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ABSTRACT

We present an algorithm that enables privacy-preserviagaprecog-
nition transactions between multiple parties. We assuntectvm-

monplace scenarios. One being the case where one of tweparti

has private speech data to be transcribed and the otherhzesiyri-
vate models for speech recognition. And the other beingahane
party having a speech model to be trained using private datailb

tiple other parties. In both of the above cases data privadgsired

from both the data and the model owners. In this paper we wil

show how such collaborations can be performed while engurin
private data leaks using secure multiparty computationsieither
case will any party obtain information on other parties datee pro-
tocols described herein can be used to construct rudimespaech
recognition systems and can be easily extended for arpitnadio
and speech processing.

Index Terms— Cryptography, Data Security, Speech Recogni-

tion

1. INTRODUCTION

Today’s networked world presents a variety of service model
terms of client-server services. Speech recognition csutdly be

a part of this, however privacy concerns have impeded theldev
opment of this model. Individuals, and more so corporatiang
governments, are understandably reluctant to share ersmtech
data with other parties providing speech recognition sesui In this
paper, we address this issue and provide a framework whitllea
low this cooperation by guaranteeing data privacy for battadnd
speech recognition model providers.

To be more specific, we will present a formulation for seagurel
training and evaluating Hidden Markov Models (HMMs) betwee
multiple parties. We formulate it in such a way so that the exsrof
the data will not have to share the data, the owner of the HMM wi
not have to share the HMM parameters and at the end of thetrans
tion, the owner of the HMM will not know what the final computa-
tion result is. These results will only be revealed to thevjoters of
the speech data.

We will show how this type of secure multiparty computation
can be achieved using two scenarios. One scenario willvevah
HMM party training from private data of multiple other pasi the
other scenario will deal with the case where already trakiltiMs
will be applied on private data from other parties. The wytitif these
scenarios is easy to see in collaborative speech recogmit@ects.
In the first case we can enable the consolidation of priva¢edp
databases to train large speech recognition models whieriag
data privacy. In the other case we can enable speech reicogast
a service model to off-site customers who need to maintaigy
of their speech data and their transcriptions from both theice
provider and malicious network intruders.
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Although these seem like impossible constraints to dedh,wit
they can be achieved using protocols for secure multipamtyp-
tations (SMC). Such protocols have been around since the&Gs
[8] and provide the tools by which to perform arbitrary cortgiions
between multiple parties concerned with data privacy. Reyéhis
concept has been employed for simple machine learning tasks
as k-means and rudimentary computer vision application&][in
this paper we present a SMC formulation of training and etatg
|HMMs as applied on speech data.

2. PRELIMINARIES

2.1. Secure Two-party Computations

The speech-recognition example that we will present is eiipex-
ample of asecure two-party computation. Consider the case where
Alice and Bob have private dataandb respectively and they want
to compute the result of a functigi{a, b). Consider a trusted third-
party who can take the private data, compute the resgdtf(a, b),
and intimate the result to the parties. Any protocol thatlengents
an algorithm to calculatg(a, b) is said to besecure only if it leaks
no more information aboui andb than what one can gain from
learning the result from the trusted third-party. We assumeesni-
honest model for the parties where they follow the protocol but doul
be saving messages and intermediate results to learn morg ab
other’s private data

To implement an algorithm securely, we will have to implemen
each step of the algorithm securely and make sure the intiamee
results of these steps are also secure. If one of the stapseisurely
implemented, either party could utilize the informatiomwtork their
way backwards to gain knowledge about the other’s privata.da
Also, if the results of intermediate steps are availableretlis a pos-
sibility that one could also get back to the original privateuts. To
prevent this:

e we express every step of the algorithm in terms of a handful
of basic operations (henceforth callecpaisnitives) for which
secure implementations are already known, and

e we distribute intermediate results randomly between the tw
parties such that neither party has access to the entirkt.resu
For example, instead of obtaining the resulbf a certain
step, the parties receivandom additive shares z; and z
(21 + 22 = 2). See figure 1 for a schematic illustration.

