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Perceived-pitch tracking of potentially aperiodic sounds, as well as pitch tracking of multiple simul-
taneous sources is shown to be feasible using a probabilistic methodology. The use of a shift-invariant
representation in the constant-QQ domain allows the modeling of perceived pitch changes as vertical
shifts of spectra. This enables the tracking of these changes in sounds with an arbitrary spectral
profile, even those where pitch would be an ill-defined quantity. It is further possible to extend
this approach to a mixture model which allows simultaneous tracking of varying mixed sounds.
Demonstrations on real recordings highlight the robustness of such a model under various adverse
conditions, and also show some of its unique conceptual differences when compared to traditional

pitch tracking approaches.
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I. INTRODUCTION

Pitch tracking has long been been a fascinating subject
in musical acoustics. This is a problem which has been
tackled using a rich variety of approaches and continues
to inspire a considerable amount of research. Approaches
to pitch track extraction have ranged from straightfor-
ward period estimation, to sophisticated statistical meth-
ods, some employing time domain techniques and oth-
ers sophisticated front-ends that reveal more of the pitch
structure [1-8]. The applications of pitch tracking cover
a wide range of applications ranging from musical tran-
scription, to emotion recognition in speech, to animal
acoustics. To facilitate such a wide variety of applica-
tions various biases are often imposed to facilitate a rea-
sonable answer for the domain at hand. In this paper we
present a general approach to tracking a pitch-like mea-
sure which makes minimal assumptions about the nature
of the input sound, or the kind of pitch content at hand.

We present an additive shift-invariant decomposition
which when coupled with a constant-Q analysis front-
end can be used to track movements of spectral struc-
tures along the log-frequency space. Such movements
correlate very strongly to how we perceive pitch, and
can be used to infer relative-pitch changes. Using this
model we set forth to address a number of issues. The
primary goal is to present a formulation which allows
soft decisions which do not result in deterministic esti-
mates, but rather a probability distribution describing
the relative likelihood of these shifts along the frequency
axis. This probabilistic approach, which is most valuable
when designing systems with input of high uncertainty,
also provides an easy way to extend such a system by
using statistical methods that take advantage of domain
knowledge that can further help achieve robust perfor-
mance. An additional point we wish to address is that
of tracking in the case of mixtures. The assumption of
clean input sounds is rarely valid in real recordings, and
often we need to compute pitch tracks of either noisy or
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multiple sources. The model we present is additive by
design, so that multiple overlapping frequency shifts can
be tracked simultaneously. This allows us to process in-
puts with multiple sources without serious complications.
Finally, using this particular representation allows us to
deal with unpitched or inharmonic sounds whose abso-
lute pitch value is hard to pinpoint, yet they can be used
to a melodic effect. Examples of such cases are chords,
or certain percussive instrument sounds (e.g. cymbals)
that individually do not have a strong pitch characteris-
tic, but once used in a certain succession they can invoke
the percept of a melody, or tonality. In these cases, the
tracked shifts along the frequency axis provide an indica-
tion of a likely perceived melody, something that methods
based on harmonicity assumptions would not be able to
provide. Through various experiments we show that this
approach can deal with sound sources which have chal-
lenging spectral profiles, as well as sources that exhibit a
dynamic spectral character,

The remainder of this paper is structured as follows.
We will begin by describing a frequency shifting ap-
proach to modeling pitch changes, we briefly discuss the
constant-Q transform and its utility for our purposes, we
will then introduce the computational details of our ap-
proach, and then demonstrate it with a variety of pitch
tracking situations that highlight its abilities to overcome
difficult situations.

Il. A SPECTRAL SHIFTING APPROACH TO
MODELING PITCH CHANGES

Pitch, especially as we perceive it, is an elusive concept.
Most trivially we can link it to the fundamental vibrat-
ing frequency of a sound-generating object. However it is
very easy to find examples of aperiodic, or otherwise har-
monically incoherent sounds where this assumption can
break. Because pitch is hard to estimate, and in some
cases non-existent, attempting to construct pitch tracks
in terms of a series of instantaneous pitches is an inher-
ently risky endeavor. Instead, in this paper, we use a
different approach which we argue is more akin to how
we perceive pitch.

