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Abstract

In this paper we describe a model developed for the analysis of acoustic spectra.
Unlike decompositions techniques that can result in difficult to interpret results
this model explicitly models spectra as distributions and extracts sets of additive
and semantically useful components that facilitate a variety of applications rang-
ing from source separation, denoising, music transcription and sound recognition.
This model is probabilistic in nature and is easily extended to produce sparse
codes, and discover transform invariant components which can be optimized for
particular applications.

1 Introduction

Decompositions of acoustic spectra have been a subject of research for few years now. There have
been multiple publications that decompose spectra into principal or independent components, non-
negative factors or other types of sparse codes. However quite often these decompositions leave
things to be desired either in terms of approximation quality, in terms of computational complexity,
or in terms of lacking interpretability. A “good” decomposition would ideally decompose the data
into a combination of semantically meaningful components, be computationally inexpensive to de-
rive, and must enable effective signal processing of the audio. In this paper we present a statistical
model for the decomposition of acoustic spectra that satisfies all these requirement. In the follow-
ing sections we describe the model, and show how it enables simple solutions to several common
problems in audio.

1.1 Probabilistic Latent Component Analysis

In this section we describe the statistical model we will use for acoustic modeling. Probabilistic
Latent Component Analysis (PLCA) is a straightforward extension of Probabilistic Latent Semantic
Indexing (PLSI) [1] which deals with an arbitrary number of dimensions and can exhibit various
features such as sparsity or shift-invariance. The basic model is defined as:

P (x) =
∑

z

P (z)
∏N

j=1P (xj |z) (1)
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whereP (x) is anN -dimensional distribution of the random variablex = x1, x2, ..., xN . Thez is a
latent variable, and theP (xj |z) are one dimensional distributions. Effectively this model represents
a mixture of marginal distribution products to approximate anN -dimensional distribution. Our
objective is to discover the most appropriate marginal distributions.

The estimation of the marginalsP (xj |z) is performed using a variant of the EM algorithm. In short
this algorithm contains an expectation and a maximization step which we alternate between in an
iterative manner. In the expectation step we estimate the ‘contribution’ of the latent variablez:

R(x, z) =
P (z)

∏N
j=1P (xj |z)∑

z′ P (z′)
∏N

j=1P (xj |z′)
(2)

and in a maximization step we re-estimate the marginals using the above weighting to obtain a new
and more accurate estimate:

P (z) =
∫

P (x)R(x, z)dx (3)

P (xj |z) =
∫

···
∫

P (x)R(x, z)dxk,∀k 6= j

P (z)
(4)

P (xj |z) will contain a latent marginal distribution across the dimension of variablexj , relating to
the latent variablez, andP (z) will contain the prior of that latent variable. Repeating the above
steps in an alternating manner multiple times produces a converging solution for the marginals and
the latent variable priors. This above process can also be adapted to work for a discretex andz
(or all possible combinations). This process will also work if the provided inputP (x) is an un-
normalized histogram as opposed to a density. The only added measure we need to take in this
case is to normalize eachP (xj |z) to integrate (or sum) to one in every iteration to ensure that it
corresponds to a true marginal distribution.

2 Applications of PLCA in audio

Although not traditionally seen as such, energy and power spectra are distributions of acoustic en-
ergy over frequency. By extension a magnitude spectrogram is a distribution of acoustic energy
across the time-frequency plane. This view is more apparent if one considers the spectrogram to
be a sort of histogram which measures the amount of time-frequency “sound quanta” at each point.
The only thing that separates a spectrogram from a true distribution is proper normalization.

Adopting this view of spectrograms allows us to use statistical techniques directly. In particular us-
ing a technique such as PLCA on spectrograms can yield a lot of desirable properties. The marginal
distributions which we can extract will be distributions over time and frequency which can then
be used directly with their statistical capacity for sound classification or speech recognition. An
additional advantage of this approach is that unlike some other spectral decomposition techniques
we maintain the attributes of the input, meaning that we extract actual spectra and time envelopes.
Generic techniques such as PCA and ICA are more likely to extract components that contain neg-
ative elements which are hard to justify in this setting. Although non-negative matrix factorization
can resolve this issue, it is however not statistical in nature which poses a problem when the intent
is to use the results in a learning framework. The use of an EM algorithm for the estimation of
the marginals and the statistical framework also opens up a lot of possibilities for optional features.
Imposing sparsity and various transformation invariances are relatively straightforward operations
which are easily incorporated in the estimation step.

Finally we should note that the 2-dimesional PLCA model is numerically identical to the non-
negative matrix factorization model. Higher dimensional PLCA corresponds to a non-negative ten-
sor factorization problem.

In the following few sections we briefly describe some applications in which we have used the PLCA
model and its extensions.
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Figure 2.1: Application of PLCA on a spectrogram. The large middle plot displays the spectrogram
of a drum loop. The left plot displays the extracted marginals in the frequency axis and the bottom
plots the corresponding distributions at the time axis.

2.1 Feature extraction

One of the most straightforward application for this technique is feature extraction. In figure 2.1 we
display a spectrogram and the corresponding marginal distributions we have obtained upon appli-
cation of PLCA. The spectrogram itself contained a drum loop. The extracted marginals are either
in the frequency or the time axis. The frequency marginals describe the spectral characteristics that
composed the spectrogram. Upon closer examination we can see that the spectrally constituent el-
ements of the spectrogram are described very succinctly in the frequency marginals. Likewise the
time marginals describe the temporal elements in the spectrogram. Pairwise combination of cor-
responding frequency and time marginals gives us a description of the frequency profile and the
temporal evolution of all the scene elements.

