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Abstract

In this paper we present an algorithm for separating mixed sounds from
a monophonic recording. Our approach makes use of training data which
allows us to learn representations of the types of sounds that compose the
mixture. In contrast to popular methods that attempt to extract com-
pact generalizable models for each sound from training data, we employ
the training data itself as a representation of the sources in the mixture.
We show that mixtures of known sounds can be described as sparse com-
binations of the training data itself, and in doing so produce significantly
better separation results as compared to similar systems based on compact
statistical models.

Keywords: Example-Based Representation, Signal Separation, Sparse Models.

1 Introduction

This paper deals with the problem of single-channel signal separation – separating out sig-
nals from individual sources in a mixed recording. As of recently, a popular statistical
approach has been to obtain compact characterizations of individual sources and employ
them to identify and extract their counterpart components from mixture signals. Statisti-
cal characterizations may include codebooks [1], Gaussian mixture densities [2], HMMs [3],
independent components [4, 5], sparse dictionaries [6], non-negative decompositions [7–9]
and latent variable models [10, 11]. All of these methods attempt to derive a generalizable
model that captures the salient characteristics of each source. Separation is achieved by
abstracting components from the mixed signal that conform to the statistical characteriza-
tions of the individual sources. The key here is the specific statistical model employed – the
more effectively it captures the specific characteristics of the signal sources, the better the
separation that may be achieved.

In this paper we argue that, given any sufficiently large collection of data from a source,
the best possible characterization of any data is, quite simply, the data themselves. This
has been the basis of several example-based characterizations of a data source, such as
nearest-neighbor, K-nearest neighbor, Parzen-window based models of source distributions
etc. Here, we use the same idea to develop a monaural source-separation algorithm that
directly uses samples from the training data to represent the sources in a mixture. Using
this approach we sidestep the need for a model training step, and we can rely on a very
flexible reconstruction process, especially as compared with previously used statistical mod-
els. Identifying the proper samples from the training data that best approximate a sample
of the mixture is of course a hard combinatorial problem, which can be computationally
demanding. We therefore formulate this as a sparse approximation problem and proceed
to solve it with an efficient algorithm. We additionally show that this approach results in
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source estimates which are guaranteed to lie on the source manifold, as opposed to trained-
basis approaches which can produce arbitrary outputs that will not necessarily be plausible
source estimates.

Experimental evaluations show that this approach results in separated signals that exhibit
significantly higher performance metrics as compared to conceptually similar techniques
which are based on various types of combinations of generalizable bases representing the
sources.

2 Proposed Method

In this section we cover the underlying statistical model we will use, introduce some of the
complications that one might encounter when using it and finally we propose an algorithm
that resolves these issues.

2.1 The Basic Model

Given a magnitude spectrogram of a single source, each spectral frame is modeled as a
histogram of repeated draws from a multinomial distribution over the frequency bins. At
a given time frame t, consider a random process characterized by the probability Pt(f) of
drawing frequency f in a given draw. The distribution Pt(f) is unknown but what one
can observe instead is the result of multiple draws from the process, that is the observed
spectral vector. The model assumes that Pt(f) is comprised of bases indexed by a latent
variable z. The latent factors are represented by P (f |z). The probability of picking the
z-th distribution in the t-th time frame can be represented by Pt(z). We use this model to
learn the source-specific bases given by Pt(f |z) as done in [10,11]. At this point this model
is conceptually very similar to the non-negative factorization models in [8, 9].

Now let the matrix VF×T of entries vft represent the magnitude spectrogram of the mixture
sound and vt represent time frame t (the t-th column vector of matrix V). Each mixture
spectral frame is again modeled as a histogram of repeated draws, from the multinomial
distributions corresponding to every source. The model for each mixture frame includes an
additional latent variable s representing each source, and is given by

Pt(f) =
∑

s

Pt(s)
∑

z∈{zs}

Ps(f |z)Pt(z|s), (1)

where Pt(f) is the probability of observing frequency f in time frame t in the mixture
spectrogram, Ps(f |z) is the probability of frequency f in the z-th learned basis vector from
source s, Pt(z|s) is the probability of observing the z-th basis vector of source s at time t,
{zs} represents the set of values the latent variable z can take for source s, and Pt(s) is the
probability of observing source s at time t.

