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ABSTRACT

In this paper we present a novel approach to describe sound mixtures
which is based on a geometric viewpoint. In this approach we extend
the idea of a nearest-neighbor representation to address the case of
superimposed sources. We show that in order to account for mixing
effects we need to perform a search for nearest-subspaces, as op-
posed to nearest-neighbors. In order to reduce the excessive compu-
tational complexity of this search we present an efficient algorithm
to solve this problem which amounts to a sparse coding approach.
We demonstrate the efficacy of this algorithm by using it to separate
mixtures of speech.

Index Terms— Sound mixtures, separation, audio, speech

1. INTRODUCTION

Models of sounds have traditionally been parametric. Representa-
tions such as source-filter models, sinusoidal analyses, and statistical
representations like Gaussian mixtures and hidden Markov models
have been used successfully for many audio applications foryears.
Lately however, there has been a conceptual switch in the world of
data processing that emphasizes simpler models coupled with larger
training data sets. Such approaches forgo complex modelingand in-
stead rely on large training data in order to boost their performance.
In this paper we will explore this idea in the form of a simple non-
parametric model, especially as it applies to mixtures of sounds. We
will show that instead of using compact source models that try to
describe sounds in a mixture, we can instead selectively useparts of
training data to put them together and explain the mixing process.
This approach allows us to distance ourselves from complex learn-
ing processes and their complications (overfitting, etc), and provides
a simple description that can be semantically very powerful.

2. GEOMETRY OF SOUND MIXTURES

2.1. The space of normalized spectra

As a starting representation of audio we will consider the magnitude
spectrogram form. For a given soundx(t) its corresponding mag-
nitude spectrogram will be notated asXt(f) and will represent the
amount of signal energy at timet and frequencyf . For the purposes
of this paper we will not consider the temporal dynamics and in-
stead examine only one spectral frame at a time. This allows us to
instead focus on thespectral compositionof each frame, as opposed
to the absolute energy thatXt(f) represents. The spectral compo-
sition of each frame will be represented by a probability vector that
describes how energy is distributed across frequencies. This can be
easily computed as:

X̂t(f) =
Xt(f)

P

f ′ Xt(f ′)
. (1)

X̂t(f) = {0, 0, 1}

X̂t(f) = {0, 1, 0}

X̂t(f) = {1, 0, 0}
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Fig. 1. The simplex of three-frequency spectra. The vertices corre-
spond to only one frequency being active, whereas the centerpoint
W , represents the point where all frequencies are equally active. Re-
gion L represents low-frequency spectra, regionM mid-frequency
spectra and regionH high-frequency spectra. Other points in-
between are able to express any possible spectral composition for
a three-frequency sound.

By doing so we effectively remove any information about the instan-
taneous energy of an analyzed sound and instead focus on its timbral
qualities at any point in time. By representing sound this way we
implicitly define a constrained space in which the proposed feature
vectors live in. Because of the property that all elements ofthis
representation sum to unity, all extracted vectorsX̂t(f) will be con-
strained to lie on a simplex. The dimensionality of this space will be
equal to the overall number of frequencies minus one. A simplified
case is illustrated in figure 1, where a 3-frequency space is shown.

2.2. Mixture geometry

In order to consider mixtures we will make the assumption that when
we have sounds that mix, their magnitude spectra superimpose lin-
early. Although this is not an exact consequence, it is an assump-
tion that has been used frequently by the source separation commu-
nity and is generally accepted as being approximately true.Under
this assumption when we have the mixture of two soundsz(t) =
x(t)+y(t), we will expect that its magnitude spectrogram will equal
the sum of the magnitude spectrograms of the two sounds individu-
ally, i.e.:

Zt(f) = Xt(f) + Yt(f). (2)

WhereXt(f), Yt(f) andZt(f) are magnitude spectral frames of
x(t), y(t) andz(t) respectively, that represent energy at timet and
frequencyf . Just as before we only want to consider the spectral
composition of each source and represent each spectral vector as
a frequency distribution. We obtain that by normalizing thesignal
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Fig. 2. The result of mixing two magnitude spectra compositions
through Ẑt(f) = αX̂t(f) + βŶt(f). The two source points are
denoted by the diamond and the circle in the spectrum composition
simplex. Their mixture, denoted by a bold dot, will be constrained to
lie on the subspace (dotted line in this case), that connectsthe two
sources. The position of the mixture point along that subspace will
be determined by the energy ratio of the two sources as coded in the
parametersα andβ.

