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Abstract

Computational gestalt grouping has been so far dic-
tated by heuristic rules. But unfortunately such
descriptions result in tedious and inaccurate transla-
tions to computer programs, and they do not carry
across different perceptual domains. In this paper we
present a unified view of gestalt grouping based on
information theory.

1.0 Introduction

Recent developments in the field of mathematical computa-
tion have enabled us to deal with raw data in more sophisti-
cated manners than ever before. The introduction of new
information theoretic computations and algorithms have pro-
vided new tools from which to examine data and have
proven to be very valuable in various fields of research. For
many researchers this has been a very fortunate since el egant
theories linking perception with statistics and information
theory, dating back to the mid-50's [Attneave 1954], are how
ready to be verified or even used successfully. This paper
will make an attempt to incorporate such techniques in the
realm of auditory processing. Even though the focus will be
mainly on substituting the gestalt heuristics with a more ele-
gant and simple rule, the main idea to be conveyed is advo-
cacy towards a broader integration of information theory
with computational auditory perception systems. The choice
to concentrate on gestalt grouping was made due to its close
semantic concept with information theoretic ideas.

Gestalt psychology has found its way into a lot of work on
auditory perception [Handel 1993, Bregman 1990] and early
computational auditory segregation systems [Vercoe and
Cumming 1988; Duda € al. 1990; Cooke 1991; Mellinger
1991; Ellis 1992]. Although it isfairly popular and has pro-

vided moderate success, it suffers by being dictated by vague
and disconnected principles which are not easily trandlated
to computers; and if they are, they only apply to the specific
representation used. Implementations are forced to use heu-
ristic rules that have fuzzy trade-off boundaries and are boot-
straped for specific tasks. One of the goals of this paper isto
attempt to shed light to a deeper principle of which the
gestalt laws are parts of, or by-products.

The development of information theory by Shannin [Shan-
non and Weaver 1963], although designed for analysis of
electrical information transmission systems, does have
deeper extensions dealing with the general communications
process. Perception, is a form of communication, it is the
reception of sensory information and its trandlation to
another format (mid- or high-level representation). Both of
these processes are main themes of information theory and
will be exploited in the following sections.

2.0 Main hypothesis

Seminal papers on sensory systems by Barlow [Barlow
1959; Barlow 1961; Barlow 1989] and Attneave [Attneave
1954] have drawn strong ties between perception and infor-
mation theory. More applied work by Linsker [Linsker
1988], Redlich [Redlich 1993] and Atick and Redlich [Atick
and Redlich 1990], has yielded interesting results by inte-
grating these two domains. And recently, work on Indepen-
dent Component Analysis (ICA) [Comon 1989] has
provided some robust solutions to problems similar to long-
standing ones in the realm of perception. This was work
related to the cocktail party problem, initiated by Bell and
Sejnowski [Bell and Sejnowski 1995] and Amari [Amari et
al. 1996], as well as in the formation of perceptual prepro-
cessors by Bell [Bell 1996; Bell 1996a], Deco and Obra-
dovic [Deco and Obradovic 1995]. The common theme



between al of this work was the idea of redundancy reduc-
tion or, entropy minimization.

Sensory input has a very large bandwidth and conveys a lot
of redundant information. Our sensory systems, have
learned to latch on that redundancy to perform their tasks. |If
we are presented with a scene of non-redundant signals (e.g.
white noise or single periods of tones), we cannot make any
kind of perceptual analysis; in fact in the imaginary ‘noise-
land’, where al stimuli are white noise, it would be impossi-
ble for perception and cognition to develop. It is the high
degree of structure that we take advantage of, to perceive the
world. That observation has lead some researchers to con-
clude that the perceptual system is a sophisticated redun-
dancy reduction machine (or more bluntly, a data
compression enginel).

Gestalt grouping is seen as a function of the perceptua sys-
tem and as hinted above we can examine it from a redun-
dancy reduction perspective. Upon closer examination of
the gestalt principles it is clear that they are all describing
statistical dependencies of various types. These dependen-
cies contribute to the redundancy of a signal and they are
what we use to perform grouping. So we could assume that
if we make a system to outline these dependencies we would
in fact do gestalt grouping using only onerule.

Throughout this paper the terms of statistical dependence,
structure, entropy and redundancy will be used to better
describe a gestalt situation. These measures are dependent
on each other and are only different facets of the same thing.
The increase of statistical dependencies will result in more
redundancy, more structure and less entropy. Since of these
measures, only entropy is relatively easy to compute we will
be using it as a cost function.

