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Abstract With the recent attention towards audio processing in the time-frequency

domain we increasingly encounter the problem of missing data within that representa-

tion. In this paper we present an approach that allows us to recover missing values in

the time-frequency domain of audio signals. The presented approach is able to deal with

real-world polyphonic signals by operating seamlessly even in the presence of complex

acoustic mixtures. We demonstrate that this approach outperforms generic missing

data approaches, and we present a variety of situations that highlight its utility.

1 Introduction

In this paper we address the problem of estimating missing regions of time-frequency

representations of audio signals. The problem of missing data in the time-frequency

domain occurs in several scenarios. For example, this problem is common in speech

processing algorithms that employ computational auditory scene analysis or related

methods to mask out time-frequency components for recognition, denoising or signal

separation [1][2]. An increasing number of audio processing tools allows interactive

spectral editing of audio signals, which can often result in the excision of time-frequency

regions of sound. Aggressive audio compression techniques often introduce regions of

“spectral holes”. In yet other scenarios, such as in signals that have passed through a

telephone or have encountered other linear or non-linear filtering operations, removal

of entire time-frequency regions of the signal can occur naturally (for example through

bandwidth reductions).

In a majority of these scenarios the goal is to resynthesize the audio from the

incomplete time-frequency characterizations. To do so, the “missing” regions of the

time-frequency representations must first be “filled in” somehow, in order to effect the

transform from the time-frequency representation to a time-domain signal. In certain
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cases the missing values can be set to zero and the resulting reconstructions do not

suffer heavily from perceptible artifacts. In most cases however a moderate to severe

distortion is easily noticeable. This distortion can render speech recordings unintelligi-

ble, or severely reduce the quality of a music recording thereby distracting the listener.

Although existing generic imputation algorithms [3] can be used to infer the values

of the missing data they are often ill-suited for use with audio signals and result in

audible distortions. Other algorithms such as those in [1,4] are suitable for imputation

of missing time-frequency components in speech, or in the case of [5] musical audio.

However, these algorithms typically exploit continuity in spectral structures and are

implicitly aided by the fact that the targeted recordings usually contain signals from

either a single source (the voice), or repetitions of constant-state fixed spectra. General

audio or music recordings however include a variety of sounds, many of which are

concurrently active at any time, and each of which has its own typical patterns, and

are hence much harder to model.

The algorithm proposed in this paper characterizes time-frequency representations

as histograms of draws from a mixture model as proposed in [6]. Being a mixture, this

model is implicitly capable of representing multiple concurrent spectral patterns an

attribute that makes it a well suited for complex audio scenes, such as music or busy

environments. The process of imputing missing values then becomes one of learning

from incomplete data. Experimental evaluations show that the spectral constructions

obtained with our algorithm result in distinctly better resynthesized signals than those

obtained from other common missing data methods.

The remainder of this paper is organized as follows. In section 2 we introduce the

exact problem we address with this approach, namely the problem of “holes” in time-

frequency representations of audio signals and the shortcomings of current imputation

techniques in dealing with them. In section 3 we describe the statistical modelling

approach we employ and in section 4 we describe how our model can be estimated

from and used to impute missing portions of incomplete spectrograms. Our model

works on the magnitudes of time-frequency representations of audio. For the process of

imputation of missing time-frequency terms to be complete, the phase too is required.

In 5 we describe how we estimate the phase of imputed time-frequency components.

Finally in sections 6 and 7 we describe our experiments and present our conclusions.

2 Missing data

In this section we describe the specific application domain that we are focusing on and

present a few motivating examples. We then describe two of the standard tools used

for missing data imputation, tools that we will be using as a baseline comparison to

our proposed approach.

2.1 Missing data in the time-frequency domain

In this paper we will assume that the time-frequency representations are derived

through short-time Fourier transformation (STFT) of the signal [7]. The short-time

Fourier transform converts an audio signal into a sequence of vectors, each of which

represents the Fourier spectrum of a short (typically 20-60ms wide) segment or frame

of the signal. The STFT of a signal can be inverted to the original time-domain signal
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by an inverse short-time Fourier transform. Being complex, the STFT of the signal

has both a magnitude and a phase. However most sound processing algorithms for

denoising, recognition, synthesis and editing operate primarily on the magnitude since

it is known to represent most of the perceptual information in the signal – the phase

contributes mainly to the perceived quality of the signal rather than its intelligibility.