We will approach the pitch tracking problem as a fre-



quency shift problem. Instead of trying to estimate ab-
solute pitch quantities at every point in time, we will
instead track relative changes of pitch across time. This
is very similar to how most of us perceive pitch where
we can note relative changes but not necessarily actual
values. Aside from this connection, more importantly
we sidestep the issue of defining and estimating the ac-
tual pitch. Instead of pitch measurements, we track the
movement of spectral structures along the log-frequency
axis. These shifts correlate very much to our perception
of a pitch change and can be directly used to infer pitch
movements. This can also allow us to deal with inhar-
monic or aperiodic sounds which in isolation do not have
a clearly defined pitch, but when modulated create that
percept. To accommodate this broader notion of pitch
we will be using the term spectral pitch to indicate this
particular movement across the frequency axis.

In the next two sections we will describe the represen-
tation that can reveal this modulation, and the machin-
ery involved in detecting it.

I1l. CONSTANT-Q REPRESENTATIONS OF SOUNDS

The constant-Q transform is a time/frequency decom-
position that exhibits a logarithmic frequency scale [9].
It is defined so that each octave of available frequencies
spans the same number of frequency bins. Examining the
magnitude of the constant-Q transforms results in visu-
alizing the amount of acoustic energy at any point in the
time/frequency plane. For the remainder of this paper
we will be referring to the magnitude of the constant-Q
transform and discard the phase information.

A very important property of this type of transfor-
mation is that changes in spectral pitch can be clearly
visualized as shifts along the frequency axis. An ex-
ample of this, as contrasted with the short-time Fourier
transform, is shown in figure 1. On the left we show the
constant-Q transform of an arpeggio performed on a real
violin, and on the right its equivalent through a short-
time Fourier transform. Upon closer examination it is
easy to see that the note changes in the constant-Q plot
are represented as vertical shifts of approximately the
same spectral shape. For the short-time Fourier trans-
form the spacing between the individual harmonics be-
comes wider for higher notes. This observation will be
our starting point in defining the tracking model in this
paper. Noting that in the constant-Q transform, the ma-
jor variation that distinguishes different notes of the same
instrument is a simple shift along the frequency axis, we
will endeavor to track it and interpret it as a pitch move-
ment.

An underlying assumption in this model is that the
spectral shape of an individual sound is relatively con-
stant as it changes pitch, so that the measurement of the
shift is feasible. Theoretical arguments on that point are
difficult to make since they rely on the expected statis-
tics on the inputs, but as we will demonstrate later on
this assumption holds well for sounds with widely varying
spectral character.

Another point we need to make here is that of the ap-
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FIG. 1. A comparison between the constant-Q and the short-
time Fourier transform. The input is a recording of an arpeg-
gio performed by a violin. Note how in the constant-Q trans-
form shown on the left the individual harmonics of the violin
sound maintain their relative distance regardless of the note
being played, whereas in the short-time Fourier transform
they get spread apart as the notes move to higher frequen-
cies.

proximate additivity of the magnitude constant-Q trans-
form. The actual transform results in a complex valued
output and is a linear operation which maintains that
the transform of the sum of two signals equals the sum
of the transforms of the two signals. When we compute
the magnitude of the transform however there is no guar-
antee of linearity since for pair of any complex numbers
{z1, 22} € C we have ||z1]| + ||z2|| # ||z1 + 22||- However
when observing mixtures of multiple sounds there is of-
ten a high degree of disjointness in their spectra and the
likelihood of both sounds being significantly active at the
same time/frequency cell is often very low. In addition to
that we seldom observe complete phase cancellations so
even in the cases where significant energy overlaps we still
have an effect approximate to addition. This assumption
has been very commonly used for multiple audio pro-
cessing systems and is generally understood to be valid
for practical purposes. Under this assumption, when we
observe the mixture of multiple notes we will expect the
observed constant-Q transform to be composed out of the
addition of constant-Q transforms that are appropriately
composed out of shifted spectra, denoting each instru-
ment or each note being played. This complicates the
operation we wish to resolve, by requiring that we track
potentially multiple spectra, that shift independently. If
the input is composed of the same sound exhibiting mul-
tiple simultaneous pitches (such a polyphonic piano pas-
sage), then we would observe the same spectrum being
shifted and overlaid accordingly for each note. If we have
multiple instruments we would expect each instrument to
have its own spectral shape which shifts and overlays ac-
cording to its melodies. In the following section we will
present an algorithm that allows us to track these simul-
taneous shifting movements, and help us interpret them
as a relative spectral pitch change.



