
Abstract

In this paper we employ information theoretic algorithms,
previously used for separating instantaneous mixtures of
sources, for separating convolved mixtures in the frequency
domain.  It is observed that convolved mixing in the time
domain corresponds to instantaneous mixing in the fre-
quency domain.  Such mixing can be inverted using simpler
and more robust algorithms than the ones recently devel-
oped.  Advantages of this approach are improved efficiency
and better convergence features.

1   INSTANTANEOUS MIXTURES AND
SEPARATION

The problem of blind source separation was traditionally
approached by observing instantaneous mixtures of
sources.  Assume that N signals si are ordered in a vector

 where t is a time index.  Upon
transmission through a medium these signals are collected
from N sensors from which we obtain

.  Assuming linear superposi-
tion the vector  can be expressed as:

(1)

where  is an unknown matrix called the mixing matrix.
The objective is to recover the original  signals given
only the  vectors.  These signals can be recovered
using .  If  is invertible then separation
is feasible and the inverse of this mixing matrix will be
called the unmixing matrix.

This problem was recently addressed successfully by Bell

and Sejnowski (1995) and Amari et al. (1996) who intro-
duced fast and robust solutions.  Both approaches
employed information theoretic principles to find an
unmixing matrix that would maximize the statistical inde-
pendence of the estimated original sources.  The computa-
tional structure that was used was a matrix multiplication
between the estimated unmixing matrix and the mixed
inputs.  After every sample presentation the estimate of the
unmixing matrix was updated using the following learning
rules, where :

(2)

which was derived by Bell and Sejnowski (1995), and:

(3)

derived by Amari et al. (1996) who also performed adapta-
tion accounting for the Riemannian structure of the prob-
lem.  The matrix  is our estimate of the inverse of the
mixing matrix and the function f(⋅) is a non-linear sigmoid
function.  It has been shown that for f(⋅) = tanh(⋅) the algo-
rithm performs very well for zero mean super-Gaussian
input data.  The unmixing matrix that is obtained this way
will recover the original sources, but arbitrarily scaled.  In
addition the rows of the unmixing matrix might have a dif-
ferent ordering than the true inverse of the mixing matrix,
so that:

(4)

Where  is a scaling and permutation matrix.
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Similar work in instantaneous unmixing was also per-
formed by Cichocki  et al. (1994)  and McKay (1996) who
used different derivations.  Additional approaches using
feedback networks for inverting matrices have been also
addressed by, Herault and Jutten (1991), Molgedey and
Schuster (1994), Amari  et al.  (1995) as well as batch and
algebraic methods proposed by Comon (1992), Cardoso
(1993) and Hyvärinen and Oja (1997) but neither will be
used in this paper.  They are however applicable to the final
algorithm presented and could be used to substitute instan-
taneous algorithms as used in subsequent sections.

2   CONVOLVED MIXTURES AND SEPA-
RATION

Unfortunately instantaneous mixing is very rarely encoun-
tered in real-world situations, due to the extensive filtering
imposed on sources by their environment, differences
between sensors and propagation delays.  Instead we
observe convolved mixtures.  To express this mixing pro-
cess and maintain consistency with previous notation we
will use FIR Linear Algebra notation (Lambert 1996).  In
FIR Linear Algebra matrices are composed of FIR filters
instead of scalars and multiplication between two such FIR
matrix elements is defined as their convolution.  By impli-
cation the multiplication of two FIR matrices will involve a
convolve and accumulate procedure replacing the dot prod-
ucts we would compute for ordinary matrices.  FIR Filter
matrices are notated as underlined matrices (e.g. ).  To
illustrate:

(5)

Where A and B are m by n and n by k FIR matrices respec-
tively, aij and bij are FIR filters and the star operator
denotes convolution.

Using this notation we can express the convolved mixing
case, which using scalar notation is:

(6)

in a more elegant form as:

(7)

Using a similar reasoning as in the instantaneous case, we
can define an unmixing matrix  and  to
derive learning rules which are notationally identical to the
ones in the previous section.  We produce:

(8)

for the Bell rule, in equation (2), and

(9)

for the Amari rule, in equation (3).

Upon proper convergence the matrix  should be such
that:

(10)

Where  is a scaling, delay and permutation FIR matrix.
That means that the output of the separation equation will
be the original sources, arbitrarily scaled, permuted and
delayed.  In practice, for some algorithms, there is also
some alteration of the spectral envelope of the original
sources (spectral whitening).

