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ABSTRACT

In this paper we describe a technique that allows the ejtracf
multiple local shift-invariant features from analysis amnegative
data of arbitrary dimensionality. Our approach employsobabilis-
tic latent variable model with sparsity constraints. We dastrate
its utility by performing feature extraction in a variety dbmains
ranging from audio to images and video.

Index Terms— Feature extraction, Unsupervised learning

1. INTRODUCTION

The extraction of thematic components from data has long bee
topic of active research. Typically, this has been viewed pgob-
lem of deriving bases that compose the data, with the bases-th
selves representing the underlying components. Techsiigueh
as Principal or Independent Component Analysis, or, in #se of
non-negative data, Non-negative Matrix Factorizatiorgedxat the
discovery of such bases and have found wide use in multigé-ap
cations.
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2. SPARSE SHIFT-INVARIANT PROBABILISTIC LATENT
COMPONENT ANALYSIS

We will begin by assuming without loss of generality that axy

dimensional non-negative data is actually a scaedimensional
distribution. To adapt the data to this assumption, we nbemat

to sum to unity. The scaling factor can be multiplied back itite
discovered patterns later if desired, or incorporatedéretimation
procedures thereby resolving any quantization issues. &vede-
scribe our algorithm sequentially by first introducing tfeesic prob-
abilistic latent component analysis model, extending itnidude
shift-invariance, and finally by imposing sparsity on it.

2.1. Probabilistic Latent Component Analysis

The Probabilistic Latent Component Analysis (PLCA) modéiich

is an extension of Probabilistic Latent Semantic Indexigg!) [1]

to multi-dimensional data, models any distributiBiix) over anN-
dimensional random variable = {z1, z2, ...,z } as the sum of a
number oflatent N-dimensional distributions that in turn are com-
pletely specified by their marginal distributions:

In this paper we focus on the discovery of components that ex-

hibit the properties of being multidimensional, local, ahift-invariant
in arbitrary dimensions. We consider local instead of gléatures,
i.e. features that have a small support as compared to thé amol
individually only describe a limited section of it. Extrawg such lo-
cal features also necessitates the use of shift-invariaineability to
have such features appear in arbitrary locations througheunput.
An example case where such flexibility is required is on insagje
text where the features (letters in this case) are local ppdax with
arbitrary shifting. Additionally we consider the case drirary rank
for both input and feature data, i.e. we consider inputs Wwhie not
just 2-D structures like images or matrices, but higher raljlects
which can be composed from features of arbitrary rank. Usiag
ditional decomposition technigques, such as those memntiabeve,
obtaining this flexibility is a complex, if possible, prose€ach of
these properties have been individually addressed in thte fpat not
in an unified and extensible manner.

In this paper we focus on resolving these problems and exgabli
more intuitive feature extraction for a wide range of inputd/e
specifically concentrate on non-negative data which arenofn-
countered when dealing with representations of audio asdavi
data. We use a probabilistic interpretation of non-negatiata in
order to derive flexible learning algorithms which are aleeffi-
ciently extract shift-invariant features in arbitrary dinsionalities.
An important component of our approach is imposing spamsity-
der to extract meaningful components. Due to the flexibditypur
approach we will also introduce an entropic prior which carealy
optimize the sparsity of any estimated parameter in our inbest
a component, or its weight). Finally we will show how we cas-di
cover patterns in diverse data such as audio, images and, \ddd
also apply the technigue to deconvolution of positive-atdya.
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Herez is a latent variable that indexes the latent componentilolistr
tions, andP(x;|z) is the marginal distribution of; within the 2
component distributions, i.e. thmnditional marginal distribution
conditioned or. The objective of the decomposition is to discover
the most appropriate marginal distributioR$z;|z).

The estimation of the marginalB(z;|z) is performed using a
variant of the EM algorithm. In the expectation step we eatarthe
‘contribution’ of the latent variable:
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and in a maximization step we re-estimate the marginalgyusie
above weighting to obtain a new and more accurate estimate:
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Estimates of all conditional marginals and the mixture Wesd(z)
are obtained by iterating the above equations to conveegeote
that when thex; are discrete (such as tbé andY indices of pixels
in an image), the integrals in the above equations becomensam
tions over all values of the variable. An example of a PLCAlgsia

is shown in figure 1. The only parameter that needs to be deffiped
the user is the number of states that the latent variableressuln
this example case assumes three states.