Since the phase reconstruction is highly dependent on the magnitude values we will

primarily examine the reconstruction of the magnitudes of the missing time-frequency

terms in this paper. Upon introducing our approach to impute the magnitude values

we briefly show how we can easily find appropriate phase values.

Figure 1a shows an example of the magnitude of the STFT of a classical music

recording that was contaminated by the ringing of a phone in the audience. We will

refer to matrix-like representations of the magnitudes of STFTs of a signal, such as the

one in Figure 1a as “magnitude spectrograms”, or simply as “spectrograms” in this

paper. Spectral magnitudes have the property that when multiple sounds co-occur,

the spectral magnitudes of the mixed signal are approximately (but not exactly) equal

to the sum of the spectral magnitudes of the component sounds. This is apparent in

the spectrogram in Figure 1a which shows the distinctive spectral patterns of both

the music and phone ring. Although in theory this additivity holds true for spectral

power when the component signals are uncorrelated, in practice phase cancelations in

finite analysis windows make this true for spectral magnitudes raised to a power that

is closer to 1.0 than 2.0.

A spectrogram with “missing” data is one where some time-frequency components

have been lost or erased due to some reason. Figures 1b, 1c and 1d show examples of

spectrograms with missing data. In the first two examples time-frequency regions of the

spectrogram have been erased to eliminate the phone ring from the signal, automati-

cally in one case and by manual editing in the other. In the third example overzealous

mp3 compression has removed much of the time-frequency content originally in the

recording. Missing data may also occur for other reasons, such as systematic filter-

ing, channel artifacts, etc. In order to reconstruct a time-domain signal from these

incomplete spectrograms the values in the missing regions must be somehow filled-in.

A simple technique is to simply floor these terms to some threshold value; however

time-domain signals reconstructed from such spectrograms will often contain audible

and often unacceptable artifacts. A more principled approach is required to reconstruct

the missing regions in an acceptable manner.

2.2 Traditional Missing Data Approaches

The problem of replacing missing attributes of data has long vexed researchers, and

a vast array of solutions have been proposed. The various solutions can briefly be

summarized as those that impute missing attributes based on the assumed or estimated

congruence of an incomplete data vector to other data for which the corresponding

attributes are known e.g. [8], and those that replace the missing values based on local

[9] or global statistical trends in the data [10][11].

Two successful techniques for imputing missing data attributes, that illustrate

both the congruence-based and statistical approaches to imputation, are based on the

nearest-neighbors and the Singular Value Decomposition (SVD) algorithms. In order

to provide an introduction to this problem and since we will be using these approaches
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as benchmarks against which we compare our approach we briefly describe them in

this section.

In general, with missing data problems we assume that we have a matrix containing

our data of interest which is missing some of its entries. There are multiple classifi-

cations of the missing data problem depending on the pattern of the missing entries,

and whether that is conditional on their values . In our case we will assume that the

missing entries are missing completely at random, i.e. these entries do not depend on

the values of the observed or the missing data.

The nearest-neighbors algorithm is a very simple two-step process:

1. For each of the input’s vectors that contain a missing value, compute the distance

between them and all the other available vectors in that matrix. Do so using only

the observed entries, and find the K nearest neighbors.

2. Impute the missing entries of each vector by averaging the corresponding elements

from the K nearest neighbors that have these points available.

This can be seen a “local” technique which seeks similar looking areas to the one

with the missing data, and uses their statistics to perform imputation. In doing so

this approach ignores the global statistics of the input and because of that, it is able

to gracefully handle inputs with complex structure and unusual samples. As we will

see later on, when dealing with inputs which are known to be mixtures the nearest

neighbor model does not have the mechanism to handle that structure and can often

fail.

On the other end, the SVD model collects statistics from the entire input and finds

solutions which are as predictable as possible. The steps in that approach are as follows:

1. Replace all missing values with an initial value. That can be either random values,

or something more statistically relevant such as the mean of the input.

2. Compute the SVD of the resulting matrix and replace the missing values with their

prediction according to the SVD decomposition.

