
SPARSE AND SHIFT-INVARIANT FEATURE EXTRACTION FROM NON-NE GATIVE DATA

Paris Smaragdis
Adobe Systems

Newton, MA, USA

Bhiksha Raj
Mitsubishi Electric Research Laboratories

Cambridge, MA, USA

Madhusudana Shashanka
Mars Inc.

Hackettstown, NJ, USA

ABSTRACT

In this paper we describe a technique that allows the extraction of
multiple local shift-invariant features from analysis of non-negative
data of arbitrary dimensionality. Our approach employs a probabilis-
tic latent variable model with sparsity constraints. We demonstrate
its utility by performing feature extraction in a variety ofdomains
ranging from audio to images and video.

Index Terms— Feature extraction, Unsupervised learning

1. INTRODUCTION

The extraction of thematic components from data has long been a
topic of active research. Typically, this has been viewed asa prob-
lem of deriving bases that compose the data, with the bases them-
selves representing the underlying components. Techniques such
as Principal or Independent Component Analysis, or, in the case of
non-negative data, Non-negative Matrix Factorization, excel at the
discovery of such bases and have found wide use in multiple appli-
cations.

In this paper we focus on the discovery of components that ex-
hibit the properties of being multidimensional, local, andshift-invariant
in arbitrary dimensions. We consider local instead of global features,
i.e. features that have a small support as compared to the input and
individually only describe a limited section of it. Extracting such lo-
cal features also necessitates the use of shift-invariance, the ability to
have such features appear in arbitrary locations throughout the input.
An example case where such flexibility is required is on images of
text where the features (letters in this case) are local and appear with
arbitrary shifting. Additionally we consider the case or arbitrary rank
for both input and feature data, i.e. we consider inputs which are not
just 2-D structures like images or matrices, but higher rankobjects
which can be composed from features of arbitrary rank. Usingtra-
ditional decomposition techniques, such as those mentioned above,
obtaining this flexibility is a complex, if possible, process. Each of
these properties have been individually addressed in the past, but not
in an unified and extensible manner.

In this paper we focus on resolving these problems and enabling
more intuitive feature extraction for a wide range of inputs. We
specifically concentrate on non-negative data which are often en-
countered when dealing with representations of audio and visual
data. We use a probabilistic interpretation of non-negative data in
order to derive flexible learning algorithms which are able to effi-
ciently extract shift-invariant features in arbitrary dimensionalities.
An important component of our approach is imposing sparsityin or-
der to extract meaningful components. Due to the flexibilityof our
approach we will also introduce an entropic prior which can directly
optimize the sparsity of any estimated parameter in our model (be it
a component, or its weight). Finally we will show how we can dis-
cover patterns in diverse data such as audio, images and video, and
also apply the technique to deconvolution of positive-onlydata.

2. SPARSE SHIFT-INVARIANT PROBABILISTIC LATENT
COMPONENT ANALYSIS

We will begin by assuming without loss of generality that anyN -
dimensional non-negative data is actually a scaledN -dimensional
distribution. To adapt the data to this assumption, we normalize it
to sum to unity. The scaling factor can be multiplied back into the
discovered patterns later if desired, or incorporated in the estimation
procedures thereby resolving any quantization issues. We now de-
scribe our algorithm sequentially by first introducing the basic prob-
abilistic latent component analysis model, extending it toinclude
shift-invariance, and finally by imposing sparsity on it.

2.1. Probabilistic Latent Component Analysis

The Probabilistic Latent Component Analysis (PLCA) model,which
is an extension of Probabilistic Latent Semantic Indexing (PLSI) [1]
to multi-dimensional data, models any distributionP (x) over anN -
dimensional random variablex = {x1, x2, ..., xN} as the sum of a
number oflatent N -dimensional distributions that in turn are com-
pletely specified by their marginal distributions:

P (x) =
X

z

P (z)
QN

j=1P (xj |z) (1)

Herez is a latent variable that indexes the latent component distribu-
tions, andP (xj |z) is the marginal distribution ofxi within thezth

component distributions, i.e. theconditional marginal distribution
conditioned onz. The objective of the decomposition is to discover
the most appropriate marginal distributionsP (xj|z).