Note that the extracted marginals, being distributions themselves, are proper spectra and envelopes
which do not assume negative values such as the results that a decomposition like PCA or ICA would
produce. The number of distributions that we extract (the extend of the latent variablez), determines
the detail of the analysis. A small number of components will result in averaged components that
give a coarse description of the input. A large number of components will result in more detailed
information that uses multiple distributions to describe one source. Depending on the desired use of
the features one can decide what level of analysis is best.

This technique can be used to perform a decomposition of an audio scene into its constituent ele-
ments and can be further specialized for polyphonic music transcription [2].

2.2 Source recognition in mixtures

One of the fundamental problems in recognition of sounds is that of mixing. Sounds are inherently
captured mixed, a property that is not usually addressed in conventional statistical models and ma-
chine learning techniques for classification where decisions are mutually exclusive and don’t allow
characterization for mixtures. The statistical formulation and the additive nature of this decompo-
sition allows us to do so in a seamless manner. The procedure is as follows. For each candidate
sound classi we can learn a set of frequency marginalsPi(f |z) from training examples of each
sound class. Once confronted with a mixture we have to make the assumption that the mixture is
composed of the already known frequency marginals, albeit with different time marginals. The time
marginals will reveal how much of each classes frequency marginals are present at any time. To es-
timate the time marginals we perform PLCA as described above, holding the frequency marginals to



Figure 2.2: Using PLCA for sound recognition. The pictures on the left show the objects that gen-
erated each sound class. the Plots on the right show the averages time marginals for each class’s
frequency marginals as estimated from a mixture spectrogram. The resulting plots accurately de-
scribe the manner and order in which the sounds were recorded. With some further manipulation of
the time marginals it is straightforward to actually obtain a probabilistic estimate of the dominant
source.

those learned from the trained set. Upon conclusion of analysis we will have obtained the priors of
each class’s marginalsPi(z) and their corresponding time marginalsPi(t|z). The sum overPi(t|z)
overz for eachi will be a measure of the presence of classi at any point in time.

The results of an illustrative experiment are shown in figure 2.2. Four different sound classes were
trained and then recorded in an overlapping manner (one after the other with a transition overlap).
We performed PLCA using all trained frequency marginals from all classes and estimated only
the time marginals (the frequency marginals were already estimated from training examples for all
sounds). The normalized and averaged time marginals from each class after analyzing the mixture
spectrogram are shown in figure 2.2. It is easy to see that the marginals that correspond to each class
appropriately reveal the presence of the proper class at the right time, and also reveal the manner in
which the sounds were performed.

2.3 Source separation

Extending the idea above we show how we can employ PLCA to perform separation of sources from
a busy scene. If we know the frequency marginals that correspond to each source in a mixture we
can try to reconstruct the mixture using them. This can be achieved using the process described in
the above example. We once again assume that we know the types of sounds in the mixture and
that we have pre-trained frequency marginals describing them. Once we estimate the corresponding
time marginals that best describe an input we can perform reconstruction by appropriately multi-
plying and summing all marginals (as shown in equation 2). A selective reconstruction using the
marginals from a single source will result in a reconstruction that contains only one source. An
example of this is shown in figure 2.3. One of the sounds is a speaker uttering the word “noise”
and the other source is a set of chimes. From other instances of these two sounds we learned 100
frequency marginals for each sound. We approximated the input spectrogram with the known fre-
quency marginals and learned the appropriate time marginals. We then selectively reconstructed the
input using the marginals corresponding to each source. The results are also shown in figure 2.3.
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Figure 2.3: Using PLCA for source separation. The middle plot is a mixture spectrogram containing
speech and chimes. The left plot is the reconstruction using only speech frequency marginals, and
on the right there is a plot of the reconstruction using only the chime frequency marginals. These
partial reconstructions effectively separate the sounds in the mixture.

Speech+Siren mixture Cleaned speech

Figure 2.4: Using PLCA for denoising. The left spectrogram is a mixture of speech and a siren.
The right spectrogram is the result of a selective reconstruction after using the speech frequency
marginals in addition to some learned ones to fit the input, and reconstructing using only the speech
marginals.

2.4 Denoising

Finally, a special case of source separation, is denoising. We can use PLCA in a similar manner
as above when we know only the frequency marginals of a single source in a mixture and we wish
to extract it. The procedure is straightforward. Once again, we perform PLCA holding the known
frequency marginals of the desired source fixed. However, we allocate a few additional frequency
marginals that are learned; these will adapt to the frequency content of interfering sounds. The
time marginals corresponding to all frequency marginals are computed. Upon conclusion of the
iterations we will have a set of time marginals which will correspond to frequency marginals of the
source we are interested and a set of marginals that describes everything else. We can then use the
selective reconstruction method we mentioned in the previous section to extract only the source we
are interested in, and all the other sources separately. An example using speech corrupted by a siren
sound is shown in figure 2.4.



3 Conclusions

In this document we provided an overview of the PLCA model and how it can be applied for audio
related operations. We show how the extracted components are semantically meaningful and main-
tain the desirable non-negativity property in addition to having a statistical interpretation. This is
a model which can easily be extended and employed as a kernel in various other machine learning
algorithms. The above and the additivity property which allows us to deal with mixtures have so far
proven to be a very useful combination for performing a variety of processing tasks on sounds.

The model is also easily exensible to allow overcomplete sparse representations, invariance to trans-
formations etc. These extensions and their applications will be presented at a future venue.
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