We now present primitives that will be used in the rest of the
paper. Based on how they are implemented, one can achidge dif
ent levels of security and computational/communicatidiciency.

1in amalicious model, no assumptions are made about the parties’ behav-
ior. Enforcing security is harder in such a case but can be dgnaccom-
panying the protocols with zero-knowledge proofs that grots are being
followed. A detailed discussion is out of scope of this paper



a 1 [ - ALICE 2.2. Hidden Markov Models
! ! Hidden Markov Models find use in a wide range of applicati@ms
s [l ez . have successfully been used in speech recognition. Therihaire
] fundamental problems for HMM design, namely: the evaluatbd
the probability of (likelihood) of a sequence of observasigiven a
+ ALGORITHM specific HMM; the determination of a best sequence of modétst
T[] ] BoB and the adjustment of model parameters so as to best acootnéef

b observed signal. The first problem is one of scoring how weivan

model matches a given observation sequence. The seconérmrob

is one in which attempt to uncover the hidden part of the motie¢
Fig. 1. Implementing an algorithm securely. The algorithm takes i third problem is the problem of training. Algorithms for thbove
private inputsa andb. Algorithm is split into steps that can be im-  three problems are well known and described in detail in [5].
plemented as secure primitives (shown as grey boxes) niettiate
results are distributed as random additive shares and feedtie  , 3 p.ohiem Formulation
following steps. Final result is obtained by both parties.

Suppose Bob has a trained HMM with all the model parameters

learned. Let the HMM be characterized as follows:

e N states{Si,...,Sn}. Let the state at timebeg;.

In general, there is a trade-off between security and effogie In o The state transition probability distributigh = {a.; } where

the following subsections, let = [x1...zq] andy = [y1...yd]

denoted-dimensional vectors owned by Alice and Bob respectively. aij = Plgi+1 = Sjlg: = Si], 1<4,5<N. (1
Secure Inner Products 1 P): Givenx andy, the secure inner
product protocol produces scalarandb such thati+b = xy. We e The observation symbol probability distribution in stagiven
shall denote this computation %7 P(x,y). We use cryptographic by a mixture of Gaussians
[3, 4] protocols for this primitive. o
Secure Maximum Index (SMAX): Givenx andy, Alice e ) ) v .
would like to know the index of the maximum element in the vect bi(x) = 'm,z—l cimN (pm, Zijm), IsjsN, @)

sumx + y. Neither party should get to know the actual value of the

maximum. We denote this computationjas SMAX (x,y). wherex is the variableg;,, is the mixture coefficient for the
For this primitive, we use the permute protocol proposedify [ m-th mixture in statg, and\ (p;m , X;m) is a gaussian with

Givenx andy and a permutation chosen by Alice (Bob should not mean vectojt;» and covariance matrix;n,.

learnt), the protocol enables Alice and Bob to obtain additive ebar e The initial state distributiomr = {r;} where

of the permuted sum. In other words, they obtain vectpends

such thaig + s = m(x + y). Alice chooses a random numbeand m = Plg1 = Si] 1<i<N. 3)

sendsy — r to Bob. Bob sends the index of the maximum element in

q+s—r to Alice who then computes the real index using the inverséVe use\ to denote the entire parameter set of the model.

of the permutationr. Neither party learns the value of the maximum Let Alice have an observation sequerXe= x;x2...x7. We

element and Bob does not learn the index of the maximum etlemenwill show how Alice can securely comput(X|\), the probabil-
Secure Maximum Value (SV AL): Givenx andy, the secure ity of the observation sequence given the model, usindatweard-

maximum value protocol producesand b such that their sum is Packward procedure. Once there is a secure way of computing like-

equal to the maximum elementin—+ y. Let us denote this as+  [ihoods, itis easy to see how it can be extended to applicatige
b= SMAX(x,y). For this primitive, we use the minimum finding SPeech recognition. Suppose Bob has trained several HMNthwh
protocol presented in [1]. characterize various speech sounds. Each HMM will cormespo

a speech recognition unit. Let Alice’s observation vectorespond

to a small snippet of speech sound (we assume that Alice knows
the features that Bob has used to train his HMMs on and has-repr
sented her sound sample in terms of those features - otleetivase
features can be computed securely as well). Alice and Botoban