The estimation of the marginalsP (xj |z) is performed using a
variant of the EM algorithm. In the expectation step we estimate the
‘contribution’ of the latent variablez:

R(x, z) =
P (z)

QN
j=1P (xj |z)

P

z′ P (z′)
QN

j=1P (xj |z
′)

(2)

and in a maximization step we re-estimate the marginals using the
above weighting to obtain a new and more accurate estimate:

P ∗(z) =

Z

P (x)R(x, z)dx (3)

P ∗(xj |z) =

R

· · ·
R

P (x)R(x, z)dxk,∀k 6= j

P ∗(z)
(4)

Estimates of all conditional marginals and the mixture weightsP (z)
are obtained by iterating the above equations to convergence. Note
that when thexi are discrete (such as theX andY indices of pixels
in an image), the integrals in the above equations become summa-
tions over all values of the variable. An example of a PLCA analysis
is shown in figure 1. The only parameter that needs to be definedby
the user is the number of states that the latent variable assumes. In
this example casez assumes three states.
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Fig. 1. Illustration of PLCA. The 2-D distributionP (x) in the lower
left plot is composed of three Gaussians. Upon applying PLCAwe
see that the three Gaussians have been properly described bytheir
marginals, and the latent priors reflect their correct mixing weights
as show in the top row. The lower right plot shows the approxi-
mation ofP (x) using the weighted sum of the discovered marginal
products. Note that for readability on paper the colormap ofsome
figures in this paper is inverted so that large values are darkand zero
is whlte.
2.2. Shift-Invariance

The basic PLCA model describes distribution in terms of marginals
and hence cannot detect shifted patterns. We now extend it todeal
with the latter. We modify the PLCA model of Equation 1 to:

P (x) =
X

z

`

P (z)

Z

P (w, τ |z)P (h − τ |z)dτ
´

(5)

wherew andh are mutually exclusive subsets of components,w =
{xi}, h = {xi}, such thatx = {w,h}. τ is a random variable that
is defined over the same domain ash. This decomposition uses a set
of kernel distributions P (w, τ |z) which when convolved with their
correspondingimpulse distributions P (h − τ |z) and appropriately
weighed and summed byP (z) approximate the inputP (x). The
exact set of componentsxi that go intow andh must be specified.

Estimation ofP (z), P (w, τ |z) andP (h|z) is once again done
using Expectation-Maximization. The expectation step is:

R(x, τ , z) =
P (z)P (w, τ |z)P (h − τ |z)

P

z′ P (z′)
R

P (w, τ ′|z′)P (h − τ ′|z′)dτ ′
(6)

And the parameter updates in the maximization step are:

P ∗(z) =

Z

R(x, z)dx (7)

P ∗(w, τ |z) =

R

P (x)R(x,τ , z)dh

P ∗(z)
(8)

P ∗(h|z) =

R

P (w,h + τ )R(w,h + τ , τ , z)dwdτ
R

P (w,h′ + τ )R(w,h′ + τ , τ , z)dh′dwdτ
(9)

The above equations are iterated to convergence.
Figure 2 illustrates the effect of shift-invariant PLCA of adistri-

bution. We note that both component distributions in the figure are
discovered. As in PLCA, the number of components must be speci-
fied. In addition the desired size of the kernel distributions (i.e. the
area of their support) must also be specified.
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Fig. 2. Illustration of shift-invariant PLCA. The top left plot dis-
plays the latent variable priors, whereas the remaining twotop plots
display the two kernel distributions we extracted. The second row
of plots display the impulse distributions, whereas the bottom row
displays the original input distribution at the left and themodel ap-
proximation at the right.