P(z,)
05 3

P(X,12) P(x,12,)

04 2

0.3
0 %

0 1 2 3 R L I -2 [) 2
P(x) Approximation to P(x)
3 3
2 2
1 - 1 -
0 | 0 |
1 a
-2 oo— -2 o
_3 3
-2 0 2 -2 0 2

Fig. 1. lllustration of PLCA. The 2-D distributio®®(x) in the lower
left plot is composed of three Gaussians. Upon applying Pi@A
see that the three Gaussians have been properly descriltbeiby
marginals, and the latent priors reflect their correct ngxiveights
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Fig. 2. lllustration of shift-invariant PLCA. The top left plot sli
plays the latent variable priors, whereas the remainingtopglots
display the two kernel distributions we extracted. The sdcew
of plots display the impulse distributions, whereas thedmtrow

as show in the top row. The lower right plot shows the approxi-displays the original input distribution at the left and thedel ap-
mation of P(x) using the weighted sum of the discovered marginalproximation at the right.

products. Note that for readability on paper the colormaparfie
figures in this paper is inverted so that large values are aladkzero
is white.

2.2. Shift-Invariance

The basic PLCA model describes distribution in terms of rimaig
and hence cannot detect shifted patterns. We now extendiéab
with the latter. We modify the PLCA model of Equation 1 to:

P(x) = Z (P(z)/P(w,T|z)P(h — 7l2)dT) (5)

wherew andh are mutually exclusive subsets of componemts=
{zi}, h = {z;}, such thax = {w, h}. 7 is a random variable that

is defined over the same domaintasThis decomposition uses a set

of kernel distributions P(w, 7|z) which when convolved with their
correspondingmpulse distributions P(h — 7|z) and appropriately
weighed and summed hb#(z) approximate the inpuP(x). The
exact set of components that go intow andh must be specified.

Estimation of P(z), P(w, 7|z) and P(h|z) is once again done
using Expectation-Maximization. The expectation step is:

P(z)P(w,T|z)P(h — 7|2)

Reem.2) = 50 TPtwir )P - v yar O
And the parameter updates in the maximization step are:
P*(z) = /R(x,z)dx 7)
. B J P(x)R(x,T,z)dh
. Pw,h+1)R(w,h+ 7,71, 2)dwdr
P (b)) = L )R( ) ©

[ P(w,h + T)R(w,h' + 7,7, 2)dh dwdT

The above equations are iterated to convergence.
Figure 2 illustrates the effect of shift-invariant PLCA ofisstri-
bution. We note that both component distributions in theréigare

2.3. Sparsity Constraints

The shift-invariant decomposition of the previous seci®by na-
ture indeterminate. The kernels and impulse distributemesinter-
changeable —there is no means of explicitly specifying winzt be
the kernel and what the impulse. To overcome this indetexayin
we now impose a restriction agparsity. We do so by explicitly im-
posing anentropic a-priori distribution on some of the component
distributions to minimize their entropy. To do so we use thethmod-
ology introduced by Brand [3].

Let @ be any distribution in our model whose entropy we wish
to bias during training. We specify tteepriori distribution of@ as
P(8) = e P19 whereH(8) is the entropy of). The parameter
[ is used to indicate the severity of the prior, and can alsarass
negative values to encourage high entropy estimates.

The imposition of the entropic prior does not modify the upda
rules of shift-invariant PLCA. It only introduces two addital steps
that are used in a two iteration loop to refine the estimat of
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whereW(-) is Lambert’s function. 19 = P(z;|z) thenw is given
by:

w= / . -/P(X)R(x,z)dxk,Vk #£3 (12)
whereR is given by Equation 6. A more detailed description of the
entropic prior for PLCA appears in [4].

Note thatd can be any of the distributions in our model, i.e., we
could impose sparsity on either the kernel distributionsherim-
pulse distributions (and even the latent variable prioi)e effect
of this manipulation is illustrated in figure 3 where, for $ame in-
put, pairs of kernel and impulse distributions with varyggropic

discovered. As in PLCA, the number of components must beispecpriors are shown. Even though all three cases result intlitgtisely

fied. In addition the desired size of the kernel distribusigice. the
area of their support) must also be specified.

similarly good explanations of the input, clearly they alult in dif-
ferent analyses. As may be inferred from this figure, the melgiful
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Fig. 3. lllustration of the effects of sparse shift-invariant PA. he
top plot is the inputP(x). The leftmost column shows the kernel
(top) and impulse (bottom) distributions obtained when kbeel
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Fig. 4. An input constant-Q spectrogram of a few overlapping piano
notes is shown in the bottom left figure. The top left plot tigp the

is made sparse. The center column is obtained when no sparsikernel distribution across the frequency (horizontalsawihich we

is imposed. In the right column, the impulse distributiors lmeen
made sparse.

use of the entropic prior is when we employ it to enforce onitine
pulse distributions, permitting the kernel distributidghemselves to
be most informative.