IV. A MODEL FOR TRACKING SPECTRAL PITCH
SHIFTS

The computational model we will use in this section is
the one developed in [10]. For reasons which will become
clearer later on, we will be interpreting the magnitude
constant-Q transform as a probability distribution. The
contents at the time and frequency coordinates ¢, w will
be interpreted as an arbitrary scaling of the probability
of existence of energy at that point. Due to this we will
notate constant-Q transforms as P(w,t) and assume the
proper scaling so that they integrate to unity.

A. The single source formulation

Starting with this model we wish to discover shift in-
variant components across the w dimension. In the sim-
ple case where we assume one shifting spectrum we can
notate this model as:

P(w,t):PK(w)*P](fo,t) (1)

where P(w,t) is the input magnitude constant-Q trans-
form, Pg(w) is a frequency distribution, Pr(fo,t) is a
time/frequency distribution and the star operator de-
notes convolution (note that the convolution is two di-
mensional since the second operant is of that rank).
We will refer to Pg(w) as the kernel distribution, and
Pr(fo,t) as the impulse distribution. Their interpreta-
tion is rather straightforward. The kernel distribution
Pk (w) is a frequency distribution, i.e., a constant-Q spec-
trum, or rather a prototypical vertical slice of a constant-
Q transform. The impulse distribution Pr(fo,t) is a
time/frequency distribution which gets convolved with
the kernel distribution. Due to this relationship we can
interpret the impulse distribution as expressing the like-
lihood that the kernel distribution will take place at any
given frequency shift or time. To illustrate this concept
consider the case in figure 2. In the top right panel we
show the constant-Q transform of a recording of a real
violin performing a glissando with vibrato. The ideal de-
composition given our model is also shown. To the left
we see the kernel distribution which denotes the spec-
tral character of the violin, and in the bottom plot we
see the corresponding impulse distribution. Convolving
these two distributions we would approximate the input.
It is easy to see that the impulse distribution graphically
represents the frequency shift variations in a very con-
venient manner. In fact if we assume that the present
instrument is well defined by the kernel distribution we
can interpret the impulse distribution as a probability
distribution of frequency shift, and by extension spectral
pitch, across time. Because we also learn the actual spec-
tral character of the input sound, we do not impose any
requirements that the source has to be harmonic or oth-
erwise structured, as long as the spectral pitch change is
characterized by a shift in the frequency axis. As we will
demonstrate later on this allows us to deal with arbitrary
sounds very easily.

At this point, this model is quite closely related to
the one in*, and any such similar approach that em-
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FIG. 2. An illustrative analysis of the constant-Q transform in
the top right plot. The top left plot shows the extracted ker-
nel distribution and the bottom plot shows the corresponding
impulse distribution. The impulse distribution can be used
to represent the spectral pitch changes in the input.

