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ABSTRACT

In this paper we present a novel approach to describe souttdres
which is based on a geometric viewpoint. In this approachxtenel
the idea of a nearest-neighbor representation to addressatte of
superimposed sources. We show that in order to account fongni
effects we need to perform a search for nearest-subspasen-a
posed to nearest-neighbors. In order to reduce the exeassinpu-
tational complexity of this search we present an efficiegbathm

to solve this problem which amounts to a sparse coding approa

We demonstrate the efficacy of this algorithm by using it jgesate
mixtures of speech.

Index Terms— Sound mixtures, separation, audio, speech

1. INTRODUCTION

Models of sounds have traditionally been parametric. Regta-
tions such as source-filter models, sinusoidal analysésstatistical
representations like Gaussian mixtures and hidden Markodets
have been used successfully for many audio applicationgefars.
Lately however, there has been a conceptual switch in thédvadr
data processing that emphasizes simpler models coupladasdter
training data sets. Such approaches forgo complex modatidgn-
stead rely on large training data in order to boost theirgrerhnce.
In this paper we will explore this idea in the form of a simptn
parametric model, especially as it applies to mixtures ahsis. We
will show that instead of using compact source models thatar
describe sounds in a mixture, we can instead selectivelparts of
training data to put them together and explain the mixingcess.
This approach allows us to distance ourselves from comglasnt
ing processes and their complications (overfitting, et grovides
a simple description that can be semantically very powerful

2. GEOMETRY OF SOUND MIXTURES

2.1. The space of normalized spectra

As a starting representation of audio we will consider thgmitade

spectrogram form. For a given soumdt) its corresponding mag-
nitude spectrogram will be notated &5 () and will represent the
amount of signal energy at timieand frequencyf. For the purposes
of this paper we will not consider the temporal dynamics amd i
stead examine only one spectral frame at a time. This allais u

instead focus on thepectral compositionf each frame, as opposed
to the absolute energy thaf;(f) represents. The spectral compo-

sition of each frame will be represented by a probabilityteethat
describes how energy is distributed across frequencieis. cEin be
easily computed as:

A Xi(f)

Xi(f) = m 1

X(f) = {1,0,0} Xi(f) = {0.0,1}

Fig. 1. The simplex of three-frequency spectra. The vertices €orre
spond to only one frequency being active, whereas the cpotat

W, represents the point where all frequencies are equallivacRe-
gion L represents low-frequency spectra, regidh mid-frequency
spectra and regionH high-frequency spectra. Other points in-
between are able to express any possible spectral compogir

a three-frequency sound.

By doing so we effectively remove any information about th&tan-
taneous energy of an analyzed sound and instead focus onbisit
qualities at any point in time. By representing sound thiy we
implicitly define a constrained space in which the proposadifre
vectors live in. Because of the property that all elementshisf
representation sum to unity, all extracted vectﬁw f) will be con-
strained to lie on a simplex. The dimensionality of this spadl be
equal to the overall number of frequencies minus one. A sfiagl
case is illustrated in figure 1, where a 3-frequency spadeows.

2.2. Mixture geometry

In order to consider mixtures we will make the assumptioniren
we have sounds that mix, their magnitude spectra superinpos
early. Although this is not an exact consequence, it is anmags
tion that has been used frequently by the source separatioma-
nity and is generally accepted as being approximately ttleder
this assumption when we have the mixture of two sound$ =
z(t)+y(t), we will expect that its magnitude spectrogram will equal
the sum of the magnitude spectrograms of the two soundsidtdiv
ally, i.e.:

Zi(f) = Xe(f) + Y2 (f)- @)