spectra by:

Ẑt(f) =
Zt(f)

P

f Zt(f)
=

Xt(f) + Yt(f)
P

f ′ Xt(f ′) + Yt(f ′)

= αX̂t(f) + βŶt(f),

where the hat operator denotes normalized magnitude spectra. If
we visualize the result of this operation in the spectral composition
simplex that we defined in the previous section it will look asshown
in figure 2.

3. NON-PARAMETRIC MODELS FOR SOUNDS

3.1. Single-source model

Given this framework we will now construct a simple non-parametric
model that can be used to approximate an input sound represented
by a series of composition spectrâXt. In order to do so we will
assume that we have a set of training dataX̂ that represents the kind
of sound that we wish to model. Having that, we can approximate
each input framêXt by its nearest-neighbor̂Xτ , such that:

τ = argmax
τ

d(X̂t|X̂τ ), (3)

for a given similarity functiond(). Finding which training frame
X̂τ is the closest to the current framêXt involves a straightforward
nearest-neighbor search, which scales linearly in complexity with
the size of the training data. Once the approximation for allvectors
X̂t is found, we scale these vectors by the original gain of the cor-
responding spectrum at that time and use the original signalphase
to invert the magnitude spectrogram approximation to the time do-
main. This particular way of modeling sound spectra constitutes a
simple non-parametric model very similar to vector quantization ap-
proaches, only this time we employ the entire training data as op-
posed to using a compact codebook.

3.2. Measuring similarity

One complication that arises in this representation comes from the
definition of the similarity functiond(). One might be tempted to use
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Fig. 3. Comparison of two similarity functions in the spectral com-
position simplex. Lighter colors denote less similarity ascompared
to the reference pointX. On the left we show the similarity pattern
that arises when we assume Gaussian distributed data and on the left
when we assume Dirichlet distributed data. Note how the Dirichlet
assumption respects the geometry of the space and produces an ap-
propriate similarity measure.

a form based on the Euclidean distance, but as we show in this sec-
tion this is an inappropriate measure. The use of Euclidean distance
inside the spectral composition simplex implies that we aremak-
ing a Gaussian distribution assumption for the spectral composition
frames. This means that the similarity function itself is expressed as
a Gaussian likelihood:

d(X|Y ) ∝ N (X; µ = Y, Σ = I), (4)

whereN (X; µ, Σ) denotes the Gaussian likelihood of an inputX
with a mean ofµ and a covariance ofΣ. This similarity measure
and its relation to the spectral composition simplex is shown in the
left subplot of figure 3. Note its inappropriateness since itallows for
points outside of the simplex and it does not take into account the
special shape of this space.

A more appropriate distribution in this space is the Dirichlet dis-
tribution [2], which is explicitly defined on a simplex and isused to
describe compositional data like the ones we have. Under this model
the similarity function becomes:

d(X|Y ) ∝ D(Y ; X + 1), (5)

whereD(Y ; X) denotes the Dirichlet distribution with an inputY
and hyper-parametersX. The mode of this distribution as defined in
the above equation will be atX and it will measure the likelihood of
an inputX beingY . If we examine the log likelihood of this model
we can see that it resolves to the following form:

d(X|Y ) ∝
X

xi log(yi), (6)

that is the formula for cross-entropy, which from information theory
we know to be an appropriate measure to compare two probability
vectors. As shown in the right subplot of figure 3, this similarity is
bounded by the spectral composition simplex and is appropriately
shaped to account for its shape. For the rest of this paper we will be
considering this to be the default similarity measure to be used.