ploys shift-tracking on a log frequency scale. The main
points of difference between what we present, and these
approaches can be summarized in two points. First, we
do not make the assumption that the signal we track is
harmonic. Unlike past work we do not assume a known
harmonic template whose movements are being tracked.
In our framework, we allow for the flexibility to learn the
particular spectral structure that characterizes the sound
we track, which, as we show later, can allow us to use this
approach even in cases where what we track is not clearly
defined as pitch. Secondly, such techniques traditionally
use cross-correlation to find the most likely placement of
a harmonic series along the log-frequecy axis. The most
likely placement is taken to be the peak of the cross-
correlation. In our approach we actually produce a dis-
tribution which describes the likelihood of shift, which
is a much more informative measure, especially when it
needs to be incorporated into a larger reasoning system.
The implied non-negativity in this operation also means
that we won’t be obtaining negative cross-correlation val-
ues which can obscure the interpretation of this opera-
tion, and make use of cross-cancellations which can im-
pede finding the true function peak. This last argument
will become increasingly more important as we move into
multi-source formulations in the following sections.

B. The multi-source formulation

In the case where we expect to encounter multiple
sounds with different spectra, we can generalize the above
model to:

R

P(w,t) =Y P(2)Px(w|2) * Pr(fo,t]2) (2)

z=1



The difference with equation 1 is that now we use a la-
tent variable z as an index to allow us having R distinct
kernel distributions Pk (w|z), each with its own corre-
sponding shifting pattern denoted by R impulse distribu-
tions Pr(fo,t|z). We also introduce a prior distribution
P(z), which allows us to arbitrarily weight these pairs
of convolution operands to approximate the input. This
is essentially an additive generalization of the previous
model which allows the simultaneous tracking of spectral
pitches by multiple sources with distinct spectral charac-
ters. Each kernel distribution conditional on z will de-
scribe the spectral shape of each source, and each impulse
distribution conditional on z will describe its correspond-
ing spectral pitch track. The priors distribution will ef-
fectively denote the mixing proportions of each spectral
template, or more simply how much of it we will observe
in relation to the others. The choice of R is up to the
user. For R = 1 this model collapses to the model in the
previous section, and tracks the movement of a single
spectral template across the log-frequency space. If we
know that the input we are analyzing is constructed by
multiple and distinctly different spectra then we can set
R to their count so that we can simultaneously track the
shifts of multiple spectral templates at the same time.

C. Learning the model

In order to estimate the unknown distributions
Px (w|2), Pr(fo,t|z) and P(z) in the above model we can
use the Expectation-Maximization algorithm [11]. We
first rewrite the model in order to express the convolu-
tion in a more explicit manner as:

R

P(w,t) = ZP(Z)ZPK(W—f0|Z)P1(f07t|Z) (3)

z=1 fo

EM estimation will break down the learning process in
an iterative succession of two steps. The first step, the E-
step, computes the contribution of each spectral template
to the overall model reconstruction by:

B P(2)Px(w — fol2)Pr(fo,t|2)
2 P(2) 3 Pre(w — fol2") Pr(fo, t]2")
(4)
This results in a “weighting” factor which tells us how
important each kernel distribution is in reconstructing
the input at any possible shift in the time/frequency
space. During the second step, the M-step, we estimate
the wanted model distributions by essentially perform-
ing matched filtering between each operant and the input
weighted by the appropriate Q(w, t, f,, 2z). The equations
for the M-step are:

P(Z)* = Zw Zt Zfo P(wvt)Q(wvta fo,Z)
P ( | )* . thf{) P(w+fo,t)Q(w+fo,t, fo,2)
KWI2) = s oSS P Q@ o tifon) ()
Pi(fo,tls)* = Zetlegietlos)

Q(wa tv an Z)

where the (-)* notation indicates the new estimate. Iter-
ating over the above steps we converge to a solution after

about 30 to 50 iterations. Although there is no guaran-
tee that this process will find the global optimum, it pre-
dominantly converges to qualitatively the same solutions
over repeated runs. The dominant variation in these so-
lutions is an arbitrary shift in the spectral distribution
which is counteracted by an opposing shift in the impulse
distribution in order to ensure the correct reconstruction.
This introduces a variation in the resulting outputs, but
not one that interferes with the quality of fit, or (as we
examine in later sections) with the interpretation of the
decomposition.