Several variations of this approach have been developed by
Bell (1996), Torkkola (1996) and even though they perform
adequately they require significant computational power
due to the convolutions that have to be executed.  In addi-
tion to the computational power required, some approaches
to this problem have the side effect of also whitening the
spectrum of the output data, which sometimes acts as a
local minimum that hinders convergence.
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3   FREQUENCY DOMAIN SEPARATION

Various authors have used techniques that transform the
data to the frequency domain, in order to perform training
(Lee et al. 1997).  In this paper we consider an different fre-
quency domain approach to this problem.  It is possible to
transform the FIR filter mixing matrix, by performing a fre-
quency transform on its elements, to an FIR polynomial
matrix.  FIR polynomial matrices are matrices whose ele-
ments are complex valued polynomials (Lambert 1996).
Multiplication between FIR polynomial matrices is defined
similarly as for normal matrices with the exception that the
scalar multiplications become element-wise multiplications
of the polynomials.  The FIR polynomial matrix of  will
be notated as .  Bearing these points in mind we can
rewrite the mixing equation (7) as:

(11)

where the FIR polynomial matrices  and  contain the
frequency transforms of x and s respectively, and  is the
mixing matrix.

We can additionally break equation (11) down to:

(12)

where Sf(t) and Xf(t) are vectors with one element for every
source, which is the frequency transform element of si and
xi at frequency f and time t, and Af is a matrix containing
the elements of the frequency transforms of the mixing fil-
ters at frequency f †. This can also be interpreted as per-
forming convolution in the frequency domain (using a short
time Fourier transform) where element-wise multiplication
of the frequency elements must be performed.  By closer
examination of equation (12) we notice a resemblance to
equation (1).  The frequency elements we observe from our
sensors are in fact instantaneous mixtures of the original
frequency elements of the sources.

To better illustrate this consider the FIR polynomial matrix
 in the case of two sources.  For every frequency and

time it will contain a 2×1 complex valued vector with the
frequency values of the two observable signals at that time.
Each of these matrices will originate from a matrix multi-
plication of the corresponding frequency element matrices

†. It is also possible to have A being a time varying
matrix to simulate moving sources, in which case the
mixing equation includes a subscript t for the mixing
matrix.  Whether A is constant or not, the algorithm
remains the same and for simplicity’s sake we con-
sider the static case.

from  and  at the same time.  That matrix product is a
instantaneous mixing process.

Knowledge that the frequency bins of the observables are
instantaneous mixtures of the original sources’ frequency
bins suggests that we can use the original instantaneous
unmixing algorithms on every frequency track to achieve
separation from convolved mixtures.  To do so we need to
reformulate these algorithms for complex-domain data
(recall that the elements of the frequency polynomials are
complex numbers).

In order to deal with complex-valued data we need to per-
form two modifications.  First we must change matrix
transpositions to hermitian transpositions (conjugate trans-
pose).  With this modification the learning rules, transform
to:

(13)

for Bell’s rule, and:

(14)

for Amari’s rule.

The other important point is to choose a proper sigmoid
function.  The widely-used logistic and hyperbolic tangent
sigmoids perform very poorly in the complex domain due
to their singularities and are a bad choice in this case.
Georgiou and Koutsogeras (1992) have developed a set of
properties that complex-domain activation functions must
fulfill.  The most prominent one being that the function
must be bounded.  In the case of the hyperbolic tangent
(and similarly the logistic), the function is undefined at

, for , which will introduce
numerical problems and seriously hinder convergence (see
figure (1)).

An alternative activation function for the complex domain
is proposed which is defined as

 (shown in figure
(2)).  This function fulfills all complex activation function
requirements set by Georgiou and Koutsogeras and per-
forms very well in complex-domain networks.  It can also
be justified more intuitively by pointing out that this func-
tion is a better fit to the CDF of the data‡(assuming that the

‡. Bell (1996) points out that the hyperbolic tangent is a
good approximation to the Gaussian CDF and that by
mapping a Gaussian process through that function
we flatten the outcoming PDF, thus maximizing infor-
mation.
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frequency bin values exhibit Gaussian-like PDFs).

We form an algorithm which uses these modifications and
apply it independently to each frequency track obtained
from a Short Time Fourier Transform of the inputs.  From
this we will obtain one complex valued unmixing matrix
for every frequency bin of the transform.  The correspond-
ing elements of these unmixing matrices will form the fre-
quency responses of the filter elements of the unmixing FIR
matrix.  The algorithm is depicted in figure (3).  In cases
where the unmixing filters need to be long, there is the
additional problem of the block delay introduced from the
FFT based convolution.  It is possible to modify the algo-
rithm to perform zero delay FFT convolution to facilitate
better real-time response (Gardner 1994).

One major advantage of this approach is that by performing
convolution at the frequency domain we can improve com-
putational performance by a large factor, especially for real
world cases where separating filters should be long and
there is limited computational power.  To illustrate consider
the 2 by 2 case where the separating filters contain 1024
taps and the sampling rate is 44.1 kHz.  In the time domain
adaptation and unmixing would require roughly
flops versus  using the frequency domain
approach.

