Output : Alice and Bob obtainy andz such thaty + z =
lnP (X|λ).

(a) Alice and Bob engage in theSLOG protocol with vec-
torsQ andR to obtainy andz i.e. y+z = SLOG(Q,R).

Efficiency: In the initialization step, there are(d+2)MN+N SIP
calls andN SMAX/SV AL calls involvingd-dimensional vectors.
In the induction step, for everyj and for everyt, there is oneSIP
call with anN -vector. In the termination step, there is oneSIP call
with anN -vector.
Security: Bob does not learn anyxk and Alice does not learn any of
Bob’s parameters.

We can obtain a similar procedure for a backward variableβt(i):

βt(i) = P (xt+1xt+2 . . .xT |qt = Si, λ) (6)

We initializeβT (i) = 1,∀1 ≤ i ≤ N and solve forβt(i) as:

βt(i) =
N
X

j=1

aijbj(xt+1)βt+1(j),

where t = T − 1, T − 2, . . . , 1, 1 ≤ j ≤ N

Notice that the above equation is a sum of products. Alice andBob
have additive shares of the logarithm of each product term. They can
compute additive shares of the final result usingSLOG.

3.2. Viterbi Algorithm

Consider the quantity

δt(i) = max
q1,q2...qt−1

P [q1q2 . . . qt = Si,x1x2 . . .xt|λ] (7)

δt(i) is the best score along a single path, at timet, which accounts
for the firstt observations and ends in stateSi.

1. Initialization:

δ1(i) = πibi(x1), ψ1(i) = 0 1 ≤ i ≤ N

The procedure is evaluatingδ1(i) is analogous to the initial-
ization step of the forward backward procedure.

2. Recursion:

δt(j) =
“

max
1≤i≤N

[δt−1(i)aij ]
”

bj(xt)

ψt(j) = argmax
1≤i≤N [δt−1(i)aij ]

where 2 ≤ t ≤ T, 1 ≤ j ≤ N

For δt(j), Alice and Bob useSV AL and obtain additive
shares of the log of the maximum. They’ll already have ad-
ditive shares oflog bj(xt) and hence they’ll have additive
shares oflog δt(j). Similarly, they can obtainψt(j) by us-
ing SMAX.

3. Termination and Path backtracking:

P ∗ = max
1≤i≤N

[δT (i)] q∗T = argmax
1≤i≤NδT (i).

q∗t = ψt+1(q
∗
t+1) t = T − 1, T − 2, . . . , 1.

Alice and Bob will have additive shares oflog δT (i) from the
previous step. They can useSV AL andSMAX to obtain
P ∗ andq∗T . Alice, who has access toqt andψt, can evaluate
the path sequence.

Security and efficiency considerations for this protocol are similar to
what was discussed with regard to the forward-backward procedure.

3.3. HMM training

Formulae for re-estimation of HMM parameters are given below.

γt(j, k) =

 

αt(j)βt(j)

P (X|λ)

! 

cjkN (xt,µjk,Σjk)

bj(xt)

!

ξt(i, j) =
αt(i)aijbj(xt+1)βt+1(j)

P (X|λ)
, aij =

PT−1

t=1
ξt(i, j)

PT−1

t=1
γt(i)

cjk =

PT

t=1
γt(j, k)

PT

t=1

PM

k=1
γt(j, k)

, µjk =

PT

t=1
γt(j, k)xt

PT

t=1
γt(j, k)

πi = γ1(i), Σjk =

PT

t=1
γt(j, k)(xt − µjk)(xt − µjk)′

PT

t=1
γt(j, k)



Notice that all the above formulae are made of products or sums
of products. It is easy to show that Alice and Bob, usingSIP and
SLOG protocols, can computeγt(j, k), ξt(i, j), πi, aij and cjk.
We do not show the details due to lack of space.

Now consider the estimation of the mean and covariance of the
gaussian mixture components. The requirements are that Alice should
not have access to the learned parameters and Bob should not have
access to the data in any iteration. In addition, we have to becare-
ful that Bob does not learn the parameters at every iteration. This
is required because one can deduce information about the data by
knowing the results of repeated operations with the data vector. For
example, knowledge ofd inner products with ad dimensional vector
x is enough to learnx. To enforce this, we let Alice and Bob have
additive shares of the mean at every iteration. Only after all the iter-
ations are complete does Bob receive values of the mean.