3. APPLICATIONS OF SPARSE SHIFT-INVARIANT PLCA

3.1. Audio Examples

Patterns in audio signals are often discernible in theietfrequency
representations, such as spectrograms. The magnitudicgpam
(the magnitude of the STFT) of an audio signal is inherentg-n
negative and amenable to analysis by our algorithm. Wetitites
the use of PLCA on spectrograms with the example in figure 4. Th
input time-frequency distribution in this figure represeatpassage
of a few piano notes from a real piano recording. The spedifie-t
frequency distribution used is constant-Q [5]. In this jgattar type
of distribution notes appear as as a series of energy pesadssdce-
quency (each peak corresponding to a harmonic). Differetegsn
will be appropriately shifted vertically according to thindamen-
tal frequency. Aside from this shifting, the shape of thentamic
peaks will remain the same. Likewise shifting in the timer{hon-
tal) axis denotes time delay. In a musical piece we would exjze
find the same harmonic pattern shifted across both dimesnsioas
to represent each played note.

As shown in figure 4 applying PLCA on this input results in a
very concise description of its content. We automaticaliyam a
kernel representing the harmonic series of a piano note.p€hks
in the impulse distribution represent the fundamental fesgy of
the note and its location in time. We thus effectively disaothe
building blocks of this music passage and perform a rougtstnap-
tion in an unsupervised manner.

3.2. Applications in Images and Video

Color images are normally represented as a three dimemhsivoe-
ture spanning two spatial and one color dimension. In théestof
this paper an image can be represented as a distribBfeny, c),

wherex andy are the two spatial dimensions ands a 3-valued

can see being a harmonic series describing the generid¢isewaf a
musical note. The impulse distribution shown in top rigteritifies
the locations in time and frequency of the basic note. Asreethe
reconstruction of the input is shown in the bottom right plot
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Fig. 5. Analysis of a color image. The input is shown in the top
panel and the three columns of plots under it display thespafir
kernel and impulse distributions that were extracted.

index for each of the primary colors (red, green, blue). @tars
then the color image in figure 5. This image is composed ofthre
distinct handwritten characters each associated witha ¢ah “a”,

a “y" and “1"). Due to the handwriting different instances of the
same characters are not identical. Figure 5 also displaysetults

of sparse shift-invariant PLCA analysis of the image. Weehes-
timated three kernel functions. The estimated kernels @uad to
represent the three characters, and the correspondindsiengbigtri-
butions represent their locations in the image.

This method is also applicable to video streams which can be
viewed as four-dimensional data (two spatial dimensions, aplor
dimension and time). Results from a video analysis are sHown
figure 6.
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Fig. 6. Application of PLCA on video data. In the top left plot we see
a time-lapse description of a video stream which was reptedeas
afour dimensional inpufx,y,color,time. An arrow is superimposed
on the figure to denote the path of the ball. The remainingsplt-
play the three components that were extracted from the \dhen
impulse distributions are not displayed being 3-dimersictruc-
tures).
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Fig. 7. An example of positive deconvolution. The top left image
is an image of numbers that have been convolved with the gy ri
image. Performing PLCA with the known blurring function as a
kenrl and estimating only the impulse distribution we cacoxer

the image before the blurring.
3.3. Positive Deconvolution

Shift-invariant PLCA can also be used for positive decoatioh in
arbitrary dimensions. So far the model we have been desgribi
a generalization of a multidimensional sum of convolutiovtsere
neither the filters, nor the impulses are known. If we sinyptifis
model to only use a single convolution (i.e. havingssume only
one state), and assume that the kernel distribution is knewerthen
obtain the classical definition of a positive-only decomiain prob-
lem. The only differences in this particular case is thatdad of

difference however. To illustrate this application coesithe data

in figure 7. In the top left image we have a series of numberghvhi
have been convolved with the kernel shown in the top rightCRL
decomposition was performed on this data, fixing the kem¢hée
value shown in the top right. The estimated impulse distidouis
shown at the bottom of figure 7, and as is clear it has removed th
effects of the convolution and has recovered the digits reetoe
blurring without presenting any problems by recovering aega-
tive values.

4. DISCUSSION

We note from the examples that the sparse shift-invariacdmeo-
sition is able to extract patterns that adequately desdhibenput
in semantically rich terms from various forms of non-negatiata.
We have also demonstrated that the model can be used owpositi
data deconvolution.

As mentioned earlier, the basic foundation of our method is a
generalization of the Probabilistic Latent Semantic IridgXPLSI)
[1] model. Interestingly, in the absence of shift-invadarand spar-
sity constraints, it can also be shown through algebraidpoation
that for 2-D data the model is, in fact, also identical numedty to
non-negative matrix factorization. The shift-invariaotrh of PLCA
is also very similar to the convolutive NMF model [2]. The fun
damental contribution in this work is the extension of thesmlels
to shift-invariance in multiple dimensions, and the enémnent of
sparsity that enables us to extract semantically mearipgfiterns
in various data.

The formulation we have used in the paper is extensible.ror i
stance, the model can also allow for the kernel to undergstoams
such as scaling, rotation, shearing etc. It is also amenalile ap-
plication of a variety of priors. Discussion of these togsutside
the scope of this paper, but their implementation is veryilamto
what we have presented so far.
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