We can assume that for each source in the mixture we have an already trained model in the
form of basis vectors Ps(f |z). These bases will represent a dictionary of spectra that best
describe each source. Armed with this knowledge we can decompose a new mixture of these
known sources in terms of the contributions of the dictionaries for each source. To do so we
can use the EM algorithm to estimate Pt(z|s) and Pt(s):

Pt(s, z|f) =
Pt(s)Pt(z|s)Ps(f |z)∑

s Pt(s)
∑

z∈{zs}
Ps(f |z)Pt(z|s)

(2)

Pt(z|s) =

∑
f vftPt(s, z|f)

∑
f,z vftPt(s, z|f)

(3)

Pt(s) =

∑
f vft

∑
z∈{zs}

Pt(s, z|f)
∑

f vft

∑
s

∑
z∈{zs}

Pt(s, z|f)
(4)

The reconstruction of the contribution of source s in the mixture can then be computed as

v̂
(s)
ft =

Pt(s)
∑

z∈{zs}
Ps(f |z)Pt(z|s)∑

s Pt(s)
∑

z∈{zs}
Ps(f |z)Pt(z|s)

vft
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Figure 1: Illustration of the basic model. The triangles denote the position of basis functions
for two source classes. The square is an instance of a mixture of the two sources. The mixture
point is not within the convex hull which covers either source, but it is within the convex
hull defined by all the bases combined.

These reconstructions will approximate the magnitude spectrogram of each source in the
mixture. Once we obtain these reconstructions we can use them to modulate the original
phase spectrogram of the mixture and obtain the time-series representation of the sources.

Let us now pursue a brief pictorial understanding of this algorithm, which will help us
introduce the concepts in the next section. Each basis vector and the mixture input will lie
in a F − 1 dimensional simplex (due to the fact that these quantities are normalized to sum
to unity). Each source’s basis set will define a convex hull within which any point can be
approximated using these bases. Assuming that the training data is accurate, all potential
inputs from that source should lie in that area. The union of all the source bases will define
a larger space in which a mixture input will be inside. Any mixture point can then be
approximated as a weighted sum of multiple bases from both sources. For visualization of
these concepts for F = 3, see figure 1.

2.2 Using Training Data Directly as a Dictionary

In this paper, we would like to explain the mixture frame from the training spectral frames
instead of using a smaller set of learned bases. There are two rationales behind this decision.
The first is that the resulting large dictionary provides a better description of the sources,
as opposed to the less expressive learned-basis models. As we show later on, this holds even
for learned-basis models with dictionaries as large as the proposed method’s. The secondary
rationale behind this operation is based on the observation that the points defined by the
convex hull of a source’s model, do not necessarily all fall on that source’s manifold. To
visualize this problem consider the plots in figure 2. In both of these plots the sources
exhibit a clear structure. In the left plot both sources appear in a circular pattern, and
in the right plot in a spiral form. As shown in [12], learning a set of bases that explains
these sources results in defining a convex hull that surrounds the training data. Under this
model potential source estimates can now lie anywhere inside these hulls. Using trained-
basis models, if we decompose the mixture points in these figures we obtain two source
estimates which do not lie in the same manifold as the original sources. Although the input
was adequately approximated, there is no guarantee that the extracted sources are indeed
appropriate outcomes for their sound class.

