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ABSTRACT

In this paper we present a system that is capable of tracking the pitch
and volume of a musical source by making use of training data.We
show how we can use pitch-tagged training example sounds to con-
struct a model of a target source, and then use that model to track
such a source in unseen mixtures. We do so using a regularized
decomposition approach that is designed to strive for semantic con-
tinuity in its estimates.

Index Terms— Polyphonic transcription, non-negative models

1. INTRODUCTION

For humans, understanding musical sources and being able tode-
tect and transcribe them when observed inside a mixture is a learned
process. Through repetitive ear training exercises we learn to asso-
ciate sounds with specific instruments and notes, and eventually we
develop the ability to understand music using such terms. The com-
puterized counterpart of this approach is, however, not as developed.
There are multiple approaches that attack the problem of dissecting
a musical mixture into sources and notes, but they are most often
based on user-defined principles or treated as parameter estimation
problems that rely on exact definitions of source energy and pitch.

In this paper we explore a different approach, we examine the
basis of a system that is capable of being instructed how a target
source sounds like and what its notes are, and then use that informa-
tion in order to discover that source when it is present in complex
musical mixtures. We show that at an abstract level this approach
can be casted as a decomposition with an added constraint forse-
mantic continuity and examine its performance on real-world music
data.

2. PROPOSED APPROACH

The basic tool we will make use of in this paper of is a probabilistic
non-negative decomposition of spectrograms. Our approachwill be
similar to the one in [1], but we will consider the case where not
all sources are known. In doing so we will introduce a new con-
straint that ensuressemantic continuity. In the following subsections
we will describe the basic approach and then show how it can be
enhanced for semantic continuity.

2.1. Probabilistic decompositions of sources

The formulation that we will use will decompose normalized magni-
tude spectra into a set of overcomplete dictionary elementsand their
corresponding weights. At its basic level, this approach similar to

many already existing NMF/PLCA models. These approaches can
be interpreted as either non-negative factorizations or aslatent vari-
able probabilistic models. We will use the latter interpretation since
that would allow us to perform intuitive inference when using priors
and constraints.

In order to setup the notation that we will use we will begin by
describing the basic model. For a sounds(t) we will obtain its time-
frequency transform:

St(f) = F [s(t, . . . , t+N − 1)]. (1)

For the purposes of this paper, the transformF(·) will be a Fourier
transform with the appropriate use of a tapering window in order to
minimize spectral leakage. The use of alternative transforms (e.g.,
constant-Q or warped Fourier transforms) is also possible,but lie
outside for the scope of this paper.

Like all operations that focus on timbral and pitch characteristics
we desire to have invariance from phase and scale changes. Inorder
to do so we will only retain the magnitude of the time-frequency
transform and also normalize all its time frames so that theysum to
a constant value (1 in our case):

Ŝt(f) =
||St(f)||∑
f ||St(f)||

(2)

By analyzing a sound using this process we are left with a set of
normalized magnitude spectra that describe all its observable spec-
tral configurations. It is convenient to represent this space of spectra
inside a simplex, a space that can contain all possible normalized
spectra. For most sounds, their constituent normalized spectra will
occupy a subspace of that simplex, an area that defines their timbral
characteristics. A simple example with normalized spectraof only
three frequencies is shown in figure 1. A very convenient feature of
this representation is that whenever two normalized spectra mix, the
resulting normalized spectrum will lie on the line that connects the
original spectra. In order to aid the subsequent inference task it is
also helpful to think of the normalized spectra as being probability
distributions of energy across frequencies. Using that interpretation
we would have the probability of frequencyf at time framet to be
Pt(f) ≡ Ŝt(f).

We are now ready to define a probabilistic model that can ana-
lyze mixtures based on a prior learning step where source examples
are used. The basic form of the model we will use is:

Pt(f) ≈ Pt(a)
∑

z

P
(a)(f |z)P

(a)
t (z)

+ Pt(b)
∑

z

P
(b)(f |z)P

(b)
t (z)

(3)



Source (a) spectra

Source (b) spectra

Ŝt(f) = [0, 0, 1] Ŝt(f) = [0, 1, 0]

Ŝt(f) = [1, 0, 0]

Fig. 1. The normalized spectra{3}-simplex with samples from two
sources. In general, dissimilar sources will occupy different parts
of that space. The line defined by connecting any two spectra (the
dotted line in this space) contains all the possible normalized spectra
that a mixture of these two can generate.