2.3. Sparsity Constraints

The shift-invariant decomposition of the previous sectionis by na-
ture indeterminate. The kernels and impulse distributionsare inter-
changeable – there is no means of explicitly specifying whatmust be
the kernel and what the impulse. To overcome this indeterminacy,
we now impose a restriction ofsparsity. We do so by explicitly im-
posing anentropic a-priori distribution on some of the component
distributions to minimize their entropy. To do so we use the method-
ology introduced by Brand [3].

Let θ be any distribution in our model whose entropy we wish
to bias during training. We specify thea priori distribution ofθ as
P (θ) = e−βH(θ), whereH(θ) is the entropy ofθ. The parameter
β is used to indicate the severity of the prior, and can also assume
negative values to encourage high entropy estimates.

The imposition of the entropic prior does not modify the update
rules of shift-invariant PLCA. It only introduces two additional steps
that are used in a two iteration loop to refine the estimate ofθ:

ω

θi
+ β + βlogθi + λ = 0 (10)

θ =
−ω/β

W(−ωe1+λ/β/β)
(11)

whereW(·) is Lambert’s function. Ifθ = P (xj|z) thenω is given
by:

ω =

Z

· · ·

Z

P (x)R(x, z)dxk,∀k 6= j (12)

whereR is given by Equation 6. A more detailed description of the
entropic prior for PLCA appears in [4].

Note thatθ can be any of the distributions in our model, i.e., we
could impose sparsity on either the kernel distributions orthe im-
pulse distributions (and even the latent variable priors).The effect
of this manipulation is illustrated in figure 3 where, for thesame in-
put, pairs of kernel and impulse distributions with varyingentropic
priors are shown. Even though all three cases result into qualitatively
similarly good explanations of the input, clearly they all result in dif-
ferent analyses. As may be inferred from this figure, the mosthelpful
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Fig. 3. Illustration of the effects of sparse shift-invariant PLCA. The
top plot is the inputP (x). The leftmost column shows the kernel
(top) and impulse (bottom) distributions obtained when thekernel
is made sparse. The center column is obtained when no sparsity
is imposed. In the right column, the impulse distribution has been
made sparse.

use of the entropic prior is when we employ it to enforce on theim-
pulse distributions, permitting the kernel distributionsthemselves to
be most informative.

3. APPLICATIONS OF SPARSE SHIFT-INVARIANT PLCA

3.1. Audio Examples

Patterns in audio signals are often discernible in their time-frequency
representations, such as spectrograms. The magnitude spectrogram
(the magnitude of the STFT) of an audio signal is inherently non-
negative and amenable to analysis by our algorithm. We illustrate
the use of PLCA on spectrograms with the example in figure 4. The
input time-frequency distribution in this figure represents a passage
of a few piano notes from a real piano recording. The specific time-
frequency distribution used is constant-Q [5]. In this particular type
of distribution notes appear as as a series of energy peaks across fre-
quency (each peak corresponding to a harmonic). Different notes
will be appropriately shifted vertically according to their fundamen-
tal frequency. Aside from this shifting, the shape of the harmonic
peaks will remain the same. Likewise shifting in the time (horizon-
tal) axis denotes time delay. In a musical piece we would expect to
find the same harmonic pattern shifted across both dimensions so as
to represent each played note.

As shown in figure 4 applying PLCA on this input results in a
very concise description of its content. We automatically obtain a
kernel representing the harmonic series of a piano note. Thepeaks
in the impulse distribution represent the fundamental frequency of
the note and its location in time. We thus effectively discover the
building blocks of this music passage and perform a rough transcrip-
tion in an unsupervised manner.