Where X:(f), Y:(f) and Z:(f) are magnitude spectral frames of
x(t), y(t) andz(t) respectively, that represent energy at titvend
frequencyf. Just as before we only want to consider the spectral
composition of each source and represent each spectralrvest

a frequency distribution. We obtain that by normalizing ignal
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Fig. 2. The result of mixing two magnitude spectra compositionsig- 3. Comparison of two similarity functions in the spectral com-

through Z:(f) = aX:(f) + BY:(f). The two source points are
denoted by the diamond and the circle in the spectrum cortiposi
simplex. Their mixture, denoted by a bold dot, will be caxistd to
lie on the subspace (dotted line in this case), that connbetswo
sources. The position of the mixture point along that subspaill
be determined by the energy ratio of the two sources as cau i
parametersy and 3.

spectra by:
a) = 2 _XhH+vl)
Zth(f) Zf/Xt(f/)-‘rYt(f’)
= aXu(f) + BYi(f),

where the hat operator denotes normalized magnitude spetftr
we visualize the result of this operation in the spectral jposition

simplex that we defined in the previous section it will lookshswn

in figure 2.

3. NON-PARAMETRIC MODELS FOR SOUNDS

3.1. Single-source model

Given this framework we will now construct a simple non-paedric

position simplex. Lighter colors denote less similaritycaspared
to the reference poink. On the left we show the similarity pattern
that arises when we assume Gaussian distributed data arftedeft
when we assume Dirichlet distributed data. Note how thechieit
assumption respects the geometry of the space and prodocgs a
propriate similarity measure.

a form based on the Euclidean distance, but as we show indbis s
tion this is an inappropriate measure. The use of Euclidéstartte
inside the spectral composition simplex implies that we raek-
ing a Gaussian distribution assumption for the spectralpasition
frames. This means that the similarity function itself ipessed as
a Gaussian likelihood:

dX]Y) cc N(X50 =Y, 2 =1T), 4
where N'(X; u, ) denotes the Gaussian likelihood of an inptit
with a mean ofy and a covariance afl. This similarity measure
and its relation to the spectral composition simplex is shawthe
left subplot of figure 3. Note its inappropriateness sinedlaws for
points outside of the simplex and it does not take into accthm
special shape of this space.

A more appropriate distribution in this space is the Dirgthis-
tribution [2], which is explicitly defined on a simplex andused to

model that can be used to approximate an input sound repeesen describe compositional data like the ones we have. Undentbdel

by a series of composition spect’. In order to do so we will
assume that we have a set of training d&tthat represents the kind

of sound that we wish to model. Having that, we can approxmat

each input frameX; by its nearest-neighbat;, such that:

7 = argmax d(X:| X, ), ?3)
for a given similarity functiond(). Finding which training frame
X is the closest to the current frami involves a straightforward
nearest-neighbor search, which scales linearly in contylexith
the size of the training data. Once the approximation fovedttors
X, is found, we scale these vectors by the original gain of tite co
responding spectrum at that time and use the original siginase
to invert the magnitude spectrogram approximation to the tilo-
main. This particular way of modeling sound spectra coutsti a
simple non-parametric model very similar to vector quaattan ap-
proaches, only this time we employ the entire training dataa
posed to using a compact codebook.

3.2. Measuring similarity

One complication that arises in this representation comms the
definition of the similarity functiorni(). One might be tempted to use

the similarity function becomes:

d(X]Y) xD(Y; X + 1), (5)
whereD(Y'; X') denotes the Dirichlet distribution with an inplt
and hyper-parameters. The mode of this distribution as defined in
the above equation will be & and it will measure the likelihood of
an inputX beingY. If we examine the log likelihood of this model
we can see that it resolves to the following form:

Z x; log(yi), (6)

that is the formula for cross-entropy, which from infornoatitheory
we know to be an appropriate measure to compare two protyabili
vectors. As shown in the right subplot of figure 3, this simifjais
bounded by the spectral composition simplex and is appatelyi
shaped to account for its shape. For the rest of this paperilviean
considering this to be the default similarity measure to sedu

d(X|Y)

3.3. The sound mixtures model

The non-parametric model shown in the previous section is a
straightforward process and can model single sounds veily we
We will now examine the same idea as it applies on mixtures of



