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ABSTRACT

In this paper we present a system that is capable of trackigitch
and volume of a musical source by making use of training data.
show how we can use pitch-tagged training example soundsto ¢
struct a model of a target source, and then use that modeddk tr

such a source in unseen mixtures. We do so using a regulariz%%S

decomposition approach that is designed to strive for sémeon-
tinuity in its estimates.

Index Terms— Polyphonic transcription, non-negative models

1. INTRODUCTION

For humans, understanding musical sources and being alle-to
tect and transcribe them when observed inside a mixturesiaraéd
process. Through repetitive ear training exercises we lEaasso-
ciate sounds with specific instruments and notes, and esigntue
develop the ability to understand music using such terms.cBm-
puterized counterpart of this approach is, however, noeasldped.
There are multiple approaches that attack the problem sédisg

a musical mixture into sources and notes, but they are meost of
based on user-defined principles or treated as parameimiagen
problems that rely on exact definitions of source energy éteth.p

In this paper we explore a different approach, we examine the

basis of a system that is capable of being instructed howgettar
source sounds like and what its notes are, and then use tbahax
tion in order to discover that source when it is present in gem
musical mixtures. We show that at an abstract level this cgar
can be casted as a decomposition with an added constraisefor
mantic continuity and examine its performance on real-eorusic
data.

2. PROPOSED APPROACH

The basic tool we will make use of in this paper of is a prolisiidl
non-negative decomposition of spectrograms. Our appradthe
similar to the one in [1], but we will consider the case wheo¢ n

many already existing NMF/PLCA models. These approaches ca
be interpreted as either non-negative factorizations datast vari-
able probabilistic models. We will use the latter interptin since
that would allow us to perform intuitive inference when wgpriors
and constraints.

In order to setup the notation that we will use we will begin by
cribing the basic model. For a sowtd) we will obtain its time-
frequency transform:

S:(f) 1)

For the purposes of this paper, the transfofifi) will be a Fourier
transform with the appropriate use of a tapering window theotto
minimize spectral leakage. The use of alternative transsafe.qg.,
constant-Q or warped Fourier transforms) is also posshaie lie
outside for the scope of this paper.

Like all operations that focus on timbral and pitch charasties
we desire to have invariance from phase and scale changesddn
to do so we will only retain the magnitude of the time-freqeyen
transform and also normalize all its time frames so that they to
a constant value (1 in our case):

Fls(t,...,t + N = 1)].
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By analyzing a sound using this process we are left with a ket o
normalized magnitude spectra that describe all its obberapec-
tral configurations. It is convenient to represent this spzcspectra
inside a simplex, a space that can contain all possible Hreda
spectra. For most sounds, their constituent normalizedtuspwiill
occupy a subspace of that simplex, an area that definesithbna
characteristics. A simple example with normalized spescfranly
three frequencies is shown in figure 1. A very convenientuieabf
this representation is that whenever two normalized speuix, the
resulting normalized spectrum will lie on the line that ceats the
original spectra. In order to aid the subsequent infereask it is
also helpful to think of the normalized spectra as being pbility
distributions of energy across frequencies. Using thatrpretation

all sources are known. In doing so we will introduce a new con-we would have the probability of frequengyat time framet to be

straint that ensuresemantic continuityln the following subsections

Pi(f) = Si(f).

we will describe the basic approach and then show how it can be We are now ready to define a probabilistic model that can ana-

enhanced for semantic continuity.

2.1. Probabilistic decompositions of sources

The formulation that we will use will decompose normalizeagni-
tude spectra into a set of overcomplete dictionary elenamdsheir
corresponding weights. At its basic level, this approachilar to

lyze mixtures based on a prior learning step where sourcmges
are used. The basic form of the model we will use is:

Pi(f) = Pi(a) ) P (fl2) P (2)

- \ 3)
+P(b) > PO (f12) P (2)
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S,(f) =[1,0,0] 2.2. Unknown sources extension