Secure Logsum §LOG): This primitive unlike the others above,
is introduced here only because it simplifies the preseamtatf pro-
tocols later. It is not a cryptographic primitive. Giverandy such
thatx + y = Inz = [lnz:...Ilnz4], the protocol produces two

d .

scalarsy ands such thalg + s = In(3__, z). Letus denote this . yitive shares of the likelihood of Alice’s observatsequence

bygq+s = SLOG.(X’ ¥)- . . for every speech recognition unit of Bob. They can then eagag
One can obtairy + s as the logarithm of the inner product of {he §174X protocol and find out the unit that corresponds to Al-

exponentiated vectoes® ande¥ as follows: Alice chposes arandom jce's sound snippet. We will also show how one can securelgnle

q and computes’7 P (e~ %, ¢¥) with Bob. Bob obtains the result  {he pest sequence of model states usingviteebi algorithm. And

Bob hass = In¢ = —q + In(3_7_, " *%) and Alice has;. finally, we will show how one can train HMM parameters usinggda
Gaussian Mixture Likelihood (GML): In [6], we proposed from a private database.

protocols for classification using gaussian mixture mad€élge of

the protocols presented can be used to find the log-liketihafo 3. SECURE FRAMEWORK

data given a gaussian mixture model. If Bob has a gaussian mix

ture modeb(x) and Alice has data vectari, the protocol generates Consider the computation of a function

additive shares of the log-likelihoddg b(x1). See [6] for a detailed

description. z = f(x1y1, T2y2,. .., Tnyn) = P 1<icn TiYi 4)



where® is a generic operator. For everyet Alice and Bob have ad-
ditive shares ofog x; andlog y;. They can receive additive shares
of z by usingSLOG, SVAL or SMAX when the operator is a
summing operatoE, a maximum operatanaz, Or a maximum in-

dex operatonrgmax respectively. With the above basic operations,

one can implement protocols for all problems of HMM.

3.1. The Forward-Backward Procedure

Consider the forward variable; (i) defined as

©)

We can solve forv () inductively and calculat#’ (X|\) as follows:

(i) = P(x1X2...X¢, gt = Si|\)

1. Initialization:

mbi(xl), 1§Z§N

Input: Bob has the mixture distribution that definegx)
and the initial state distributiom = {; }; Alice hasx; .
Output: Alice and Bob obtain vector§ and R such that
Qi+ Ri=1In Oq(i).

(a) Alice and Bob perfornGM L on their data to obtain
vectorsU andV. Notice thatU; + V; = Inb;(x1).

(b) Alice forms the vectoQ = U. Bob forms vectoR,
where for eachi, R; = V; + Inm;. Thus,Q; + R; =
Inb;(x1) + Inm = In o (3).

(e5) (Z)

. Induction:

Oét+1 (
i=1

1<t<

Mz

aw) bj(xt+1)

where T-1,1<j<N

Input: Alice and Bob have vector andR. such that); +
R; = In (7). Alice and Bob havé/; andV; such thaU; +
Vj = Inb;(x¢+1). Bob has the vectar; = [alj,agj, ., an;g].
Output Alice and Bob obtairQ) and R such that) + R =
In ae41(4).

(a) Alice and Bob engage in the secure logsum protocol

with vectorsQ and(R. + In a;) to obtainy’ andz’ i.e.
y + 2 = SLOG(Q,R + Ina,).