The spectral probabilitiesPt(f) are the measurements we make by
observing a mixture of two sound classes, and represent the proba-
bility of observing energy at time timet and frequencyf . This is
then approximated as a weighted sum of a set of dictionary elements
P (a)(f |z) andP (b)(f |z). These dictionary elements can be learned
from training examples for the two sound classes(a) and(b). The
two sets of weights,P (a)

t (z) andP (b)
t (z), combined with the source

priors,Pt(a) andPt(b), regulate how these dictionary elements are
to be combined to approximate the observed input. All of the above
probabilities are discrete and contain a finite number of elements.
The latent variablez serves as an index for addressing the dictio-
nary elements. All parameters of this model can be learned using the
Expectation-Maximization algorithm as shown in [2].

Variations of this approach have been used for many source sep-
aration and denoising problems. The one that we will make useof
in this paper is the approach in [3]. In that work instead of learn-
ing a set of dictionary elements it was shown that one can simply
assign the dictionary elements to be the training data and use a spar-
sity prior to perform what is now an overcomplete decomposition.
This effectively means that in the above model we do not need to
learn dictionaries, but instead we would setP (a)(f |z) ≡ Ŝ

(a)
z (f)

andP (b)(f |z) ≡ Ŝ
(b)
z (f), whereŜ(a) andŜ(b) are the normalized

spectra we obtain from the training data for sources(a) and(b). That
means that for each observed mixture pointPt(f) in the normalized
spectra simplex we would find one dictionary element from each of
the two sources such that the observation lies on the line that con-
nects these two elements. Note that this model is also able toresolve
mixtures with more than two sources. That can be achieved in one
of two ways. One is that we can model each source with its own dic-
tionary and extend the model in equation (3) to have more thantwo
terms. However for most cases we can define the two sources to be
the target source (e.g. a singer) and a source model that encompasses
all the other sources we are not interested in (e.g. all the accompa-
nying instruments). The latter form, which we will make use of in
this paper, is more practical since it involves a smaller number of
dictionaries and a simplified model structure.

2.2. Unknown sources extension

In this paper we are interested in obtaining source information by
having observed training examples of only the target source. This
problem cannot be solved with the formulation in equation (3) since
it needs to have training examples for all the sources in the observed
mixture. A simple way to resolve this problem is to use something
akin to the semi-supervised model in [4].

We will use the same model as the one we had in equation
(3), only this time we will assume that the only dictionary elements
that we know of will be the ones for the target sourceP (a)(f |z),
whereas all the other sources will be unknown. This means that
we would need to estimate not only the weights for both the target
and the non-target sources, but also the dictionary elements of the
non-target sources. These will be modeled as a single sourceus-
ing the dictionary elementsP (b)(f |z). The only known parameters
of the model areP (a)(f |z) which we set to be equal to the nor-
malized spectra of the training datâS(a)

t (f). Just as before we can
use the Expectation-Maximization algorithm to estimateP (b)(f |z),
P

(a)
t (z) andP (b)

t (z), Pt(a) andPt(b) simultaneously. This will be
an iterative procedure where the resulting estimation equations are:

Pt(z, s|f) =
Pt(s)P

(s)
t (z)P (s)(f |z)

∑
s′ Pt(s′)

∑
z′ P

(s′)
t (z′)P (s′)(f |z′)

(4)

P
(b)∗(f |z) =

∑

t

Pt(z, b|f)Pt(f) (5)

P
(a)∗
t (z) =

∑

f

Pt(z, a|f)Pt(f) (6)

P
(b)∗
t (z) =

∑

f

Pt(z, b|f)Pt(f) (7)

Pt(a) =

∑
z P

(a)∗
t (z)

∑
z P

(a)∗
t (z) +

∑
z P

(b)∗
t (z)

(8)

Pt(b) =

∑
z P

(b)∗
t (z)

∑
z P

(a)∗
t (z) +

∑
z P

(b)∗
t (z)

(9)

Where the∗ operator denotes an unnormalized parameter estimate
and s is used as a source index. To obtain the current estimates
of the parameters we make sure to normalize them all so that they
properly sum to 1 in every iteration. Equation 4 correspondsto the
E-step, whereas the others make up the M-step. The geometry of
this process is shown in figure 2. Given the training data for the
target source, for every observed mixture input spectrum wewill
infer a region that the plausible dictionary elements of thecompeting
sources will lie. This subspace will be defined by the two lines with
the greatest possible angle between them, that connect two of the
dictionary elements with the observed mixture point. This is because
of the geometric constraint that the mixture of two points inthis
space lie on the line defined by these points. The union of all of
these areas as inferred from multiple mixture points will define the
space where the dictionary elements for the competing sources lie.