3.0 Experimental data
3.1 Method

As advocated in preceding section, we will do whatever we
can to reduce redundancy. In order to be able to perform
grouping we will assume that we have a set of sound atoms
or objects that comprise an auditory scene. The decision on
whether we need to group a pair/set of these objects will be
based on their correlations, or on how much their partitioned
sum reduces redundancy. Although the definition of an
object is better |eft as an abstract concept, for the purposes of
this paper we will adopt the sinusoid because of its frequent
appearance in the psychoacoustic literature, and because it
is a convenient vehicle to illustrate gestalt grouping. The
type of object that we choose is not important for our pur-
poses since the idea presented is abstract and devoid of a
fixed front-end. In the last section of the paper we will elab-
orate on what would be more appropriate objects which
would complement the overall philosophy in this paper.

In order to verify our suspicion that gestalt-like grouping
corresponds to entropy minimization we will be measuring
the entropy of different configurations of sinusoids and see
whether our observations correspond to a gestalt-dictated
grouping. In al of the short experiments we will have a
parameterized, two object, auditory scene over a variable n.
For only one value of n the scene will provide a situation that
according to the gestalt groups the objects should fuse. We
will expect that the entropy of the resulting sound of that
scene will be minimized for that value of n.

Although in some cases it is algebraically possible to derive
the exact value of entropy we will be using a numerical
method for estimating it. The agebraic computation is
extremely tedious and, with the exception of trivial cases,
only practical using symbolic computation programs. The
way entropy will be computed is standard and straightfor-
ward. We estimate the PDF of the function to examine from
its histogram and then apply the entropy computation for-
mula

= =y p(x) - Inp(x) (h)

Before the computation, the histogram of the function is
inspected so that it is a fair approximation to the expected
PDF (i.e. has no gaps) and then normalized to integrate to
unity. Because of the special nature of the PDFs of the
objects that we decided to use (sinusoids), it would not be
accurate to use more sophisticated algorithms for estimating
entropy, such as Parzen histogram estimation or common
maximum likelihood approaches'.

The following section presents the experimental measure-
ments that we made. Note that the figures presented are not
al inthe same scale. The variance of entropy through differ-
ent experiments was high and for the sake of better visualiza-
tion the plots were zoomed accordingly.

3.2 Common Fate
Frequency and amplitude modulation

Common fate in the auditory domain is usually linked to two
parameters, frequency and amplitude, and it is described as
common modulation of these. If a set of sinusoids feature
common modulation in either amplitude or frequency (or
both), then they are fused together as one sound. Redun-
dancy in this caseis created from the statistical dependencies
that a common frequency or amplitude track will generate.

T. Thereader isforewarned though that this method of estimating
entropy isnot optimal. If the bin widths of the histograms are too wide
or too narrow we will have poor estimates of entropy. A more practical
approach would be to measure higher order cross cumulants instead,
but this approach would be distracting us from the pure idea presented.
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Figure 1. Entropy measurements for common fate experiments. Note the different scale across plots.

According to our principle, we would expect the entropy
measure to drop when we have co-modulated sinusoids. The
following two short experiments prove to behave as the
gestalt rules predict for common modulation cases.

In the first case we use the parameterized sum of two fre-
guency modulated sinusoids, modulated by two uncorrel ated
and arbitrary functionsf; and f, as

_ (fl+f2)
s(n) = cos(f 'T-t> +
cos(2f - (n- f;+(1—n)-f,) t) 2
where n = 0...1 and f = 1300Hz. Obvioudly if n takes

the value of % then the two sinusoids devel op the same fre-

guency modulation therefore fusing as one sound. |If we
were to measure the entropy of s(n), with respect to n, we
would expect a dramatic drop at that point because of the
fusion.

Similarly we set up the same experiment with amplitude
modulation where:

(fy+ 1)
2

s(n) - c0s(1300 - t) +

(n-fy+(1=n)- f,)- cos(2600 - t) (©)]

Our measurements validate the hypothesis as shown in Fig-
ure 1.

Note that in the amplitude modulation case the entropy dif-
ference is much more subtle, something that hints that ampli-
tude modulation is not a very strong grouping cue, compared

to frequency modulation (in other words if these modula-
tions were to compete at the levels presented, frequency
modulation would dominate).

Common onsets/offsets

Common onset and offset of partials is another example of
common fate and also a key clue in fusion. If two sinuoids
coincide in time, then they exhibit a correlation which results
in redundancy. Just like in the previous section, this redun-
dancy is maximized when the on and off boundaries are
exactly the same for both sounds. When that happens, we
would expect a drop of entropy.