@ Source (a) spectra In this paper we are interested in obtaining source infaonalby
having observed training examples of only the target soulidgés
problem cannot be solved with the formulation in equatignsiBce
it needs to have training examples for all the sources in tiseiwed
mixture. A simple way to resolve this problem is to use sorimeth
akin to the semi-supervised model in [4].
O DEI We will use the same model as the one we had in equation
(3), only this time we will assume that the only dictionargralents
O that we know of will be the ones for the target soufe& ( f|z),
] whereas all the other sources will be unknown. This means tha
we would need to estimate not only the weights for both thgetar
o ¢ O and the non-target sources, but also the dictionary elenwrthe
® non-target sources. These will be modeled as a single saskce
¢ ing the dictionary element@‘b)(ﬂz). The only known parameters
$(f) = 0,0.1] $(f) = 0,1,0] of the model areP‘“)(f|z). vyhich sz)set to be equal to the nor-
malized spectra of the training daﬁé (f). Just as before we can

Fig. 1. The normalized spectré3}-simplex with samples from two us(e)the Expecéz)ation-Maximization algorithm to estimat® (f|2),
sources. In general, dissimilar sources will occupy déferparts ;" (2) andP,;” (z), Pi(a) and P, (b) simultaneously. This will be
of that space. The line defined by connecting any two spetttea ( an iterative procedure where the resulting estimation topmare:
dotted line in this space) contains all the possible norzalispectra

O Source (b) spectra

that a mixture of these two can generate. Pi(zs|f) = Py(s) P (2) PP (f]2) @)
Y Pi(s) X P () PO (f]2)

p®* =N"P(z,b|f)P, 5

The spectral probabilitie®; () are the measurements we make by (712) zt: (2, BN P (/) ®)

observing a mixture of two sound classes, and representrtteap

bility of observing energy at time timeand frequencyf. This is Pf")*(z) = pr(z’ alf)Pe(f) ®)
then approximated as a weighted sum of a set of dictionameits f
P (f|z) andP™ (f|z). These dictionary elements can be learned P (z) = 37 Pulz, bl f)Pi(f) @)
from training examples for the two sound classesand (b). The 7

(a)

two sets of weightsP, “’ (z) andPt(”) (z), combined with the source pla)

priors, P;(a) and P;(b), regulate how these dictionary elements are Pi(a) = 2. 3 (8)
to be combined to approximate the observed input. All of theve >, P (2) + >, P (2)

probabilities are discrete and contain a finite number ofelds. > P(b)*(z)

The latent variable: serves as an index for addressing the dictio- P (b) = oI : or 9)
nary elements. All parameters of this model can be learnieg tise . PTT () + 22, P (2)

Expectation-Maximization algorithm as shown in [2].

Variations of this approach have been used for many soupee se
aration and denoising problems. The one that we will makeofise
in this paper is the approach in [3]. In that work instead afrfe
ing a set of dictionary elements it was shown that one canlgimp
assign the dictionary elements to be the training data asd spar-
sity prior to perform what is now an overcomplete decomjpmsit

This effe‘?“"eW means.that in the above mO()jeI we EOQS} need tinferaregion that the plausible dictionary elements oftii@peting
learn dictionaries, but instead we would 98t (f|z) = S:'(f)  sources will lie. This subspace will be defined by the twodinath
andP® (f|z) = S (f), whereS® and 5™ are the normalized  the greatest possible angle between them, that connectftiim o
spectra we obtain from the training data for sourggsand(b). That  dictionary elements with the observed mixture point. Thisécause
means that for each observed mixture pditf) in the normalized  of the geometric constraint that the mixture of two pointstiis
spectra simplex we would find one dictionary element fromhezic  space lie on the line defined by these points. The union offall o
the two sources such that the observation lies on the litecthie@  these areas as inferred from multiple mixture points wifithe
nects these two elements. Note that this model is also abbstdve space where the dictionary elements for the competing eslie.
mixtures with more than two sources. That can be achievedién o
of two ways. One is that we can model each source with its oan di
tionary and extend the model in equation (3) to have more tivan
terms. However for most cases we can define the two sources to We will now focus on how we could use this kind of decompositio
the target source (e.g. a singer) and a source model thangasses  to infer the presence of a source as well as its pitch. A cdemen
all the other sources we are not interested in (e.g. all thberapa-  feature of the current model is that it is using training dhtactly as
nying instruments). The latter form, which we will make ugeéro  dictionary elements. Since these dictionary elementstemne tised
this paper, is more practical since it involves a smaller bemof  to explain the mixture, we can use prior tagging informatimm
dictionaries and a simplified model structure. the training data to infer semantic information about thetare.