Fig. 4. An illustration of the nearest-subspace approach for mod-Fig. 5. The/2-norm regularizing term as applied to compositional
eling sound mixtures. The two non-parametric models of tixedn data. This term is maximized (lighter color) by points thatdn the
sounds are represented by the clust&r@liamonds) an@’ (circles).  vertices. Using this as a regularizing term to be maximizstitts
Given an input frameg; (dark dot) we want to identify the indices in a sparse weights estimate.
7. andy, that identify two training points, one from each class, that
define a subspace that passes the closest through it.
An alternative approach would be to map this problem to aestar
neighbor search as shown in [1], however for the dimensityrahd
sounds. For simplicity we start with a mixture consistingteb  scale of our training data that would involve performing anest-
sourcesz(t) = x(t) +y(t). Just like before we will have a training neighbor search over a set of solutions which would be ififéato
data set, this time consisting of spectral compositionomscdf the ~ store in memory (more than a petabyte for the small scalelgmob
constituent sources and not of the mixture directly. Thiing data  of 60 seconds of training data per source).
will therefore consist of two partst’ and) which will represent the
classes of sounds for sourceg) andy(t) respectively. As should 3.5. A regularization approach
be evident, the nearest-neighbor approach will not appligitncase. ) . .
We will not necessarily be able to approximate each mixtoper In. order to address this prol?lem in an efficient manner weste.call
7, using one element from eithé¥ or . Instead we would have this search as a sparse coding problem. We attempt to maximiz

to model eact?; as a weighted summation of one element frim the cross-entropy between each input frame and the recotistr

~ model:
and one fron, i.e.: d (Zt|OéZwiXi +BZ“%)’ (7
Z =~ oc?37§ + ﬁ)% wherew andv are weights vectors that contain only one non-zero
AP s element each. Because our spectral composition data isatine
, = d(Zs|a X, ), . .
{o, 8,72y} Srﬁgzaj; (Zeladr, + 5Yn,) to sum to one, the following constraints hold:
where the similarity functioni() is cross-entropy as discussed in wi,vi,a,f >0
the previous section. After solving this problem we will aiot a Zwi — Z vi=a+8 = 1

nearest-neighbor approximation of each source indepégdand

an indication of their relative amplitude. This problem amts to  Because of the above constrainisand v will also themselves lie
anearest-subspacsearch. Unlike the single-source case where weon a simplex. We will call that the weights simplex, whereleagr-
search for a nearest-point, we now search for two pointsframe  tex will represent a point from the training data set. Ourl gmav
each source dictionary, that form a subspace that passetodest is to obtain estimates af andv whose position on their respective
to our input. This is illustrated in figure 4. weights simplex lies on a vertex. Such a solution would méan t
only one value in these weight terms will be non-zero whicbuis
desired outcome. In order to impose that constraint we neeért
form a regularized optimization that pushes towards sudiigisn.
Solving the nearest-subspace problem as defined in theopsesec- A regularizing term that can enforce that behavior is thataii-
tion is a computationally intensive operation with a prdfiie com-  mizing the/>-norm ofw andv. The effect of that term is shown in
plexity. Consider a small-sized problem using 60 secontgisofing  the weights simplex in figure 5. We see that the regularinatom
data for each source and spectra of about 2,000 dimensidish w is maximized towards the vertices and that it would bias thel o-
results in about 7,500 training vectors for each source. Mtfie  lution to be sparser. Note that usuallymaximization will not result
dictionary indices for a single input frame we would needadgrm  in a sparse solution, this is a special case due to the coristthat
7,500% searches. Each search itself would involve multiple evaluawe use on the weight vectors. In order to compact the probiefin d
tions of cross-entropy and a non-linear optimization to fimelpa-  nition we can consolidate all the weights and theg parameters in
rametersy and 3. For a 10 second mixture that would amount to a single weight vectok that acts on all the training data= [)3, 37]
more than 7 billion optimization problems. Medium-sizedining  simultaneously:

sets of the order of 10 minutes will require the solution ohmil- d (gd z hJ/{z) 7 8)
lions of separate optimizations. The rapidly increasinmpiexity

with respect to the amount of training data results in an gt~ Where now we want only two of the elements/oto be non-zero,
able number of computations for our task even in toy simoesti ~ one in each segment that corresponds to a different soundé/;a