D. Sparsity constraints

Upon closer consideration one can see that the above
model is overcomplete. This means that we can poten-
tially have more information in the model itself than we
have in the input. This is of course a major problem be-
cause it can result in outputs which have overfit to the
input, or models which are hard to interpret. A partic-
ular instance of this problem can be explained using the
commutativity property of convolution. Referring back
to figure 2 we note that an output in which the impulse
distribution was identical to the input and the kernel dis-
tribution was a delta function would be also an accept-
able answer. That particular decomposition wouldn’t of-
fer any information at all since the spectral pitch track
would have be identical to the input. Likewise any ar-
bitrary shift of information from one distribution to an-
other that would lie between what we have plotted above
and the outcome just described, would result in an infi-
nite set of correct solutions.

In order to regulate the potential increase of informa-
tion from input to output we will make use of an entropic
prior [12]. This prior takes the form of P(f) o e~ A7),
where H(+) is entropy and 6 can be any distribution from
the ones estimated in our model. The parameter [ is sim-
ply adjusting the amount of bias towards a high or a low
entropy preference. A 3 value which is less than zero will
bias the estimation towards a high entropy (i.e., flatter)
distribution, and a positive value will bias it towards a
low entropy (i.e., spikier) distribution. The magnitude of
(B determines how important this entropic manipulation
is so that larger values will put more stress in it, whereas
values closer to 0 will not. In the extreme case where
B = 0 the prior does not come in effect. Imposing this
prior can be done by inserting an additional procedure
in the M-step which enforces the use of this prior. The
additional step involves re-estimating the distribution in
hand by:

6** — - (6)
W(— (9*) el+)/6 /)
where W(-) is Lambert’s function [13], §** is the estimate

of § with the entropic prior, and 6* is the estimate ac-
cording to equations 5 but without the division by P(z)*.
The quantity A comes from a Lagrangian due to the con-



straint that > 6; = 1 which results in the expression:
N
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These two last equations can be repeatedly evaluated in
succession and they converge to a stable estimate of 6 af-
ter a small number of iterations. This prior and the com-
putational details as they relate to this model involved
are described in more detail in [14].

With the problem at hand we would want to have a
high entropy kernel distribution and a low entropy im-
pulse distribution. This will result in a frequency-shift
track which will be as fine as possible and a spectrum
estimate which will account for most of the energy of the
source’s spectrum. To illustrate the effect of this prior
consider the different outcomes shown in figure 3. The
input was the same as in figure 2. The top plots show
the results we obtain using the entropic prior, whereas
the bottom plots show the results we get if we don’t use
it. When using the entropic prior we bias the learning
towards a high entropy kernel and a low entropy impulse.
This resulted in a clean and sparse track, as opposed to
the non-interpretable one when not using the prior.

For practical reasons we can strengthen the low en-
tropy bias by requiring the height of the impulse dis-
tribution to be only as big as the expected pitch range
(therefore implying that values outside that range will
be zero thus lowering the entropy). This results in faster
training requiring convolutions of smaller quantities, but
also restricts the possible solutions to the range we are
interested in, thus aiding in a speedier convergence. The
convolutions involved can also be evaluated efficiently us-
ing the fast Fourier transform. Training for the examples
in this paper took less than a minute on a current mid-
range laptop computer using a MATLAB implementation
of this algorithm.

E. Interpreting the model

Let us now examine exactly how the results of this
analysis could be interpreted. As we have stressed be-
fore, this approach tracks frequency shifts which corre-
spond to relative-pitch movements, and does not com-
pute an absolute spectral pitch. This means that at any
point in time we do not know what the spectral pitch
is, but rather how much it has changed in relation to
other parts. To illustrate this idea consider the plots in
figure 4. Each row of plots displays the results from a
different simulation on the input in figure 2. Note that
although the results appear somewhat identical they still
differ by an arbitrary vertical shift. This shift is counter-
balanced between the kernel and the impulse distribution
such that when they convolve they result in the same out-
put. However, we cannot expect the impulse distribution
between multiple runs to exhibit the same shift since the
model is shift-invariant. This means that we can recover
the relative pitch changes in the input, but we cannot
infer the actual spectral pitch values. If one is inclined
to mark the fundamental in the kernel distribution then

Output distributions with entropic prior
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FIG. 3. Illustrating the effect of the entropic prior. The top
figures show the output we obtain when analyzing the exam-
ple in figure 2 and employ the entropic prior with a high en-
tropy constraint on the kernel distribution and a low entropy
constraint on the impulse distribution. The pair of the bot-
tom plots show the kernel and impulse distributions learned
without using the prior.