In order to address this problem and to also provide a richer dictionary for the source
reconstructions, we will make direct use of the training data in order to explain the mixture,
and bypass the basis representation as an abstraction. To do so we will use each frame of the

spectrograms of the training sequences as the bases Ps(f |z). More specifically, let W
(s)

F×T (s)

be the training spectrogram from source s and let w
(s)
t represent the time frame t from the

spectrogram. In this case, the latent variable z for source s takes T (s) values, and the z-th
basis function will be given by the (normalized) z-th column vector of W(s).
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Figure 2: Two examples where the separation process using trained bases provides poor
source estimates. In both plots the training data for each source are denoted by △ and ▽,
and the mixture sample by �. The learned bases of each source are the vertices of the two
dashed convex hulls that enclose each class. The source estimates and the approximation
of the mixture are denoted by ×, + and ©. In the left case the two sources lie on two
overlapping circular areas, the source estimates however lie outside these areas. On the
right, the two sources form two intertwined spirals. The recovered sources lie very closely
on the competing source’s area, thereby providing a highly inappropriate decomposition.
Although the mixture was well approximated in both cases, the estimated sources were
poor representations of their classes.

With the above model we would ideally want to use one dictionary element per source at
any point in time. Doing so will ensure that the outputs would lie on the source manifold,
and also offset any issues of potential overcompleteness. One way to ensure this is to
perform a reconstruction such that we only use one element of each source at any time,
much akin to a nearest-neighbor model, albeit in an additive setting. This kind of search
can be computationally very demanding so we instead treat this as a sparse approximation
problem. The intuition is that at any given point in time, the mixture frame is explained
by very few active elements from the training data. In other words, we need the mixture
weight distributions and the speaker priors to be sparse at every time instant.

We use the concept of entropic prior introduced in [13] to enforce sparsity. Given a proba-
bility distribution θ, entropic prior is defined as

Pe(θ) = e−H(θ) (5)

where H(θ) = −
∑

i θi log θi is the entropy of the distribution. A sparse representation, by
definition, has few “active” elements which means that the representation has low entropy.
Hence, imposing this prior during maximum a posteriori estimation is a way to minimize
entropy during estimation which will result in a sparse θ distribution. We would like to
minimize the entropies of both the speaker dependent mixture weight distributions (given
by Pt(z|s)) and the source priors (given by Pt(s)) at every frame. In other words, we want
to minimize H(z|s) and H(s) at every time frame. However, we know from information
theory that

H(z, s) = H(z|s) + H(s).

Thus, reducing the entropy of the joint distribution Pt(z, s) is equivalent to reducing the
conditional entropy of the source dependent mixture weights and the entropy of the source
priors.

Since the dictionary is already known and is given by the normalized spectral frames from
source training spectrograms, the parameter to be estimated is given by Pt(z, s). The model,
written in terms of this parameter, is given by

Pt(f) =
∑

s

∑

z∈{zs}

Ps(f |z)Pt(z, s).

where we have modified equation (1) by representing Pt(s)Pt(z|s) as Pt(z, s). We use the
Expectation-Maximization algorithm to derive the update equations. Let all parameters
to be estimated be represented by Λ. We impose an entropic prior distribution on Pt(z, s)
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Figure 3: Using a sparse reconstruction on the data in figure 2. Note how in contrast to that
figure the source estimates are now identified as training data points, and are thus plausible
solutions. The approximation of the mixture is the nearest point of the line connecting the
two source estimates, to the actual mixture input. Note that the proper solution is the one
that results in such a line that is as close as possible to the mixture point, and not one that
is defined by two training points close to the mixture.

given by

log P (Λ) = β
∑

t

∑

s

∑

z∈{zs}

Pt(z, s) log Pt(z, s),

where β is a parameter indicating the extent of sparsity desired. The E-step is given by

Pt(z, s|f) =
Pt(z, s)Ps(f |z)∑

s

∑
z∈{zs}

Pt(z, s)Ps(f |z)

and the M-step by
ωt

Pt(z, s)
+ β + β log Pt(z, s) + λt = 0 (6)

where we have let ω represent
∑

f vftPt(s, z|f) and λt is the Lagrange multiplier. The

above M-step equation is a system of simultaneous transcendental equations for Pt(z, s).
Brand [13] proposes a method to solve such problems using the Lambert W function [14].
It can be shown that Pt(z, s) can be estimated as

P̂t(z, s) =
−ω/β

W(−ωe1+λt/β/β)
. (7)

Equations (6),(7) form a set of fixed point iterations that typically converge in 2-5 iterations
[13].