2.3. Estimating source and pitch probabilities

We will now focus on how we could use this kind of decomposition
to infer the presence of a source as well as its pitch. A convenient
feature of the current model is that it is using training datadirectly as
dictionary elements. Since these dictionary elements are then used
to explain the mixture, we can use prior tagging informationfrom
the training data to infer semantic information about the mixture.



Target dictionary P( f | z )

Observed mixtures Pt( f )
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Fig. 2. Inferring a source’s subspace given a target source and two
mixture points. Using the most disparate lines that connectthe tar-
get dictionary elements with each observed point we define anarea
where the competing sources lie.

For the purposes of this paper we care about two specific pieces
of information, the energy of a source and its pitch. We can easily in-
fer the energy of a source by using that source’s prior (in thetarget’s
case,Pt(a)). In order to get an estimate of the pitch of that source we
will have to use some a priori semantic tagging. Recall that in order
to construct the target dictionaryP (a)(f |z) we use the normalized
spectra from representative recordings of that source. These record-
ings, not being mixtures, can be automatically pitch-tagged so that
for each dictionary element can have an associated pitch value to it.
After analysis of a mixture we will obtain the set of priorsPt(a) and
weightsP (a)

t (z), which we can then combine to form an estimate of
pitch across time. We do so by forming the distribution:

P
(a)
t (q) =

∑

{z:p(a)(z)=q}

P
(a)
t (z) (10)

wherep(a)(z) is the estimated pitch value associated with the dic-
tionary elementP (a)(f |z), andP (a)

t (q) denotes the probability that
the target source has the pitchq at timet. The summation term es-
sentially computes the sum of all the weights that are associated with
each pitch value to derive a distribution for pitch.

2.4. Semantic continuity

In theory, the aforementioned approach would suffice for performing
the analysis we set to do, however in practice one observes that the
estimates ofP (a)

t (z) are considerably noisy and that an insightful
estimate ofP (a)

t (q) is hard to obtain. In the past these issues have
been addressed with the use of a sparsity prior applied onP

(a)
t (z),

but in our experience this process does not work as well in this sce-
nario. We instead formulate asemantic continuityconstraint, which
as we will demonstrate later, produces sparse results with temporal
smoothness constraints using a single constraint.

In the context of this paper we define semantic continuity as hav-
ing a minimal change ofP (a)

t (q) between successive time indices.
This means that we expect to see sustained pitch values, which is ex-
pected in musical signals, but that we also don’t expect to have large
jumps in the tracked melodies (also largely true for most music). We
define that constraint in the form of a transition matrix regulating the
likelihood that after seeing activity in dictionary elements associated

with a specific pitch that we will see in the next time step a jump
to dictionary elements that are associated with any other pitch. As
described we like to penalize large pitch jumps, hence we define the
following transition matrix:

P (zt+1 = i|zt = j) ∝ e
−||p(a)(z=i)−p(a)(z=j)||/σ (11)

whereP (zt+1 = i|zt = j) denotes the probability thatP (a)
t+1(z =

i) will be activated ifP (a)
t (z = j) is active. For simplicity we

omit the normalizing factor that ensures thatP (zt+1 = i|zt = j)
sums to 1. The two pitch valuesp(z = i) andp(z = j) are the
pitch tags associated with the two dictionary elementsP (a)(f |z =

i) andP (a)(f |z = j). The form of this matrix imposes an increased
likelihood that in future estimates we will see more activity from
dictionary elements that are associated to a close pitch to the current
ones. The constantσ regulates how important the pitch distance is
in constructing that matrix.

Having formed the transition matrix we now want to incorpo-
rate it in the learning process. We will, as shown above, estimate
the weightsP (a)

t (z) in each iteration, but in addition to that we will
manipulate these estimates to impose the transition matrixstructure.
To do so we simply perform a forward-backward pass over the inter-
mediate estimates and then normalize them.

For every estimated weights distributionP (a)
t (z) we have an ex-

pectation that it should be proportional to
∑

zt
P (zt+1|zt)P

(a)
t (zt).

This will be of course different from the estimate we get in the M-
step, therefore we use an extra processing step to impose theex-
pected structure on the current estimate. To do so we define the
forward and backward terms that represent our expected estimates
given a forward and a backward pass throughP

(a)
t (z):

Ft+1(z) =
∑

zt

P (zt+1|zt)P
(a)
t (z) (12)

Bt(z) =
∑

zt+1

P (zt+1|zt)P
(a)
t+1(z) (13)

And then estimate the final value ofP (a)
t (z) as:

P
(a)
t (z) =

P
(a)∗
t (z)(C + Ft(z) +Bt(z))∑

z P
(a)∗
t (z)(C + Ft(z) +Bt(z))

(14)

whereP (a)∗
t (z) is the estimate ofP (a)

t (z) using the rule in equation
(6), andC is a parameter that controls the influence of the transition
matrix. AsC tends to infinity, the effect of the forward and back-
ward terms becomes negligible, whereas asC tends to 0 we tend
to modulate the estimatedP (a)

t (z) by the predictions of these two
terms, thereby imposing the expected structure.