(b) Alice obtains@ = ' + U;, Bob obtainsk = 2’ + V.
. Termination:

P(X|\) = }:m

Input: Alice and Bob have vectorQ andR such that); +
Ri =1In aT(i).

Output: Alice and Bob obtainy and z such thaty + z =
In P(X|A).

(a) Alice and Bob engage in theLOG protocol with vec-
torsQ andR to obtainy andz i.e. y+z = SLOG(Q, R).

Efficiency: In the initialization step, there a(@+2)M N+ N SIP
callsandN SMAX/SV AL calls involvingd-dimensional vectors.
In the induction step, for every and for everyt, there is oneS1P
call with an N-vector. In the termination step, there is dhEP call
with an N-vector.

Security: Bob does not learn any, and Alice does not learn any of
Bob'’s parameters.

We can obtain a similar procedure for a backward varigb(e):
Bi(i) =P -xr|ge = Si, A) (6)
We initialize 87 (i) = 1,V1 < ¢ < N and solve for3, (i) as

(Xt+lxt+2 ..

N
= i (xe+1) B+ (),
j=1
t=T-1,T—-2,...,1, 1<j<N
Notice that the above equation is a sum of products. AliceBuotul

have additive shares of the logarithm of each product tefmeyTan
compute additive shares of the final result ustfigOG.

where

3.2. Viterbi Algorithm

Consider the quantity
5t(i) = (7)

0+(7) is the best score along a single path, at timehich accounts
for the firstt observations and ends in state

1. Initialization:
01(3) = mibi(x1), (i) =

The procedure is evaluating (¢) is analogous to the initial-
ization step of the forward backward procedure.

max  Plqigz...q = Si,X1X2...X¢|}]

q1,92---9¢t—1

1<i<N

2. Recursion:
0u() = ([ max -1 (i)as) )by (xe)
Pe(d) = argma>i<z<1v[5t 1(4)aij]
where 2<t<T,1<j<N

For é:(j), Alice and Bob useSV AL and obtain additive
shares of the log of the maximum. They’'ll already have ad-
ditive shares oflog b;(x:) and hence they’ll have additive
shares oflog 6:(7). Similarly, they can obtain).(;) by us-
ingSMAX.

3. Termination and Path backtracking:
P = 11<nax [07(4)] qr = argmax . 0 ().
qt :¢t+1(q:+1) t:T_17T_27 o L

Alice and Bob will have additive shares o 6+ (7) from the
previous step. They can us8/ AL and SM AX to obtain
P* andgr. Alice, who has access tp and+):, can evaluate
the path sequence.
Security and efficiency considerations for this protocelsimilar to
what was discussed with regard to the forward-backwardguiae.

3.3. HMM training

Formulae for re-estimation of HMM parameters are givenwelo

o («()BG) [ eipN (e ik, Bjk)
k) = ( POXI) ) < by (x0) )
i o) = Qt(Daih(Xer1) B (5) o Y ft(i 7)
€t( 7.7) - P(Xl)\) ’ 1] Zt ] ’Yt( )
Cik = Z?:l ’Yt(jv k) e Zt:1 ’Yt(]v )Xt
YL S G T S G k)
= (), Sy = S (G k) (ke — ) (xe — k)’

> i1 (s k)



Notice that all the above formulae are made of products ossum

of products. It is easy to show that Alice and Bob, usi#P and
SLOG protocols, can compute:(j, k), &:(¢,7), 7, ai; andcjx.
We do not show the details due to lack of space.

4. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a secure multiparty coniqufat-
mulation of hidden Markov models. We have shown how we can em-

Now consider the estimation of the mean and covariance of thgloy simpler SMC primitives to perform training and evaioatof

gaussian mixture components. The requirements are tha siiould

HMMs for security sensitive speech applications. The imm@ata-

not have access to the learned parameters and Bob shouldweot h tion that we have presented is based on the concept of azlditares

access to the data in any iteration. In addition, we have toabe-
ful that Bob does not learn the parameters at every iteratidns
is required because one can deduce information about thebgat
knowing the results of repeated operations with the dattowveEor
example, knowledge af inner products with @ dimensional vector

x is enough to learx. To enforce this, we let Alice and Bob have

additive shares of the mean at every iteration. Only afieheliter-
ations are complete does Bob receive values of the mean.