Once Pt(z, s) is estimated, the reconstruction of source s can be computed as

v̂
(s)
ft =

∑
z∈{zs}

Ps(f |z)Pt(z, s)
∑

s

∑
z∈{zs}

Ps(f |z)Pt(z, s)
vft

Now let us consider how this problem resolves the issues presented in figure 2. In figure 3
we show the results obtained using this approach on the same data. The sparsity parameter
β as set to 0.1. In both plots we see that the source reconstructions lie on a training point,
thereby being a plausible source estimate. The approximation of the mixture is not as exact
as before, since now it has to lie on the line connecting the two active source elements.
This is not however an issue of concern since in practice the approximation is always good
enough, and the guarantee of a plausible source estimate is more valuable than the exact
approximation of the mixture.

Alternative means to strive towards similar results would be to make use of priors such as
in [15, 16]. In these approaches the priors are imposed on the mixture weights and thus
are not as effective for this particular task since they still suffer from the symptoms of
learned-basis models. This was verified through cursory simulations, which also revealed an
additional computational complexity penalty against such models.
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Figure 4: An oracle case where we fit training data from two speakers, on the mixture
of that data. The top plots show the input waveforms, and the bottom plots shows the
estimated weights multiplied with the source priors. As expected the weights exhibit two
diagonal traces which imply that the algorithm we used has fit the data appropriately.

3 Experimental Results

In this section we present the results of experiments done with real speech data. All of these
experiments we performed on data from the TIMIT speech database on 0dB male/female
mixtures. The sources were sampled as 16 kHz, we used 64 ms windows for the spectrogram
computation, and an overlap of 32 ms. Before the FFT computation, the input was tapered
using a square-root Hann window. The training data was around 25 sec worth of speech for
each speaker, and the testing mixture was about 3 sec long. We evaluated the separation
performance using the metrics provided in [17]. These metrics include the Signal to Inter-
ference Ratio (SIR), the Signal to Distortion Ratio (SDR), and the Signal to Artifacts Ratio
(SAR). The first is a measure of how well we suppress the interfering speaker, whereas the
other two provide us with a sense of how much the extracted source is corrupted due to the
separation process. All of these are measured in dB and the higher they are the better the
performance is deemed to be.

In the following sections we first present some “oracle tests” that validate that indeed
this algorithm is performing as expected, and we then proceed to more realistic testing.
Finally, we show the performance impact of pruning the training data in order to speed up
computation time.

3.1 Oracle tests

In order to verify that this approach works we go through a few oracle experiments. In these
tests we include the actual solutions as training data and we make sure that the answers are
exactly what we would expect to find. The first experiment we perform is on a mixture for
which the training data includes its isolated constituent sentences. In this experiment we
would expect to see two dictionary components active at each point in time, one from each
speaker’s dictionary, and both of these progressing through the component index linearly
through time. As shown in figure 4, we observe exactly that behavior. This test provides a
sanity check which verifies that given an answer this algorithm can properly identify it.