Where the" operator denotes an unnormalized parameter estimate
and s is used as a source index. To obtain the current estimates
of the parameters we make sure to normalize them all so tbgt th
properly sum to 1 in every iteration. Equation 4 correspdadsie
E-step, whereas the others make up the M-step. The geonfetry o
this process is shown in figure 2. Given the training data ler t
target source, for every observed mixture input spectrumailie

2.3. Estimating source and pitch probabilities



@ Target dictionary P(f1z)
[ Observed mixtures Py )

Implied competing
sources subspace

with a specific pitch that we will see in the next time step apum
to dictionary elements that are associated with any otheh piAs
described we like to penalize large pitch jumps, hence waedfie
following transition matrix:

P(zi1 = ilz = j) o 6*\\P(“)(z:i)*P(“)(z:j)H/U

1y
whereP(z:+1 = i|z: = j) denotes the probability thdffj)l(z =

i) will be activated if P\’ (= = j) is active. For simplicity we
omit the normalizing factor that ensures ttafzi 11 = ilz: = j)
sums to 1. The two pitch valuggz = i) andp(z = j) are the
pitch tags associated with the two dictionary elemdPt& (f|z =

i) andP¥ (f|z = j). The form of this matrix imposes an increased
likelihood that in future estimates we will see more acyiviitom
dictionary elements that are associated to a close pitdietourrent

Fig. 2. Inferring a source’s subspace given a target source and twd®nes- The constant regulates how important the pitch distance is

mixture points. Using the most disparate lines that contieetar-
get dictionary elements with each observed point we defireream
where the competing sources lie.

in constructing that matrix.

Having formed the transition matrix we now want to incorpo-
rate it in the learning process. We will, as shown above mett
the weightsP(* (%) in each iteration, but in addition to that we will
manipulate these estimates to impose the transition netrigture.

For the purposes of this paper we care about two specificpiecelo do so we simply perform a forward-backward pass over tte-in

of information, the energy of a source and its pitch. We cailyesn-
fer the energy of a source by using that source’s prior (indhget's

mediate estimates and then normalize them.
For every estimated weights distributiﬂj“) (z) we have an ex-

case,P; (a)). In order to get an estimate of the pitch of that source wepectation that it should be proportional¥d,, P(zi41]2) PL (z0).

will have to use some a priori semantic tagging. Recall thatrder
to construct the target dictiona®y(® ( f|z) we use the normalized
spectra from representative recordings of that sources& texord-
ings, not being mixtures, can be automatically pitch-tagge that
for each dictionary element can have an associated pitcie alit.
After analysis of a mixture we will obtain the set of pridPs(a) and

Weightst“) (z), which we can then combine to form an estimate of

pitch across time. We do so by forming the distribution:

>

{z:p() (2)=q}

P (q) = P{(z) (10)

wherep(®(z) is the estimated pitch value associated with the dic

tionary element(®)(f|z), andP{* (¢q) denotes the probability that
the target source has the pitghat time¢. The summation term es-
sentially computes the sum of all the weights that are aatativith
each pitch value to derive a distribution for pitch.

2.4. Semantic continuity

In theory, the aforementioned approach would suffice fofopering
the analysis we set to do, however in practice one obseratsht

estimates OfPt(a)(z) are considerably noisy and that an insightful

estimate ofP{*)

been addressed with the use of a sparsity prior applieﬂ’t(@?'(z),
but in our experience this process does not work as well ssbe-
nario. We instead formulatesemantic continuitgonstraint, which
as we will demonstrate later, produces sparse results wiitiparal
smoothness constraints using a single constraint.

In the context of this paper we define semantic continuityeas h
ing a minimal change oPt(“)(q) between successive time indices.
This means that we expect to see sustained pitch valuesh vsrex-
pected in musical signals, but that we also don’t expect ve karge
jumps in the tracked melodies (also largely true for mostiojusVe
define that constraint in the form of a transition matrix fegng the
likelihood that after seeing activity in dictionary elemeassociated

This will be of course different from the estimate we get ie -
step, therefore we use an extra processing step to imposexthe
pected structure on the current estimate. To do so we defe th
forward and backward terms that represent our expectechasts

given a forward and a backward pass throwg(ﬂ)(z):

Frin(2) = Y P(zera]z) P (2) (12)
Bu(z) = ) Paiila) P{1(2) (13)
Zi41
And then estimate the final value ﬁ’f“) (z) as:
(a)*
Py = FTECHRE Y BE) gy

> P (2)(C + Fi(2) + Bi(2))

whereP(**(z) is the estimate oPt(“) (z) using the rule in equation
(6), andC is a parameter that controls the influence of the transition
matrix. AsC tends to infinity, the effect of the forward and back-
ward terms becomes negligible, whereag’agends to 0 we tend

to modulate the estimatth(“)(z) by the predictions of these two
terms, thereby imposing the expected structure.