An additional advantage is the fact that we are performing
adaptation in an orthogonal domain (the Fourier coeffi-
cients).  This means that adaptation of one parameter will
not interfere with the other parameters.  This is extremely
valuable in the case of long filters since for M taps long
separating filters on the N sources problem we will require
M instantaneous networks of size N that will be indepen-

dent of each other.  So we will be increasing the number of
separating networks but their algorithmic complexity and
convergence properties will remain the same (so for a two
source problem we will have equally easy convergence
whether we use any length of separating filters, the only
difference will be in the required computational power
which, as shown before, scales well for large filters).

Finally to deal with non-minimum phase mixing filters it is
also possible to perform reordering of the time data to
implement non-causal unmixing filters (Lee et al. 1997).

With the frequency domain approach there are however
some extra complications.  The algorithms shown in the
first section and used to separate the frequency bins are
invariant to scaling and permutation (equation (4)).  The
scaling invariance means that the scaling of every fre-
quency band can be different, which will of course result in
spectral deformation of the original sounds.  This problem
can be remedied by forcing the determinant of the unmix-
ing matrices to unity by:

(15)

where  and  are respectively the normalized
and original N×N unmixing matrices at frequency f.  This
ensures volume conservation for every unmixing matrix
and an almost unaltered spectral envelope, while preserving
the separation.

3.6
8×10

5.2
6×10 W f

norm W f
orig W f

orig

1
N
----–

⋅=

W f
norm W f

orig

−4
−2

0
2

4

−4

−2

0

2

4
−5

0

5

Figure 1:  The hyperbolic tangent in the complex-number domain.
Due to the singularities seen at  it is an unsuitable acti-
vation function for training complex-domain networks.

Figure 2:  Proposed activation function for complex domain process-
ing.  It fulfills the required set of properties and provides a better fit
to the CDF of complex Gaussian data.
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The permutation invariance is a more difficult problem
which is still open to a satisfying and rigorous solution.
Fortunately this problem is not evident in all cases.  For
simple mixing filters all unmixing matrices converge to the
same permutation.  Using more complicated filters however
problems might rise.  In such cases careful selection of the
adaptation parameters in addition to decaying learning rate
and momentum are very helpful since they can eliminate
random permutation changes in training and preserve the
same permutation throughout.  The required parameter val-
ues do however delay convergence by a serious amount.
Another important parameter is adequate zero padding
when performing the frequency transformation.  Since zero
padding before the frequency transformation results in
smoother spectra, we ensure that contiguous frequency val-
ues of the inputs will be close to each other.  That way con-
vergence over the frequency bins will occur on similar
surfaces and will eventually lead to the same permutations
given the similarity of the inputs for neighboring unmixing
matrices.  In order to enforce this further we can use an
influence factor for the update of every bin so that:

(16)

or

(17)

where  and  are respectively the applied and
estimated weight updates for the unmixing matrices at fre-

quency f, and  is the influence factor.  Although
this is a simple heuristic it seems to work fine under many
situations (but not in very complicated problems).

4   RESULTS

The algorithm was evaluated with synthetic tests on three
different situations: instantaneous mixing, delayed mixing
and finally convolved mixing.  The inputs were two speech
signals from news broadcasts at a sampling rate of 22050
Hz.  The learning rule used was equation (14) with the
incorporation of learning rate and momentum.  On-line
training was performed, only once through the training data
in real-time.  After training, the unmixing matrices for all
frequency bins were collected to form the unmixing FIR
matrix.

To evaluate performance the estimated unmixing FIR
matrix was multiplied with the FIR mixing matrix to obtain
the  performance FIR matrix.  This matrix indicates how
well separation was achieved.  On perfect separation its
diagonal elements are impulse responses and the remaining
elements are zero.  In order to obtain a better sense of per-
formance the frequency transforms of the performance
matrix elements are shown in the figures.  Because of the
relatively sparse high frequency content in the training data
the corresponding high-frequency weights are not well
trained and as a result we observe the formation of highpass
filters in place of zero elements in the performance matri-
ces.  This however does not imply poor performance since
there is little high frequency input to separate anyway.
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Figure 3:  Flow diagram of the frequency domain algorithm.
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The first example was set to examine if the algorithm
worked at all.  To do so we used the instantaneous mixing
matrix:

(18)

Results were just as good as for instantaneous separation
algorithms and the interfering sources were successfully
suppressed by more than 30dB.  Convergence was of
course a slower than instantaneous algorithms since train-
ing data was presented once for every frequency transform
rather for every sample.  In order to speed convergence
time the overlap of the frequency transformations was
increased (by a reasonable amount) and it was possible
though to get sufficient separation in about two seconds of

A 2 1

1 1
=

Figure 4:  Performance matrix for delayed mixtures.  Subplot (a) shows the elements of the mixing FIR matrix.  A sense of the unmixing perfor-
mance is given in subplot (b) where we examine the outputs by looking at the frequency domain.  The solid line on top is the response of the
unmixing system to one source at the corresponding output and the dashed line under it is the response to the interfering source at the same
output.  On average the responses of the desired source vs. the interfering source differ by 20dB of attenuation.