3. Repeat this process until the change in the imputed missing data falls below some

user-defined threshold.

In contrast to nearest-neighbors, this is a “global” approach. By performing an SVD

we obtain information about the global statistics of the input and attempt to fill-in the

missing data in such a way so that the input becomes statistically consistent. Because

of this, missing data which are part of rare samples will be poorly approximated and

be biased towards the form of the average input. On the other hand, for consistent

inputs with a lot of missing values this approach can provide better averaging than the

nearest neighbor model and provide less noisy estimates. It is also able to deal with

mixed inputs since it employs a mixture model.

Both of these techniques are described in more detail in [12]. More advanced impu-

tation algorithms have certainly been developed, but they are often specialized and not

significantly better than the two above approaches. For this reason, and for illustrative

purposes seen below, we will use these two algorithms as a benchmark when evaluating

the performance of our proposed algorithm.

3 Proposed Approach

We will now present the model we will use for the problem at hand. We will start by

explaining how we can think of spectrograms as scaled histograms and how that implies
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a particular statistical model which is best suited for such data. We then define that

model and present the estimation procedure one can use to find the model’s parameters

for a given input.

3.1 Modeling the Spectrogram

At the outset, we would like to specify the terminology and notation we will use. We

will denote the (magnitude) spectrogram of any signal as S. The spectrogram consists

of a sequence of (magnitude) spectral vectors St, 0 ≤ t < T , each of which in turn

consists of a number of frequency components St(f), 0 ≤ f < F . All of these terms,

being magnitudes are non-negative.

In our model we view S as a scaled version of a histogram Ŝ comprising purely

integer valued components, such that S = C−1Ŝ; however the scaling factor C cancels

out of all equations in our formulation and is thus not required to be known. In the

rest of the paper, we therefore treat S itself as a histogram and do not explicitly invoke

the scaling factor, besides assuming that it is very large so that for any Ŝt(f) such that

St(f) = C−1Ŝt(f) the following holds:

C−1
Ŝt(f) ≈ C−1(Ŝt(f) + 1). (1)

3.2 Proposed Model Definition

We model each spectral vector St as a scaled histogram of draws from a mixture

multinomial distribution. Per our model, St is generated by repeated draws from a

distribution Pt(f), where f is a random variable over the frequencies {1, . . . , F}, and

Pt(f) is a mixture multinomial given by

Pt(f) =

Z
X

z=1

Pt(z)P (f |z) (2)

Here z represents the identity of the Z multinomial components in the mixture. P (f |z)

are the multinomial components or “bases” that compose the mixture. Note that the

component multinomials P (f |z) are not specific to any given St but are the same at

all t. P (f |z) are thus assumed to be characteristic to the entire data set of which S is

representative. The only parameter that is specific to t are the mixture weights Pt(z).

The model essentially characterizes the spectral vectors themselves as additive com-

binations of histograms drawn from each of the multinomial bases. Consequently, it is

inherently able to model complex sounds such as music that are additively composed

by several component sounds. This is in contrast to conventional models used for data

imputation e.g. [1][2][4], that model the spectral components as the outcome of a sin-

gle draw from a distribution (although the distribution itself might be a mixture) and

cannot model the additive nature of the data.

The model of Equation 2 is nearly identical to the one-sided model for Probabilis-

tic Latent Semantic Analysis, introduced by Hoffman [13,14], with the distinction that

whereas the original PLSA model characterizes random variables as documents and

words, we refer instead to time and frequencies. Also, while the one-sided PLSA spec-

ifies a probability distribution over documents, in our model we do not have a similar

probability distribution over the time variable t.
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3.3 Learning the model parameters

We can estimate the parameters of the generative model in Equation 2 for S using the

Expectation Maximization algorithm [14]. In the expectation step of the EM algorithm

at each time t we estimate the a posteriori probabilities for the multinomial bases

conditioned on the observation of a frequency f as:

Pt(z|f) =
Pt(z)P (f |z)

PZ
z′=1 Pt(z′)P (f |z′)

(3)

In the maximization step we update the spectral-vector-specific mixture weights Pt(z)

and data-set characteristic multinomial bases P (f |z) as:

Pt(z) =

PF
f=1 Pt(z|f)St(f)

PZ
z′=1

PF
f=1 Pt(z′|f)St(f)

(4)

P (f |z) =

PT
t=1 Pt(z|f)St(f)

PF
f ′=1

PT
t=1 Pt(z|f ′)St(f)

(5)

4 Estimation with Incomplete Data

The algorithm of Section 3.3 assumes that the entire spectrogram S is available to learn

model parameters. When the spectrograms are incomplete, several of the St(f) terms

in Equation 4 will be missing or otherwise unknown. Our objective in this paper is to

estimate the missing components on the data. Along the way we will also estimate the

model parameters themselves as necessary.

In the rest of the paper we use the following notation: we will denote the observed

regions of any spectrogram S as So and the missing regions as Sm. Within any spectral

vector St of S, we will represent the set of observed components as So
t and the missing

components as Sm
t . So

t (f) and Sm
t (f) will refer to specific frequency components of

So
t and Sm

t respectively. Fo
t will refer to the set of frequencies for which the values of

St are known, i.e. the set of frequencies in So
t . Fm

t will similarly refer to the set of

frequencies for which the values of St are missing, i.e. the set of frequencies in Sm
t .

4.1 The Conditional Distribution of Missing Terms

In the first step we obtain the conditional probability distribution of the missing terms

Sm
t (f) given the observed terms So

t and the probability distribution Pt(f) from which

St was drawn. Let No
t =

P

f∈Fo

t

So
t (f). No

t is the total value of all observed spectral

frequencies at time t. Let Po,t =
P

f∈Fo

t

Pt(f) be the total probability of all observed

frequencies at t. The probability distribution of Sm
t , given that the frequencies in Fo

t

are known to have been drawn exactly No
t times cumulatively is simply a negative

multinomial distribution [15,16]:

P (Sm
t ) =

Γ (No
t +

P

f∈Fm

t

Sm
t (f))

Γ (No
t )

Q

f∈Fm

t

Γ (Sm
t (f) + 1)

P
No

t

o,t

Y

f∈Fm

t

Pt(f)S
m

t
(f) (6)
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where Fm
t is the set of all frequency components in Sm

t . The expected value of any

term Sm
t (f) whose probability is specified by Equation 6 is given by1:

E[Sm
t (f)] = N

o
t

Pt(f)

Po,t
(7)

We now describe the actual learning procedures to estimate model parameters and

missing spectral components. We identify two situations, stated in order of increas-

ing complexity as (a) where the multinomial bases for the data P (f |z) are known a

priori and only the mixture weights Pt(z) are unknown, and (b) where none of the

model parameters are known. We address them in reverse order below to simplify the

presentation.

4.2 Learning the Model Parameters from Incomplete Data

Let Λ be the set of all parameters Pt(z) and P (f |z) of the model defined by Equation

2. We derive a set of likelihood-maximizing rules to estimate Λ from So using the

Expectation Maximization algorithm as follows.

We denote the set of draws that resulted in the the generation of S as z. The

complete data specification required by EM is thus given by (So,Sm, z) = (S, z), where

Sm and z are unseen. The EM algorithm iteratively estimates the values of Λ that

maximizes the expected value of the log likelihood of the complete data with respect

to the unseen variables [17], i.e. it optimizes:

Q(Λ, Λ̂) = E
Sm,z|So,Λ̂

log P (So
,S

m
, z|Λ)

= E
Sm|So,Λ̂

E
z|S,Λ̂

log P (So
,S

m
, z|Λ) (8)

where Λ̂ is the current estimate of Λ. In this paper we won’t take advantage of temporal

continuity, thus we will treat the draws that compose any spectrum St independently

of those that compose any other St′ . Because of that Equation 8 simplifies to:.