In practice we would also like to impose transition likelius

(¢) is hard to obtain. In the past these issues havgq; the non-target sources, especially as they relate ttarget. To

that end we use the above formulation to define a transitiamixna
that applies to all the dictionary elements. We can thinkhat ta-
trix as being comprised out of four parts. One part will be ctisa
that looks like the matrix in equation (11), this is the parttwill
regulate the transitions between the dictionary elemdntsedarget.
Likewise there will be a region that regulates the transibetween
the dictionary elements of the non-target sources. Sincdoveot
have any requirements about these components we set akksd th
transition likelihoods to be equiprobable. The remainiwg sec-
tions will regulate the transition between the target elet:iand the
non-target elements and vice-versa. We set the transftiomsnon-
target elements to target elements to be zero, since we damit



the structure of the target weights to be perturbed by thenatds
of the non-target sources. On the other hand we set the ticanssi
from the target elements to the non-target elements to baestant

non-zero value so that we encourage more of the use of the nol

target components in order to obtain a sparser represamfati the
target. Applying these constraints involves a trivial gatigation of
the above process.

3. EXPERIMENTS

To demonstrate the use of this approach we construct thewfoll
ing experiment. The mixture that we wish to analyze was timg so
"Message in a Bottle” by the Police. The target source wasche
vocal line by Sting. In order to train our system to focus om tir-
get source we used various recordings of Sting singing withay
accompaniment. All audio recordings used a sample rate 0602
Hz. We then pitch tracked the training data and construdtedatr-
get source dictionarf’(“)(ﬂz). The frequency transform we used
is the DFT with a window of 1024pt and a hop size of 256pt. In
order to have a more focused dictionary we discarded thsdaaty
elements that were not pitched, or corresponded to parts lawit
energy. This resulted in a set of 1228 dictionary elememSfing's
voice. We used four times as many components to describbeall t
competing sources, and employed the proposed analysi©ctih
estimate all the required parameters. We run the experitnéce,
once withC' = oo (therefore ignoring semantic continuity) and once
with C' = 0.0015 ando = 10. The transition probability from target
to non-target components was set to 0.5.

The results of a small segment of this analysis are shown-n fig

ure 3. In all of these plots we display the pitch probabilityltia
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plied by the target prior, i.ePt(a)Pt(“)(q), and thus obtain a sense Fig. 3. The pitch/enegy distributions for a segment of the song "Mes
of when the target was active and what the most likely pitcs.wa sage in a Bottle”. The top plot shows the true distributionttod
The top plot shows the ground truth of a roughly 6 second singi Singer’s voice. The middle plot shows its estimates if we @o n
segment. The middle plot shows the obtained estimate when ugise the semantic continuity constraint, and the bottom gthatws

ing the plain model of equation (3). In addition to our estienaf
Pt(a)Pt(“) (¢) we also plot the expected pitch using the formula:

pr=">_ P (2)p" (2)

z

(15)

For regions where?t(“) (z) was under the 50th percentile of its values
we assumed that the source is inactive and that there is cto gis

is clearly evident the resulting output is not easily intetpble, the
expected pitch values are wrong, and it contains signifieastgy

at points where there is no singing taking place. The botttot p
shows the results when we use the semantic continuity @nstit

is easy to see that the resulting estimates are very cloke ground
truth, and that they result in robust pitch estimates. Theafghe
proposed constraint succeeded in offloading irrelevamgrte the
non-target components, and also acted as a sparsity rizgular

4. CONCLUSIONS

In this paper we presented a system that can learn to folleveth
ergy and pitch of a target source in a mixture after being shexv
amples of that source to use as a reference. In order to acthiat/

the results when using that constraint. The lines in the tetbon

plots show the expected pitch for each time point as estirfeden

these distributions. For presentation purposes the shoistnilou-
tions have been slightly blurred so that point probabibtigre be-

come visible.
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