In practice we would also like to impose transition likelihoods
for the non-target sources, especially as they relate to thetarget. To
that end we use the above formulation to define a transition matrix
that applies to all the dictionary elements. We can think of that ma-
trix as being comprised out of four parts. One part will be a section
that looks like the matrix in equation (11), this is the part that will
regulate the transitions between the dictionary elements of the target.
Likewise there will be a region that regulates the transition between
the dictionary elements of the non-target sources. Since wedo not
have any requirements about these components we set all of these
transition likelihoods to be equiprobable. The remaining two sec-
tions will regulate the transition between the target elements and the
non-target elements and vice-versa. We set the transitionsfrom non-
target elements to target elements to be zero, since we don’twant



the structure of the target weights to be perturbed by the estimates
of the non-target sources. On the other hand we set the transitions
from the target elements to the non-target elements to be a constant
non-zero value so that we encourage more of the use of the non-
target components in order to obtain a sparser representation for the
target. Applying these constraints involves a trivial generalization of
the above process.

3. EXPERIMENTS

To demonstrate the use of this approach we construct the follow-
ing experiment. The mixture that we wish to analyze was the song
”Message in a Bottle” by the Police. The target source was thelead
vocal line by Sting. In order to train our system to focus on the tar-
get source we used various recordings of Sting singing without any
accompaniment. All audio recordings used a sample rate of 22,050
Hz. We then pitch tracked the training data and constructed the tar-
get source dictionaryP (a)(f |z). The frequency transform we used
is the DFT with a window of 1024pt and a hop size of 256pt. In
order to have a more focused dictionary we discarded the dictionary
elements that were not pitched, or corresponded to parts with low
energy. This resulted in a set of 1228 dictionary elements for Sting’s
voice. We used four times as many components to describe all the
competing sources, and employed the proposed analysis method to
estimate all the required parameters. We run the experimenttwice,
once withC = ∞ (therefore ignoring semantic continuity) and once
with C = 0.0015 andσ = 10. The transition probability from target
to non-target components was set to 0.5.

The results of a small segment of this analysis are shown in fig-
ure 3. In all of these plots we display the pitch probability multi-
plied by the target prior, i.e.Pt(a)P

(a)
t (q), and thus obtain a sense

of when the target was active and what the most likely pitch was.
The top plot shows the ground truth of a roughly 6 second singing
segment. The middle plot shows the obtained estimate when us-
ing the plain model of equation (3). In addition to our estimate of
Pt(a)P

(a)
t (q) we also plot the expected pitch using the formula:

p̂t =
∑

z

P
(a)
t (z)p(a)(z) (15)

For regions whereP (a)
t (z)was under the 50th percentile of its values

we assumed that the source is inactive and that there is no pitch. As
is clearly evident the resulting output is not easily interpretable, the
expected pitch values are wrong, and it contains significantenergy
at points where there is no singing taking place. The bottom plot
shows the results when we use the semantic continuity constraint. It
is easy to see that the resulting estimates are very close to the ground
truth, and that they result in robust pitch estimates. The use of the
proposed constraint succeeded in offloading irrelevant energy to the
non-target components, and also acted as a sparsity regularizer.

4. CONCLUSIONS

In this paper we presented a system that can learn to follow the en-
ergy and pitch of a target source in a mixture after being shown ex-
amples of that source to use as a reference. In order to achieve that
goal we used a probabilistic decomposition that made use of ase-
mantic continuity constraint. The use of that constraint organized
the resulting estimates of the energy and pitch of the targetsource
in such a way so that one can easily infer these parameters. We
demonstrated the results of this method by applying it on a complex
real-world mixture.
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Fig. 3. The pitch/enegy distributions for a segment of the song ”Mes-
sage in a Bottle”. The top plot shows the true distribution ofthe
singer’s voice. The middle plot shows its estimates if we do not
use the semantic continuity constraint, and the bottom plotshows
the results when using that constraint. The lines in the two bottom
plots show the expected pitch for each time point as estimated from
these distributions. For presentation purposes the shown distribu-
tions have been slightly blurred so that point probabilities are be-
come visible.
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