3.4. Adirect search approach



implies the selection of théth column oft{. Maximizing the ex-
pression in the above equation under the given constraiutgte
sparsity regularization term results in the iterativeraator:

r(f) = Zu(£)) D hl(f):
tio= hiy_ r(HU
6= ttn(8/8)

R =68,

wherey > 0 determines the strength of the regularization term.
Upon convergence we keep only the largest elemerit thfat cor-
responds to training data from each source, and by examthing
relation between these two values we can easily compuaad 5.
This approach is computationally very efficient and can lkes@0
second mixtures with 60 seconds of training data per souréess
than 30 seconds on a typical workstation system.

4. EXPERIMENTS ON MIXTURES

We used a set of speech recordings to evaluate the abilithif t
model to represent mixtures. The recordings were from teedp
separation challenge [3] and involved short spoken seagfrom
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Fig. 6. A result from a single source separation experiment. The
top plots show two sentences spoken by two different speakiee
middle plot shows their observed mixture, and the bottortsptee
estimates sources given training data from each speaker.

in principle invariant to the number of sources since anytaonix
problem can be seen as a binary segmentation between adathet

various speakers. In our experiments we used two speakers atap interference (the only complication of having many sesiteeing
time. We used all bgt one sentence from each speaker to Bohstr ipe increased probability of the target and the interfezemeerlap-
the training data set¥’ and)’ and we mixed the two remaining sen- ping in the frequency composition simplex). Other factarshsas
tences as a 0dB mixture and obtaingd We used a DFT size of reverberation and propagation effects are also not an ssueng
2048, a frame overlap of 256 samples and a Hann window in ordedis they don't color the sources enough to significantly caahgir

to obtain the speaker dependent spectral frames. We aufllsio
warped the frequency axis of the spectra so as to obtain dactins
Q-like transform and give more importance to the low freques
These spectral frames were subsequently normalized tanatbiz
compositional spectrd’ Y and 2.

In order to evaluate the ability to model mixtures we attezdpt
to separate the mixed signals using the training data irdtom.
This was done by identifying the two training data pointse @rom
each source, that define the nearest subspace to each nuzinte
and then reconstructing each source independently usiggrem.
In order to obtain each source estimate we set the instaoiamem-
position spectrum of each source to each of the two optimiatgo

spectral composition (not an observed problem in general).

Although source separation was the only context we predente
this approach in, we have to stress that the scope of this Inede
wider-ranging. A great advantage of this representatichas the
source estimates are being explained using verbatim pétiseo
training data. That allows us to use existing semantic médion
from the training data (e.g. phonetic labels, or note trapgons),
to map that information on a mixture and thus perform reciami
and indexing operations on mixtures without having to safgeany
sources. This is a departure from the usual source-sepadtati
analysis model and one which we feel will become increagipgt-
dominant in the future.

aX,, andﬂj@y for that time and then scale them using the instanta-

neous gain of the mixture at that point. This provides thegpectral
estimates for the two sources which we can then convert lueitiet
time domain by using the phase of the mixture spectrogram.

An example case is shown in figure 6. For multiple such ex-

periments the results according to the evaluation metni¢4]iwere
around 20dB for Signal to Interference Ratio and around SuBre
Signal to Distortion or Artifacts Ratios. The strong SIRuakhows
that the sources are well separated from each other (sorgetré
can subjectively confirm with listening tests), and the w8&R and
SAR are a result of the fact that we do not attempt an optintaine
struction of the source, but instead we find an approximation

5. CONCLUSIONS

In this paper we present a new way to decompose mixtures néisou
by using verbatim parts from training data of the constitigurce
classes and treating mixture analysis as a nearest-sigpagdem.
This way of explaining mixtures, given proper training dasapri-
marily affected by one factor: how much the training datarfrdif-
ferent sources overlaps in the frequency composition sraglt is
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