Kernel distributions Impulse distributions

Run 1

B

e

Run 2

it

o e

Run 3

e
FIG. 4. Results from multiple runs on the input shown in
figure 2. Notice that although in a qualitative sense the re-
sults are identical, there are vertical shifts between them that
differentiate them. When the kernel distribution is positioned
higher in the frequency axis, the impulse distribution is posi-
tioned lower and vice-versa.

we can easily obtain the spectral pitch values. However
detecting the fundamental will not always be a trivial
pursuit, especially when dealing with noisy or aperiodic
kinds of sounds. Regardless, for the scope of this pa-
per, our objective is to detect relative changes and not
the actual spectral pitch so we refer to this estimation as
something that can be pursued in future work. Another
issue that this analysis presents is that of the relation-



ship of the output with the intensity of the input. As
the intensity of the input fluctuates across time, we will
see a similar fluctuation in the intensity of the impulse
distribution across time. This is an effect that can be
seen in all the previous plots, especially during the attack
portion, where the impulse distribution transitions from
faint to strong as it follows the performed crescendo. Ad-
ditionally, at times where the violin is not performing we
do not observe any intensity in the impulse distribution.
This is because the impulse distribution is a distribution
over both frequency and time, measuring the presence
of the relative amount of presence of the kernel distribu-
tion as compared to all time points and frequency shifts.
If we are only interested in the frequency offset of the
kernel distribution then we need to examine each time
slice of the impulse distribution. This is the distribution
P(folt) = P(fo,t)P(t), where P(t) is overall input en-
ergy at time ¢, ie. P(t) = [ P(fo,t)dfo. To estimate
the most likely frequency shift at time ¢ we only need to
find the mode of P(fy,t). However using P(fo,t) instead
of P(folt) is a more intuitive choice since the estimate
we will be normalized by the likelihood that the signal
is active at that point in time, and thus also provide us
with an amplitude estimate which we can use for note
onset. If we decide to use P(fo|t) instead the silent sec-
tions will be quite uniform indicating that there is no
dominant candidate for a frequency shift. This can be
interpreted either as an unpitched section, or a silence.
In order to avoid this ambiguity we perform the estima-
tion on P(fo,t) which offers a more user friendly format.

V. EXAMPLES

Let us now show how this approach works with some
more complex sounds, especially with challenging situ-
ations where conventional pitch tracking techniques can
result in unreliable, or hard to interpret, estimates.

A. Single source, monophonic examples

In this case we will show results from analyzing two
real sound samples containing only one note instance at a
time. The first example is a violin recording performing a
descending arpeggio with each note (except the first and
the last) played twice in succession. The signal was an-
alyzed from a frequency range of 300Hz to 8000Hz. The
results of the analysis are shown in figure 5. The kernel
distribution is clearly a harmonic series (on a constant-
Q frequency scale), and the impulse distribution clearly
shows the notes that were played. Subtle nuances such
as the pitch correction at the beginning of the first note
as well as the double note repeats can be easily seen.
There are some artifacts as well, mostly in the form of oc-
tave echoes which are more present during the low notes.
Since this representation displays the likelihood of spec-
tral pitch these are not necessarily erroneous estimates
since they are clearly of lower likelihood than the actual
note, and represent the periodicity along the frequency
axis of the constant-Q transform. Picking the maximal
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FIG. 5. Analysis of a violin arpeggio. The top right plot is
the input constant-Q transform. The left plot is the extracted
spectrum of the sound and the bottom plot is the estimated
frequency shift track.