Figure 5:  Performance matrix for convolved mixtures.  The FIR mixing matrix, containing decaying Cauchy noise, is shown in subplot (a) and
the performance FIR matrix in subplot (b).  Note in subplot (b) that for many frequency regions the permutation of the unmixing matrices is
incorrect.  This is due to badly selected adaptation parameters.  Also note the seemingly poor performance at the high frequency regions.  Since
the training data were speech signals there was little frequency content in these regions which resulted in underconstrained training.  This is
however not a problem given that there is no excitation at these levels.  Excluding permutation problems for the frequency range of the inputs
(100 Hz - 1000 Hz) the algorithm works fine.
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Figure 1:  Performance matrix for Cauchy noise mixing matrix

Figure 6:  Performance matrix for Cauchy noise mixing matrix
shown in figure (5).  This time better parameter selection took place
in addition to use of the influence factor.  It is shown that separation
is good averaging 20dB of interference suppression

Figure 7:   Results from an additional case of convolved mixtures
using decaying Cauchy noise mixing filters.It is clear that separation
is very good (up to 30 dB) especially at the frequency band that the
inputs dominated (100 Hz - 1000 Hz).
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sound.

The second example was setup to see how the algorithm
performs with delayed mixtures, which is the simplest form
of convolved mixing.  In this example we used the mixing
FIR filter matrix depicted in figure (4.a).  The diagonal ele-
ments are delays of 56 and 100 samples; with the exception
of the first element which has a value of 2 all others have a
value of 1.  The performance matrix in the frequency
domain is shown in figure (4.b).  Interference was sup-
pressed to inaudible levels, very quickly, with the exception
of occasional loud consonants.

Afterwards a more complex problem was set up.  The
sources were mixed with filters which had exponentially
decaying Cauchy noise as impulse responses.  Such filters
are good for emulating room responses since they exhibit a
few loud echoes, perceived as early reflections, and many
more faint echoes which simulate the room ambience.  The
mixing matrix is shown in figure (5.a) and the correspond-
ing results in figures (5.b) and (6).  In the first figure we
have a case where the unmixing matrices have permutation
disparities.  In figure (6) the same mixture was separated
with more conservative adaptation parameter selection and
by using the influence factor described in the previous sec-
tion.  Resulting separation was almost inaudible in this case
too.

The same problem was setup again only this time the mix-
ing filters were non-minimum phase which necessitated the
use of non-causal unmixing filters.  Results in that case

were also very satisfying and are shown in figure (7).

All experiments were done with separating filters of 1024
taps, a zero padding factor of 2 and an STFT hop size of
512 points.  For the last example a zero padding factor of 4
was used to facilitate the influence factor.  In addition to
this the last example also used non-causal unmixing filters.

5   CONCLUSIONS

It was shown that the problem of separating convolved mix-
tures can be approached using techniques developed for
separating instantaneous mixtures.  The algorithm devel-
oped is considerably more efficient than its time domain
counterparts, with a complexity of  vs. , that
permits implementations that can run in real time on per-
sonal computers.  In addition to efficiency improvements,
convergence properties are very attractive.  Due to the fact
that the filter parameters in the frequency domain are
orthogonal to each other, updating one parameter does not
influence the rest.  This is not the case in time domain adap-
tation where filter parameters are linearly dependent.  This
independence allows us to perform adaptation using longer
filters without complicating convergence or introducing
new potential minima.

It should also be stressed that the performance of this
approach is very dependent on the algorithm that is being
used to separate the frequency coefficients.  For the exam-

N Nlog⋅ N
2



ples in this paper the modified version of the learning rule
by Amari et al. (1996) was used (equation (14)).  Perfor-
mance of this approach in a more complicated situation,
such as one featuring more sources, or the case where we
have more inputs than outputs, is highly dependent on the
characteristics of the instantaneous unmixing algorithm
that is used.  Also dependent to this feature is the ability to
deal with sub or super Gaussian inputs (although note that
separation takes place in the frequency domain and that we
should be observing the PDF of the frequency bins rather
than the one of the time domain signal).

However, this algorithm is not foolproof.  Problems appear
with dense and badly conditioned filters where the unmix-
ing matrices of different frequency tracks are led to con-
verge to different permutations.  Although there are
heuristics that can be applied to avoid this problem they are
not always successful and further work to provide alterna-
tive solutions is required.  Incorporation of other instanta-
neous separation algorithms to separate the frequency bins
would be of benefit since the convergence characteristics of
such approaches might eliminate current problems.  The
advantages of this approach are certainly attractive enough
to encourage such work.
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