Input: Alice hasx:,t = 1,...,T. Alice and Bob have-vectors
E andF such thattly + Fi = In (5, k).
Output: Alice obtainsg i, ; Bob obtaingu;x,, andX;x. (tjk, +
Bjkp = Hjk)-

1. Alice and Bob obtair and f wheree + f = SLOG(E, F).

2. Fori =1,2,...,d:
Leth; be theT-vector formed by-th elements ok, .. ., xr.
Alice and Bob obtaire’ and ' wheree’ + f' = SLOG(E +
In hi, F)

e Notice that(e’ — ) + (f' — f) = In pily.

Alice and Bob obtain the-th elements ofu;x, and p;xy,
respectively as a result &I P(exp(e’ — e), exp(f — f)).

3. Consider the evaluation ef,,,, the mn-th element of the
matrix X ;5. We first consider evaluating then-th element
of (x¢ — pjr)(xt — pjx)’. This is equivalent to evaluating
themn-th term of (x; — ;1) (X¢ — fix)’, wherex, = (x; —
Wik, ) andf, = pjk, . Letthei-th elements ok, andg i,
bez; andfi’, respectively. Notice that Alice has accesto
and Bob has access fo;.

e Fort =1,...,T, Alice and Bob engage iS1P pro-
tocol with vectorexp(r) [z1* 7, —Z7", 27, 1] and vec-
tor [1, ik, — iy, k], wherer, is arandom scalar
chosen by Alice. Let Bob obtain the resuit

e Alice forms theT-vectorr = [ry,...,r7] and Bob
forms the vectow = [¢1,. .., ¢7].

Alice and Bob obtairg and f wheree + f = SLOG((E —
r),(F+Ing)).

o Notice that(é — e) + (f — f) = Inomn.
Alice sendg(e — ¢) to Bob so that he can calculaig,, .

At the end of all iterations, Alice sends her shaggs , to Bob so

that he can calculatg ;.. Notice that Bob does learn the covariance

matrix in every iteration but quantities used to calculdte ¢ovari-
ance matrix are additive shares which does not help him erimgy
about Alice’s data. This particular example of HMM trainiaging
only two parties was used for derivation purposes. Thisguntaoe

can be easily generalized to the case where Bob learns parame

using data from multiple parties instead of one, in whichecte
learned statistics are averaged and provide an additiapet bf se-
curity for the data providers.

to enforce data privacy. Although this is a viable implenagion it

is only one of many possible ways such a secure system can-be im
plemented. Future advances in the field of cryptographyghviill
hopefully provide more robust and efficient protocols, camdadily
employed in our framework by straightforward replacemerthe
basic primitives. A wise choice of underlying primitivesibhave

to balance tradeoffs such as computational efficiency ahdank
bandwidth as opposed to security/privacy and is a reseanjagb

in its own right. Because of the breadth of options and the lim
ited space in this paper we defer a performance evaluati&rush
sion to a future publication. At the moment, and dependinghen
primitives used, performance can range from a few times ¢ime-c
putational/network overhead of a straightforward implatagon, to
many orders of magnitude. The emergence of specializedvaaed
that perform cryptographical operations is also a factar tan dras-
tically reduce computational complexity.

In this paper we only presented a formulation to perform HMM
computations which are central for speech applicatioris straight-
forward however to employ this methodology to construciows
secure applications using arbitrary signal processingatipms. It is
our hope that such privacy conserving methodologies cgmfost
ter computational collaborations for either research enmoercial
purposes while ensuring the data privacy of all participant
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