values of each column of the impulse distribution will eas-
ily result in the correct relative spectral pitch estimate at
that time. Another more challenging example is shown
in figure 6. In this case the analyzed source is a vocal
recording of the first five notes of a major scale, each
note being sung with a different vowel. This experiment
is used to test the assumption that the spectrum of the
input has to be constant. As is clearly seen in the figure
the spectral character of each note is substantially differ-
ent from the others. Examining the results we observe
an averaged spectrum as the converged kernel distribu-
tion, and an appropriate frequency-shift track from the
impulse distribution. It is important to stress this robust-
ness when dealing with spectrally dynamic sounds since
our original assumption of a constant spectrum is unre-
alistic for real recordings. It is well known that musical
instruments exhibit a varying formant character at differ-
ent registers and that not all notes can be modeled as a
simple shift of others. As shown by all the experiments in
this paper (and more so by the current one) the constant
spectrum assumption in this approach, is not very strict
at all and doesn’t pose any serious problems with dy-
namically changing sources. For the final example of the
monophonic cases we show how this approach performs
when dealing with highly inharmonic sounds. The input
in this case were the first four bars of the Deep Purple
recording of the song “Smoke on the Water”. The record-
ing features a well known guitar pattern of an interval of
a fifth being appropriately transposed to form a char-
acteristic melody. The guitar sound is highly distorted
which in addition to the fact that the melody involves
multiple notes, creates a highly inharmonic sound which
technically does not exhibit pitch (although perceptually
it sounds tonal). However, since the same sound is being
transposed to form a melody it is clearly perceived by a
human listener as a melodic sequence. Figure 7 shows
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FIG. 6. Example of spectral pitch tracking singing voice with
a changing spectral character. The left plot is the extracted
spectrum of the input and the bottom plot is the implied
spectral pitch track.
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FIG. 7. Analysis of the first four bars of Deep Purple’s
“Smoke on the Water”. Despite the absence of a strict pitch
at any point in time the transposed chord sequence forms a
melody which we can clearly represent in the impulse distri-
bution.

the results of this analysis. The melodic line is clearly
displayed in the impulse distribution, and the spectral
profile of the source as represented by the kernel dis-
tribution is as expected a highly inharmonic and busy
spectral pattern. Similar results can be obtained when
using inharmonic or aperiodic sounds, such as cymbals,
tom-toms or bells, without any complications due to their
non-harmonic spectral character.
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FIG. 8. Analysis of a country violin recording which involves
the continuous simultaneous sounding of two notes. The im-
pulse distribution clearly represents the two notes at any point
in time and provides an accurate description of the melodic
content.

B. Single source, multiple notes

Since the model is additive it is also able to deal with
multiple notes. An example of this case is shown in figure
8. The input in this case was a country violin record-
ing which included the simultaneous playing of two notes
during most of the time. As expected the analysis of this
sound results in an impulse distribution which has multi-
ple peaks at each time frame that represent the two notes
sounding at that point. In the impulse distribution it is
easy to see the long sustained notes and the simultaneous
ornamental fiddle playing.

C. Multiple sources, multiple notes

Finally we demonstrate the ability of this approach
to deal with multiple different sources playing different
melodies. For this experiment we use as an input a
recording of a singing voice accompanied by tubular bells
playing a few bars from the round “Frére Jacques”. In
this case because the spectral characteristics of the two
sources are distinct (the harmonic voice vs the inhar-
monic tubular bells), we need to perform an analysis in
which the latent variable assumes two values. This means
that we will be estimating two kernel and impulse distri-
butions, each fitting the pattern of each source. The
results of the analysis are shown in figure 9. As is evi-
dent from the figure the input is a very dense distribution
where the included melodies are very hard to spot visu-
ally. However the distinct difference between the two
spectra representing the two sounds force the two ker-
nel distributions to converge to their shape, and help
segment the input in the two instrument parts. Upon
examining the impulse distributions we extract we can
easily see the structure of the two melodies. Likewise ex-
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FIG. 9. Analysis of a mixture of two different sources perform-
ing simultaneous notes. The analysis results in two kernel and
two impulse distributions, each pair describing one of the two
sources. The top right plot displays the input. The two left
plots show the two extracted kernel distributions, and the two
bottom right plots show the impulse distributions that con-
tain the recovered spectral pitch tracks of the two sources.
Note that the second and fifth to last notes were performed
an octave higher, and the displayed results do not exhibit an
octave error.