Q(Λ, Λ̂) =

T
X

t=1

E
Sm

t
|So

t
,Λ̂

E
zt|St,Λ̂

log P (So
t S

m
t , zt|Λ) (9)

1 To be precise Equations 6 and 7 must actually be specified in terms of C−1
N

o

t
+1; however,

given the assumption in Equation 1, Equation 7, which is the primary equation of interest
remains valid.
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where zt is the set of draws that composed St. Optimizing Equation 9 with respect to

Λ, and invoking Equation 7 leads us to the following update rules:

Pt(z|f) =
Pt(z)P (f |z)

PZ
z′=1 Pt(z′)P (f |z′)

(10)

Nt =
X

f∈Fo

t

So
t (f)

Pt(f)
(11)

S̄t(f) = St(f) if f ∈ Fo
t

NtPt(f) if f ∈ Fm
t (12)

Pt(z) =

PF
f=1 Pt(z|f)S̄t(f)

PZ
z′=1

PF
f=1 Pt(z′|f)S̄t(f)

(13)

P (f |z) =

PT
t=1 Pt(z|f)S̄t(f)

PF
f ′=1

PT
t=1 Pt(z|f ′)S̄t(f)

(14)

Note that S̄t(f) are also the minimum mean-squared estimates of the terms in Sm.

The above update rules thus also implicitly impute the missing values of the data.

In some situations the multinomial bases P (f |z) may be available, for instance

when they have been learned separately from regions of the data that have no missing

time-frequency components. In such situations, only the mixture weights Pt(z) need to

be learned for any incomplete spectral vector St in order to estimate S̄t(f). This can

be achieved simply by iterations of Equations 10, 11, 12 and 13.

The likelihood of the model for the observed data is guaranteed to converge mono-

tonically, and that has been validated with multiple experiments. The model likelihood

over both the observed and the imputed data is not guaranteed to increase all the time.

However, after the first few iterations and once the imputation becomes increasingly

plausible, the model likelihood always converges and does so monotonically. Figure 2

shows the model’s likelihood convergence trajectory for the experiment in the next

section.

5 Missing Phase Values

So far we only considered recovering the magnitude spectrum values of spectrograms.

As mentioned before these are the values that are most linked to the perceived restora-

tion of the missing data input. The phase values are not so much linked to the audible

content of a sound, but rather help describe transient effects and subtle timing infor-

mation. Because of that, recovering phase values is not that involved a process as long

as the resulting reconstruction results in a largely smooth time signal regardless of its

content. Estimation of the missing phase is easily done using a straightforward modi-

fication of the Griffin-Lim algorithm [18]. This is an iterative process which is defined

as follows:

1. Set the phase of the missing entries to random values

2. Transform the resulting spectrogram to the time domain

3. Transform the resulting waveform back to the time-frequency domain and keep the

phase values corresponding to the missing entries
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4. Use these values as the phase for the missing entries, go to step 2 and repeat until

convergence

Throughout this process we keep the magnitude values as well as the known phase

values fixed. This algorithm usually converges to a satisfactory solution in 10-20 it-

erations. For convergence analysis and required conditions on the data refer to [18].

Alternatively we can use the more modern approach in [19], which produces in improved

results with fewer constraints.

6 Experimental Evaluation

In this section we will evaluate the algorithms of Section 4 on several examples of

spectrograms with missing time-frequency regions, showing both their convergence

and effectiveness at imputation. In our examples the spectrograms are from complex

musical recordings with multiple, additive concurrent spectral patterns. Such data are

particularly difficult to impute using conventional algorithms.

6.1 Illustrative example

We first evaluate our proposed approach with an illustrative example. The input data

in this case consisted of a synthetic piano recording of some isolated notes and subse-

quently of a mixture of these notes. We removed a triangular time-frequency section of

the part where the multiple notes took place. We trained our model using the isolated

note sections and using the proposed model we learned 60 multinomial bases which we

then used to impute the missing values. Figure 3 shows both the original spectrogram

(with the missing region marked by the dotted line) and the reconstructed spectrogram.

As a comparator we also show the complete spectrograms obtained by imputation of

the missing regions using SVD and K-nearest neighbors.

We note that even in this simple problem the K-NN approach does a poor job

of modeling all three notes and instead averages out the imputed data thus creating

a visibly and audibly incorrect reconstruction. The SVD imputation is more success-

ful due to its additive nature, appropriately borrowing elements to reconstruct the

coinciding notes. However this approach cannot guarantee that the imputed output

will be non-negative (as required for magnitude spectra) and can potentially return

negative values which must be either set to zero, or be rectified, resulting in musical

noise. The proposed method properly layers elements of multiple notes to impute the

missing data and does not suffer from producing negative values. The result is almost

indistinguishable from the ground truth.