A more comprehensive oracle test is shown in figure 5. In this experiment, the training
data were again the same as the testing data. We averaged the results from 10 runs using
different combinations of speakers, varying sparsity parameters and number of bases. The
sparsity parameter β was checked for various values from 0 to 0.8, and we used trained-basis
models with 5, 10, 20, 40, 80, 160 and 320 bases, as well as the proposed scenario where
all the training data is used as a dictionary. The primary observation from this experiment
is that the more bases we use the better the results get. We also see that increasing the
sparsity parameter we see a modest improvement in most cases.
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Figure 5: Average separation performance metrics for oracle cases, as dependent on the
choice of different number of elements in the speaker’s dictionary, and different choices of
the entropic prior parameter β. The left plot shows the SDR, the middle plot the SIR, and
the right plot the SAR, all in dB. The basis row labeled as “Train” is the case where we use
all the training data as a basis set.
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Figure 6: Average separation performance metrics for real-world cases, as dependent on the
choice of different number of elements in the speaker’s dictionary, and different choices of
the entropic prior parameter β. The left plot shows the SDR, the middle plot the SIR, and
the right plot the SAR, all in dB. Sparsely using all of the training data clearly outperforms
low-rank models by a significant margin on all metrics.

3.2 Results on Realistic Situations

Let us now consider the more realistic case where the mixture data is different from the
training set. In the following simulation we repeat the previous experiment, but in this case
there are no common elements between the training and testing data. The input mixture
has to be reconstructed using approximate samples. The results are now very different in
nature. We do not obtain such high numbers in performance as in the oracle case, but
we also see a stronger trend in favor of sparsity and the use of all the training data as a
dictionary. The results are shown in figure 6. We can clearly see that in all metrics using all
the training data significantly outperforms trained-basis models. More importantly, we see
that this is not because we have a larger dictionary. For trained-bases we see a performance
peak at around 80 bases, but then we observe a deterioration in performance as we use a
larger dictionary. Using the actual training data results in a significant boost though. Due
to the high dimensionality of the data the effect of sparsity is a little more subtle, but we still
see a helpful boost especially for the SIR which is the most important of the performance
measures. We see some decrease in the SAR, which is expected since the reconstructions are
made using elements that look like the remaining data, and are not made to approximate
the actual input mixture. This does not mean that the extracted sources are distorted and
of poor quality, but rather that they don’t match the original inputs exactly. The use of
sparsity ensures that the output is a plausible speech signal devoid of artifacts like distortion
and musical noise. The effects of sparsity alone in the proposed case are shown separately
in figure 7.
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Figure 8: Effect of discarding low energy training frames. The horizontal axis denotes the
percentage of training frames that have been discarded. These are averaged results using a
sparsity parameter β = 0.1.

The unfortunate side effect of the proposed method is that we need to use a dictionary
which can be substantially larger than otherwise. In order to address this concern we show
that the size of the training data can be easily pruned down to a size comparable to trained-
basis models and still outperform them. Since sound signals, especially speech, tend to have
a considerable amount of short-term pauses and regions of silence, we can use an energy
threshold to in order to select the loudest frames of the training spectrogram as bases. In
figure 8 we show how the separation performance metrics are influenced as we increasingly
remove bases which lie under various energy percentiles. It is clear that even after discarding
up to at least 70% of the lowest energy training frames the performance is still approximately
the same. After that we see some degradation since we start discarding significant parts of
the training data. Regardless this scheme outperforms trained-basis models of equivalent
size. For the 80% percentile case, a trained-basis model of the same size dictionary results
in roughly half the values in all performance metrics, a very significant handicap for the
same amount of computational and memory requirements.

The experiments in this paper were all conducted in MATLAB on an average modern desk-
top machine. Overall computations for a single mixture took roughly 4 sec when not using
the sparsity prior, 14 sec when using the sparsity prior (primarily due to slow computation
of Lambert’s function), and dropped down to 5 sec when using the 30% highest energy
frames from the training data.

4 Conclusion

In this paper we present a new approach to solving the monophonic source separation
problem. The contributions of this paper lies primarily in the choice of using all the training
data as opposed to a trained-basis model. In order to do so we present a sparse learning
algorithm which can efficiently solve this problem, and also guarantees that the returned
source estimates are plausible given the training data. We provide experiments that show
how this approach is influenced by the use of varying sparsity constraints and training data
selection. Finally we demonstrate how this approach can generate significantly superior
results as compared to trained-basis methods.
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