3.2. Applications in Images and Video

Color images are normally represented as a three dimensional struc-
ture spanning two spatial and one color dimension. In the context of
this paper an image can be represented as a distributionP (x, y, c),
wherex andy are the two spatial dimensions andc is a 3-valued
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Fig. 4. An input constant-Q spectrogram of a few overlapping piano
notes is shown in the bottom left figure. The top left plot displays the
kernel distribution across the frequency (horizontal) axis, which we
can see being a harmonic series describing the generic structure of a
musical note. The impulse distribution shown in top right, identifies
the locations in time and frequency of the basic note. As before, the
reconstruction of the input is shown in the bottom right plot.
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Fig. 5. Analysis of a color image. The input is shown in the top
panel and the three columns of plots under it display the pairs of
kernel and impulse distributions that were extracted.

index for each of the primary colors (red, green, blue). Consider
then the color image in figure 5. This image is composed of three
distinct handwritten characters each associated with a color (an “α”,
a “γ” and “1”). Due to the handwriting different instances of the
same characters are not identical. Figure 5 also displays the results
of sparse shift-invariant PLCA analysis of the image. We have es-
timated three kernel functions. The estimated kernels are found to
represent the three characters, and the corresponding impulse distri-
butions represent their locations in the image.

This method is also applicable to video streams which can be
viewed as four-dimensional data (two spatial dimensions, one color
dimension and time). Results from a video analysis are shownin
figure 6.
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Fig. 6. Application of PLCA on video data. In the top left plot we see
a time-lapse description of a video stream which was represented as
a four dimensional input{x,y,color,time}. An arrow is superimposed
on the figure to denote the path of the ball. The remaining plots dis-
play the three components that were extracted from the video(the
impulse distributions are not displayed being 3-dimensional struc-
tures).
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Fig. 7. An example of positive deconvolution. The top left image
is an image of numbers that have been convolved with the top right
image. Performing PLCA with the known blurring function as a
kenrl and estimating only the impulse distribution we can recover
the image before the blurring.

3.3. Positive Deconvolution

Shift-invariant PLCA can also be used for positive deconvolution in
arbitrary dimensions. So far the model we have been describing is
a generalization of a multidimensional sum of convolutionswhere
neither the filters, nor the impulses are known. If we simplify this
model to only use a single convolution (i.e. havingz assume only
one state), and assume that the kernel distribution is known, we then
obtain the classical definition of a positive-only deconvolution prob-
lem. The only differences in this particular case is that instead of
optimizing with respect to an MSE error, we are doing so over a
Kullback-Leibler distance between the input and the estimate. In
terms of the perceived quality of the results there is no significant

difference however. To illustrate this application consider the data
in figure 7. In the top left image we have a series of numbers which
have been convolved with the kernel shown in the top right. PLCA
decomposition was performed on this data, fixing the kernel to the
value shown in the top right. The estimated impulse distribution is
shown at the bottom of figure 7, and as is clear it has removed the
effects of the convolution and has recovered the digits before the
blurring without presenting any problems by recovering anynega-
tive values.

4. DISCUSSION

We note from the examples that the sparse shift-invariant decompo-
sition is able to extract patterns that adequately describethe input
in semantically rich terms from various forms of non-negative data.
We have also demonstrated that the model can be used or positive
data deconvolution.

As mentioned earlier, the basic foundation of our method is a
generalization of the Probabilistic Latent Semantic Indexing (PLSI)
[1] model. Interestingly, in the absence of shift-invariance and spar-
sity constraints, it can also be shown through algebraic manipulation
that for 2-D data the model is, in fact, also identical numerically to
non-negative matrix factorization. The shift-invariant form of PLCA
is also very similar to the convolutive NMF model [2]. The fun-
damental contribution in this work is the extension of thesemodels
to shift-invariance in multiple dimensions, and the enforcement of
sparsity that enables us to extract semantically meaningful patterns
in various data.

The formulation we have used in the paper is extensible. For in-
stance, the model can also allow for the kernel to undergo transforms
such as scaling, rotation, shearing etc. It is also amenableto the ap-
plication of a variety of priors. Discussion of these topicsis outside
the scope of this paper, but their implementation is very similar to
what we have presented so far.
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