Thefollowing function is set up:

s(n) = f(t)+ f(2t+n) 4)
where:
F(t) = { t,<t=t, f(t)= cos(t) 5)
otherwise f(t)=0

The function f is essentially atime-bounded sinusoid from t;
to t,. By varying the value of n we produce two sinusoids

that are misaligned in time for n= 0, and perfectly aligned
otherwise. We would expect to see a drop in the entropy of
s(n) at the point where the two sinusoids align. The results
are shown in Figure 2. Similar results are obtained when we
change only the onset or the offset of the second sinusoid
rather than both.
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Figure 2. Entropy measurements for common time onset/offset

3.3 Harmonicity - Proximity

Harmonicity is one of the major gestalt principlesin auditory
grouping. Gestalt auditory theory states that two sinusoids,
where one of which has afrequency which is an integer mul-
tiple of the other's (harmonic relation), are fused together.
Harmonic relations exhibit more redundancy than non-har-
monic relations (a short proof is that a harmonic pair of par-
tials only requires a period of the lowest frequency to be
encoded in a wavetable, whereas a non-harmonic pair would
always require more). The following experiment attempts to
perform grouping based on harmonicity by reducing entropy.

In this example we have a parameterized sum of two sinuso-
idsas:

s(n) = cos(f -t)+cos(n- f -t) (6)

wheren = 1...15 and f = 1000Hz. We would expect the
entropy to be minimum when n is an integer, therefore the
two sinusoids would be harmonic. The results are show in
Figure 3. Our prediction was right and we also make two
more observations. First, we appear to have lesser entropy

dips where n = k+%, k = integer. At these points we
have the following effect. The two sinusoids act as a first
and second harmonic to a non-existing fundamental at %
thisis alesser degree of harmonicity, but valid nevertheless.

We also note that when n = % we get stronger fusion than
when n = 3, something which we can (subjectively) verify

by ear. The note sensation is indeed % for the first case and

f for the second one. This also leads us to the second obser-
vation to be made; proximity is also tracked in this proce-
dure. Note that the further away the second sinusoid goes
the less entropy increases.
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Figure 3. Entropy measurements for similarity experiment

In order to verify some of our suspicions on proximity we
can insert another sinusoid in Eq. 6 and transform it to:

s(n) = cos(f -t)+ cos(2f -t)+ cos(n- f"t) (7

We would expect this to make the entropy dipsin higher val-
ues of n deeper. It should also move the deeper dip to the
second harmonic, since that would be the closest harmonic
to both existing sinusoids. Theresults are shown in Figure 4.
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Figure 4. Entropy measurements for proximity experiment



3.4 Continuation

Continuation is another important cue in the auditory
domain. Often a static’ sound is temporarily interrupted
either by silence or by another masking sound. Whether or
not the original sound existed during that interruption or not,
we still believe that the sound after the interruption is some-
how linked the sound before. If the second section of the
sound can be predicted or anticipated by the first one, that
means that the two segments share common information,
hence exhibit redundancy. In this case entropy is minimized
and the sounds are thought of as one continuous sound (or at
least as the same entity). If not, then the two sound segments
are perceived as different sounds. We set up an experiment
to see how we can track this using information theory.

We generate a sinusoid described by:

s(n) = cos(f(t, n))) 8
where:
t< X f(tn=a-t+b
f(t,n) = t>x, f(tn)=a-t+b+n )
Xpst=sX, f(t,n)=0

This creates an upwards gliding sinusoid, which will inter-
rupt for a set time period and them resume. Unlessn = 0,
it will resume at a position which we wouldn’t project the
original sound to be at, and the second part will be heard as
another sound. If n = 0 however, the second part of the
sound will be a possible continuation of the original sound
and will be perceived as such. Figure 5 illustrates this sce-
nario in the frequency domain.
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Figure 5. Continuation scenario. For values of n that are non-zero
the alignment between first and second segmentsiis off.

As in all preceding sections we measure the amount of
entropy of s(n)) with respect to n. In this case we would

T. By static we refer to sounds with no dynamically changing parame-
ters. Under this definition we can include sounds that have alinearly
growing frequency, or aperiodic amplitude modul ation, aslong asthere
isno higher order change in the parameters.

expect that the entropy will be lowest for n = 0 where the
two sinusoids align with each other. The resultsare shownin
Figure 6.

In terms of computational methods that can detect this type
of grouping we need very complicated algorithms that have
to incorporate additional knowledge (such as possible fre-
quency tracks etc.). The information-theoretic approach is
bypassing the need for a model or a knowledge base by just
observing the correlations of the two segments. Anaogous
results are obtained if during the interrupted period we place
white noise rather than silence.
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Figure 6. Entropy measurements for continuation experiment

3.5 Pragnanz, Contexts and Higher-order Gestalt
principles

Due to the fact that gestalt principles were formulated to be
general and applicable to all perceptual functions, there are a
lot of special statistical dependencies that are not described.
As an effort to include al of these, the prégnanz principle
was used. The pragnanz principle states that “ of several geo-
metrically possible organizations that one will actually occur
which possesses the best, simplest and most stable shape.”
[Koffka 1935]. Although it is arguable, descriptions such as
simple, best and stable, tend to denote strong statistical
dependencies. A square for example which would fall under
the best/simple/stable description exhibits a lot of structure
and redundancy, when compared to the complicated and
unstable random polygon. This is of course a direct state-
ment of this paper’s argument. Simplicity, stability, predict-
ability and order are features of low entropy systems.