3.3. The sound mixtures model

The non-parametric model shown in the previous section is a
straightforward process and can model single sounds very well.
We will now examine the same idea as it applies on mixtures of
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Fig. 4. An illustration of the nearest-subspace approach for mod-
eling sound mixtures. The two non-parametric models of the mixed
sounds are represented by the clustersX̂ (diamonds) and̂Y (circles).
Given an input frameẐt (dark dot) we want to identify the indices
τx andτy that identify two training points, one from each class, that
define a subspace that passes the closest through it.

sounds. For simplicity we start with a mixture consisting oftwo
sources:z(t) = x(t)+ y(t). Just like before we will have a training
data set, this time consisting of spectral composition vectors of the
constituent sources and not of the mixture directly. The training data
will therefore consist of two parts,̂X andŶ which will represent the
classes of sounds for sourcesx(t) andy(t) respectively. As should
be evident, the nearest-neighbor approach will not apply inthis case.
We will not necessarily be able to approximate each mixture input
Ẑt using one element from either̂X or Ŷ. Instead we would have
to model eacĥZt as a weighted summation of one element from̂X
and one fromŶ, i.e.:

Ẑt ≈ αX̂τ§ + βŶτ†

{α, β, τx, τy} = argmax
α,β,τx,τy

d(Ẑt|αX̂τx
+ βŶτy

),

where the similarity functiond() is cross-entropy as discussed in
the previous section. After solving this problem we will obtain a
nearest-neighbor approximation of each source independently and
an indication of their relative amplitude. This problem amounts to
a nearest-subspacesearch. Unlike the single-source case where we
search for a nearest-point, we now search for two points, onefrom
each source dictionary, that form a subspace that passes theclosest
to our input. This is illustrated in figure 4.

3.4. A direct search approach

Solving the nearest-subspace problem as defined in the previous sec-
tion is a computationally intensive operation with a prohibitive com-
plexity. Consider a small-sized problem using 60 seconds oftraining
data for each source and spectra of about 2,000 dimensions, which
results in about 7,500 training vectors for each source. To find the
dictionary indices for a single input frame we would need to perform
7, 5002 searches. Each search itself would involve multiple evalua-
tions of cross-entropy and a non-linear optimization to findthe pa-
rametersα andβ. For a 10 second mixture that would amount to
more than 7 billion optimization problems. Medium-sized training
sets of the order of 10 minutes will require the solution of many tril-
lions of separate optimizations. The rapidly increasing complexity
with respect to the amount of training data results in an unaccept-
able number of computations for our task even in toy simulations.

Fig. 5. Theℓ2-norm regularizing term as applied to compositional
data. This term is maximized (lighter color) by points that lie on the
vertices. Using this as a regularizing term to be maximized results
in a sparse weights estimate.

An alternative approach would be to map this problem to a nearest-
neighbor search as shown in [1], however for the dimensionality and
scale of our training data that would involve performing a nearest-
neighbor search over a set of solutions which would be infeasible to
store in memory (more than a petabyte for the small scale problem
of 60 seconds of training data per source).

3.5. A regularization approach

In order to address this problem in an efficient manner we recast
this search as a sparse coding problem. We attempt to maximize
the cross-entropy between each input frame and the reconstruction
model:

d
“

Ẑt|α
X

wiX̂i + β
X

viŶi

”

, (7)

wherew andv are weights vectors that contain only one non-zero
element each. Because our spectral composition data is normalized
to sum to one, the following constraints hold:

wi, vi, α, β ≥ 0
X

wi =
X

vi = α + β = 1.

Because of the above constraints,w andv will also themselves lie
on a simplex. We will call that the weights simplex, where each ver-
tex will represent a point from the training data set. Our goal now
is to obtain estimates ofw andv whose position on their respective
weights simplex lies on a vertex. Such a solution would mean that
only one value in these weight terms will be non-zero which isour
desired outcome. In order to impose that constraint we need to per-
form a regularized optimization that pushes towards such a solution.
A regularizing term that can enforce that behavior is that ofmaxi-
mizing theℓ2-norm ofw andv. The effect of that term is shown in
the weights simplex in figure 5. We see that the regularization term
is maximized towards the vertices and that it would bias the final so-
lution to be sparser. Note that usuallyℓ2 maximization will not result
in a sparse solution, this is a special case due to the constraints that
we use on the weight vectors. In order to compact the problem defi-
nition we can consolidate all the weights and theα, β parameters in
a single weight vectorh that acts on all the training datâU = [X̂ , Ŷ]
simultaneously:

d
“

Ẑt|
X

hiÛi

”