Although our approach is not as fast as the k-nearest neighbors approach, it is

an order of magnitude faster than the SVD approach since each iteration involves the

evaluation of a small number of inner products as opposed to the computation of an

entire SVD. The computation times for the above example were 0.7 seconds for k-

nearest neighbors, 90 seconds for the SVD and 8 seconds for our proposed approach.

Simulations were run on an ordinary laptop computer.
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6.2 Real-world examples

In this section we will consider some complex cases derived out of real-world recordings

with challenging missing data cases. We note that in these cases strict quantitative

evaluation of the results is meaningless. This approach produces results which sound

as conformant as possible given an input, but are not guaranteed to approximate

the original data. This algorithms effectively “hallucinates” an answer, as opposed to

actually recovering true data values. Therefore, any automatic quantitative assessment

scores the resulting outputs as fairly dissimilar to the ground truth. Interested readers

can listen to results from this paper at http://www.media.mit.edu/∼paris/vlsi10/.

6.2.1 Coherent Missing Data

We will first examine a more complex case of the above example where we attempt

to fill a large continuous gap in the spectrogram for a complex musical piece. This

case is meant to exemplify the case where a user might manually mask a section of a

spectrogram. The section with the gap was a five second real piano recording of Bach’s

three-part piano invention #3 in D-BWV 879 [20]. The size of the gap was 4.3 seconds

by 3 kHz at its widest extent. We also used 10 seconds of data from another piano

piece (two-part invention #3 in D -BWV 774) which provided the needed information

to impute the missing data. We extracted 60 multinomial bases while training on both

the complete and the incomplete data. As a comparator, we also reconstructed the

spectrogram using a rank-60 SVD. The sampling rate was 14700Hz and the spectrum

size was 1024 points The imputation results are shown in figure 4. One can find some

visual inconsistencies using the SVD most noticeably in the rougher texture of the

reconstructed area. In contrast our approach results into visually more plausible re-

sults. We also invert the spectrograms back to the time domain in order to perform a

listening evaluation. In order to accurately compare the artifacts caused by the impu-

tation we used the phase values from the original signal. The proposed method resulted

in virtually inaudible reconstruction artifacts whereas the SVD approach introduced

harmonic artifacts which sounded like distorted piano notes as a background noise.

6.2.2 Bandwidth Expansion

In the next example we attempt to perform bandwidth expansion. Audio signals can

often be bandlimited by having been passed through a restrictive channel, such as

a telephone. The spectral excision here is very systematic and consistent. We learn

a set of 120 multinomial bases from other wideband training data, and use these to

infer the missing spectral content of the bandlimited signal. This presumes that the

training data is similar in nature to the testing data (i.e. if we need to resample piano

music we should train on piano music). An example of this is shown in figure 5. We

removed 80% of the upper frequencies of a ten second rock recording of the song

”Back in Black” by the band AC/DC and we trained on an eight second recording

by the same band playing a different song (”Highway to Hell”). The sampling rate

was once again 14700Hz and the spectrum size was 1024 points. As a comparator

we have also reconstructed the spectrogram using rank-120 SVD. The SVD clearly

underperforms in both the audible and the visual reconstruction in this experiment,

exhibiting an audible spectral smearing in the high frequency registers which dominated
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the reconstruction. Our proposed method results in a plausible, although as expected

non-exact, reconstruction.

6.2.3 Scattered Missing Data

Here we present a very challenging case where the missing data was evenly and ran-

domly distributed across the input. For this test a smoothed random binary mask was

applied to an input sound so that about 60% of the data was removed. The input

sound was sampled as 22050Hz and the time-frequency values were obtained using

a 1024 point short-time Fourier transform. We modeled the data with a mixture of

60 multinomials. As a comparator, a rank-60 SVD was also used to reconstruct the

spectrogram. The results of this experiment are shown in figure 6.

We note that the SVD model results in grainier reconstruction in the missing

parts which results in an audibly “muddy” mix as an output. The proposed model

results in a crisper reconstruction in which the present musical instruments are much

more distinct. Any processing artifacts are virtually imperceptible unless the sound is

carefully compared to the original input.