Input : Alice hasxt, t = 1, . . . , T . Alice and Bob haveT -vectors
E andF such thatEt + Ft = ln γt(j, k).
Output : Alice obtainsµjkA

; Bob obtainsµjkB
andΣjk. (µjkA

+
µjkB

= µjk).

1. Alice and Bob obtaine andf wheree+ f = SLOG(E,F).

2. Fori = 1, 2, . . . , d:
Lethi be theT -vector formed byi-th elements ofx1, . . . ,xT .
Alice and Bob obtaine′ andf ′ wheree′ +f ′ = SLOG(E+
lnhi,F).

• Notice that(e′ − e) + (f ′ − f) = lnµi
jk.

Alice and Bob obtain thei-th elements ofµjkA
andµjkB

respectively as a result ofSIP (exp(e′ − e), exp(f ′ − f)).

3. Consider the evaluation ofσmn, themn-th element of the
matrix Σjk. We first consider evaluating themn-th element
of (xt − µjk)(xt − µjk)′. This is equivalent to evaluating
themn-th term of(x̄t− µ̄jk)(x̄t− µ̄jk)′, wherex̄t = (xt−
µjkA

) andµ̄jk = µjkB
. Let thei-th elements of̄xt andµ̄jk

bex̄i
t andµ̄i

jk respectively. Notice that Alice has access tox̄t

and Bob has access tōµjk.

• For t = 1, . . . , T , Alice and Bob engage inSIP pro-
tocol with vectorexp(rt)[x̄

m
t x̄

n
t ,−x̄

m
t , x̄

n
t , 1] and vec-

tor [1, µ̄n
jk,−µ̄

m
jk, µ̄

m
jkµ̄

n
jk], wherert is a random scalar

chosen by Alice. Let Bob obtain the resultφt.

• Alice forms theT -vector r = [r1, . . . , rT ] and Bob
forms the vectorφ = [φ1, . . . , φT ].

Alice and Bob obtain̄e andf̄ whereē + f̄ = SLOG((E −
r), (F + ln φ)).

• Notice that(ē− e) + (f̄ − f) = ln σmn.

Alice sends(ē− e) to Bob so that he can calculateσmn.

At the end of all iterations, Alice sends her sharesµjkA
to Bob so

that he can calculateµjk. Notice that Bob does learn the covariance
matrix in every iteration but quantities used to calculate the covari-
ance matrix are additive shares which does not help him in inferring
about Alice’s data. This particular example of HMM trainingusing
only two parties was used for derivation purposes. This procedure
can be easily generalized to the case where Bob learns parameters
using data from multiple parties instead of one, in which case the
learned statistics are averaged and provide an additional layer of se-
curity for the data providers.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a secure multiparty computation for-
mulation of hidden Markov models. We have shown how we can em-
ploy simpler SMC primitives to perform training and evaluation of
HMMs for security sensitive speech applications. The implementa-
tion that we have presented is based on the concept of additive shares
to enforce data privacy. Although this is a viable implementation it
is only one of many possible ways such a secure system can be im-
plemented. Future advances in the field of cryptography, which will
hopefully provide more robust and efficient protocols, can be readily
employed in our framework by straightforward replacement of the
basic primitives. A wise choice of underlying primitives will have
to balance tradeoffs such as computational efficiency and network
bandwidth as opposed to security/privacy and is a research project
in its own right. Because of the breadth of options and the lim-
ited space in this paper we defer a performance evaluation discus-
sion to a future publication. At the moment, and depending onthe
primitives used, performance can range from a few times the com-
putational/network overhead of a straightforward implementation, to
many orders of magnitude. The emergence of specialized hardware
that perform cryptographical operations is also a factor that can dras-
tically reduce computational complexity.

In this paper we only presented a formulation to perform HMM
computations which are central for speech applications. Itis straight-
forward however to employ this methodology to construct various
secure applications using arbitrary signal processing operations. It is
our hope that such privacy conserving methodologies can help fos-
ter computational collaborations for either research or commercial
purposes while ensuring the data privacy of all participants.
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