, (8)

where now we want only two of the elements ofh to be non-zero,
one in each segment that corresponds to a different source, and Ûi



implies the selection of theith column ofÛ . Maximizing the ex-
pression in the above equation under the given constraints and the
sparsity regularization term results in the iterative estimator:

r(f) = Ẑt(f)/
X

hiÛ(f)i

ti = hi

X

r(f)Û(f)i

t∗i = ti + µ
“

t2i /
X

t2j

”

hnew
i = t∗i /

X

t∗j ,

whereµ ≥ 0 determines the strength of the regularization term.
Upon convergence we keep only the largest element ofh that cor-
responds to training data from each source, and by examiningthe
relation between these two values we can easily computeα andβ.
This approach is computationally very efficient and can resolve 10
second mixtures with 60 seconds of training data per source in less
than 30 seconds on a typical workstation system.

4. EXPERIMENTS ON MIXTURES

We used a set of speech recordings to evaluate the ability of this
model to represent mixtures. The recordings were from the speech
separation challenge [3] and involved short spoken sentences from
various speakers. In our experiments we used two speakers ata
time. We used all but one sentence from each speaker to construct
the training data setŝX andŶ and we mixed the two remaining sen-
tences as a 0dB mixture and obtainedẐ. We used a DFT size of
2048, a frame overlap of 256 samples and a Hann window in order
to obtain the speaker dependent spectral frames. We additionally
warped the frequency axis of the spectra so as to obtain a constant-
Q-like transform and give more importance to the low frequencies.
These spectral frames were subsequently normalized to obtain the
compositional spectrâX Ŷ andẐ.

In order to evaluate the ability to model mixtures we attempted
to separate the mixed signals using the training data information.
This was done by identifying the two training data points, one from
each source, that define the nearest subspace to each mixturepoint,
and then reconstructing each source independently using only them.
In order to obtain each source estimate we set the instantaneous com-
position spectrum of each source to each of the two optimal points
αX̂τx

andβŶτy
for that time and then scale them using the instanta-

neous gain of the mixture at that point. This provides the twospectral
estimates for the two sources which we can then convert back to the
time domain by using the phase of the mixture spectrogram.

An example case is shown in figure 6. For multiple such ex-
periments the results according to the evaluation metrics in [4] were
around 20dB for Signal to Interference Ratio and around 5dB for the
Signal to Distortion or Artifacts Ratios. The strong SIR value shows
that the sources are well separated from each other (something we
can subjectively confirm with listening tests), and the weakSDR and
SAR are a result of the fact that we do not attempt an optimal recon-
struction of the source, but instead we find an approximation.

5. CONCLUSIONS

In this paper we present a new way to decompose mixtures of sounds
by using verbatim parts from training data of the constituent source
classes and treating mixture analysis as a nearest-subspace problem.
This way of explaining mixtures, given proper training data, is pri-
marily affected by one factor: how much the training data from dif-
ferent sources overlaps in the frequency composition simplex. It is
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Fig. 6. A result from a single source separation experiment. The
top plots show two sentences spoken by two different speakers. The
middle plot shows their observed mixture, and the bottom plots the
estimates sources given training data from each speaker.

in principle invariant to the number of sources since any mixture
problem can be seen as a binary segmentation between a targetand
an interference (the only complication of having many sources being
the increased probability of the target and the interference overlap-
ping in the frequency composition simplex). Other factors such as
reverberation and propagation effects are also not an issueas long
as they don’t color the sources enough to significantly change their
spectral composition (not an observed problem in general).

Although source separation was the only context we presented
this approach in, we have to stress that the scope of this model is
wider-ranging. A great advantage of this representation isthat the
source estimates are being explained using verbatim parts of the
training data. That allows us to use existing semantic information
from the training data (e.g. phonetic labels, or note transcriptions),
to map that information on a mixture and thus perform recognition
and indexing operations on mixtures without having to separate any
sources. This is a departure from the usual source-separation-to-
analysis model and one which we feel will become increasingly pre-
dominant in the future.
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