6.2.4 Compression Example

Finally we examine the case of aggressive audio compression. In this example we use a

classical piece of music and apply on it an mp3 compression algorithm with a bitrate

of 8kbps. This is a very dramatic compression operation which results in loss of data

and excessive musical noise. The compression operation removes time-frequency energy

from both the higher frequencies, but also from weaker areas in the low frequency range.

In order to recover as much missing data as possible we used a clean classical music

recording from which to learn a time-frequency model and combined that with a model

learned from the available data of the compressed input. The results of this operation

are shown in figure 7. Our proposed approach is more successful in suppressing musical

noise artifacts and extrapolates a plausible upper frequency reconstruction. In contrast

the SVD provides a poor reconstruction of the upper frequencies and exhibits more

distortion.

7 Conclusions

In this paper we presented a data imputation approach that is best suited for non-

negative data, and presented its application in restoring sounds with missing time-

frequency components. We showed how interpreting time-frequency distributions as

histograms or counts data, we can decompose them in a manner which is more appro-

priate than generic techniques based on the SVD and K-NN methods. We demonstrated

the performance of this approach using a variety of problems inspired from real-world

situations and have shown that it performs better than generic missing data approaches.

The model we have shown is ignoring the temporal dimension, and is instead using any

existing frequency information in order to impute the missing values. This creates a

problem when all frequencies are missing simultaneously, therefore this approach is

ill-suited for problems that involve filling gaps of complete silence. As shown by [5],

temporal models can be used to address this issue, and future work on this project
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can concentrate on convolutive formulations of the proposed algorithm which should

be able to address this particular situation.
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Fig. 1 a. Magnitude spectrogram of a mixture of classical music and a phone ring. The
spectrogram visualizes the spectral patterns for both signals – the long parallel lines represent
the harmonic elements present in the music signal, whereas the phone ring is represented by the
rectangular clusters in the outlined region. b. In this spectrogram time-frequency components
not belonging to the music signal have been removed by a source separation algorithm. c. Here
time-frequency regions dominated by the phone ring have been manually edited out by a user.
d. In this example overzealous compression has removed a significant part of the time-frequency
content.
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Fig. 2 Likelihood of observed data So (solid line) and complete spectrogram S (dashed line)
as a function of iteration for the data in Figure 6.

K−NN SVD Proposed model Ground Truth

Fig. 3 Comparison of three data imputation approaches on a simple problem. The missing
data area is denoted by the dashed black line in all plots. The first plot from the left shows the
results from K-NN imputation, the second from SVD imputation, the third using our proposed
model and the fourth is the ground truth.
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Ground Truth Missing Data Input

SVD Imputation Proposed Imputation

Fig. 4 Example reconstruction of a gap filling experiment. The leftmost plot shows the actual
data, the second plot shows the input with the large gap removing about 15% of the data, we
have zoomed into the region of the gap by not plotting some of the higher frequency content.
the third plot is the SVD reconstruction and the fourth plot is our proposed method.

Ground Truth Missing Data Input

SVD Imputation Proposed Imputation

Fig. 5 Example reconstruction of a bandwidth expansion. In the leftmost plot the original
signal is shown. The second plot displays the bandlimited input we used where 80% of the top
frequencies were removed. The third plot is the SVD reconstruction and the fourth plot is the
reconstruction using our model.



16

Ground Truth Missing Data Input

SVD Imputation Proposed Imputation

Fig. 6 Example reconstruction of a music signal with a binary mask occluding roughly 60%
of the samples. The leftmost plot shows the original signal, the second plot shows the masked
input we used for the reconstruction, the third plot shows the reconstruction using the SVD
and the fourth one shows the reconstruction using our model.

Ground Truth Compressed Input SVD Imputation Proposed Imputation

Fig. 7 Results of recovering overly compressed audio data. The leftmost panel displays the
original input signal. The second panel displays the signal after it was compressed at a bitrate of
8kbps. Note how the highest frequencies, as well as areas of lesser energy have been removed by
the compression algorithm. The third panel displays the reconstruction using an SVD approach
and the fourth panel displays the results of our proposed method. Note how our results have
a better defined high frequency range and are slightly less noisy in the low frequencies.