Context is also deemed an important factor in grouping, and
that too is an expression of dependence.
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Figure 7. Thetwo sets of sinusoids. The first set features a silence in the middle, the second is amplitude and frequency modulated by one

period of asine wave.

The correlations between history and background to a cur-
rent situation are factors influencing our analysis of a scene.
Like al correlations they would be encapsulated in entropy
measurements.

3.6 Putting it all together

A fortunate feature of trying to perform grouping in such a
manner is that we do not need to perform different measure-
ments for each grouping criterion. Instead, with a smple
measurement of entropy we could perform the same task
more efficiently. A short example of how we could do thisis
presented in the following experiment.

We assume that we have collected a set of sinusoids by ana-
lyzing an auditory scene. Inthis case wewill ook at a set of
five sinusoids comprising two sounds. The spectrograms of
the two original sounds are shown in Figure 7.

All five sinusoids were submitted, untagged and isolated, to
an algorithm which tried to find their grouping that would
result in the least amount of entropy. Out of the 52 possible
partitions that these sinusoids can form, the one with the
lowest entropy was the one that formed the two origina
sounds, and the one picked by the algorithm. As the algo-
rithm ran the only measurements were entropy values of dif-
ferent partitions. There were no pitch track, amplitude or on/
offset estimates, something that reduces the complexity of
the system and increases parallelism. The estimation of the
optimal grouping could be done using either by an exhaus-
tive search (which isfine up to about 9 sinusoids, after which
the problem size explodes), or a combinatorial optimization
algorithm such as simulated annealing. Simple versions of
these approaches were used to obtain the results.

4.0 Conclusions

It was shown in this paper that gestalt grouping and entropy
minimization are two closely related functions. The devel-
opment of this approach was driven by three ideas.

First, the need to unify as many perceptual functions under
one simple principle which has a clear and mathematical def-
inition. The search for acompact answer to explain multiple
phenomenais central to scientific research (not to mention, a
form of entropy minimization!). Such abstract reasoning
also has the added advantage of supporting multimodality in
avery elegant manner. For example, integration of simulta-
neous visual and auditory gestalt would require the same
principles presented in this paper, only generalized to higher
dimensions.

Second, was the need to work with low level data so as to
avoid preprocessing. Raw data contains a lot of information
which, by definitionisall original. Any form of preprocess-
ing will produce artifacts and dependencies which were not
originally present and could bias or complicate estimations.
Rather than imposing a representation linked to an algorithm
it is found more elegant to deal with measures such as infor-
mation, which works on raw data and because of that is
invariant throughout other perceptual domains. In fact the
proposed model of dealing with a front-end providing sinu-
soids was only used in this paper to provide a link to the
existing literature. By constricting our auditory atoms to be
sinusoids we are biasing our approach and we deviate from
the ideal set throughout this paper. Ideally we should expect
do derive the form of the auditory atoms from statistical
analysis similar in form to the entropy minimization we are
performing. A possible atom set would be basis functions
derived from Principal Component Analysis, Higher Order



Analysis or Independent Component Analysis as described
by Bell [Bell 1996a]. Such an approach would be extremely
desirable since the system would be build around one com-
putational kernel, invariant of the domain of application.

Finaly it is the author’'s belief that we need the foresight to
look past digital computers. The programming principles
that are imposed to us by the current generation of comput-
ers push us towards discrete and serial processing. Our
body, on the other hand, is a massively parallel and continu-
ous system. The methods that are proposed and used in this
paper are very similar to natural processes, notably thermo-
dynamic systems. It is our hope to derive first principles
which are not bootstraped to today’s computers but rather,
more natural algorithms, which in the future might be easily
and efficiently implemented in upcoming generations of
computing machinery. By ensuring this link to natural pro-
cesses we achieve not only more biological plausibility but
also the prospect of much more elegant and efficient struc-
tures.

Although the main subject of this paper was an attempt to
unify gestalt principles, the main idea which is hoped to be
conveyed isthe utility of statistical and information theoretic
measures for perceptual computing. Similar work has been
also done on pitch tracking and waveform identification by
using the same principles, and has yielded favorable results.
Although the work presented has been more in the form of
combinatorial verification procedures, it does not preclude
the use of entropy in more sophisticated ways. By imposing
models it seems possible to construct systems to predict
future events, perform segregation etc. in avery elegant man-
ner. It isthe author’'s hope that this paper might inspire such
work.
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