amining the recovered kernel distributions we can see the
two different spectra which represent the characteristics
of the two sources in the mixture. The same approach can
be applied on mixtures of an arbitrary number of sounds,
although as the number of sources increase the disjointed-
ness assumption in the input will gradually be weakened
and result in poorer estimates. Having instruments with
very similar spectra (e.g. a flute and a clarinet) can also
be a problematic case since there will not be sufficient
difference between the tracked spectra to easily distin-
guish them. However using temporal continuity priors or
prior knowledge on the structure of the mixture instru-
ments can allow us to offset that problem. This idea is
developed in [15]. If the spectra of the mix instruments
are sufficiently different it is also possible to use rank es-
timation methods, such as AIC or BIC, to estimate the
number of sources. This is however an intrinsically un-
reliable approach and is only expected to produce good
results in cases with a strong contrast in the character of
the instruments in the mix.

The approach of using multiple spectral templates can
also be very beneficial when attempting to recover the
frequency shifts of a source which is contaminated by
additive noise. In this situation we can expect one kernel
distribution to latch on to the spectrum of the source
we wish to track and another one latching on to the
background noise source. The impulse distribution corre-
sponding to the tracked source will again be the spectral
pitch track whereas the other impulse distribution will
converge to some less structured form that is adequate
to describe the presence of noise but will not carry any

information about pitch.

If we are provided a way to invert the constant-Q trans-
form, or a similar transform which is also invertible, we
can even use this information to selectively reconstruct
the input and thus isolate the melody of each source.
However, recovering a time waveform from such a decom-
position is not straightforward process and we postpone
its discussion in future publications.

VI. DISCUSSION

The model we presented is able to overcome some of
the challenges we set forth in the introduction of this pa-
per. Although it might seem cumbersome at first, the
probabilistic interpretation we have chosen provides a
very flexible framework which is easy to extend in mul-
tiple ways. In the presence of musical signals one can
impose a prior on the structure of the impulse distribu-
tion so that it follows the frequency-shift expectations
of the musical style at hand. Or if one is interested in
temporally smoother spectral pitch tracks, modeling the
temporal behavior of a specific kind of source, the appli-
cation of a dynamical system such as a Kalman filter or a
Markov model can incorporate prior temporal knowledge
in order to provide more appropriate results [15]. Like-
wise rules on harmony and counterpoint can enhance this
approach to allow polyphonic transcription.

This model is also useful when one knows the spectral
characteristics of the sounds that need to be tracked.
These characteristics can be applied as a prior on the
kernel distribution [15]. Or in the case where these are
exactly known, the kernel distributions can be preset and
fixed as we only update the impulse distribution. This is
essentially a straightforward non-negative deconvolution
process. The only complication is that we need to main-
tain that the output has to be positive and a probability
distribution. This results in a more powerful and inter-
pretable representation compared to a cross-correlation
output that a straightforward deconvolution would pro-
duce.

In conclusion, we presented a frequency-shift tracking
model which is flexible enough to deal with situations
which can be challenging. This creates a robust front-end
for performing pitch tracking which makes soft decisions
which can be highly desirable in complex music transcrip-
tion systems. We presented results which demonstrate
the ability of this model to deal with mixtures, inhar-
monic sounds, and complex tracking situations. We also
presented this model in a probabilistic framework which
allows clean statistical reasoning and makes it a good
candidate for extensions that incorporate statistical pri-
ors depending on the input signal.
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