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Abstract

 

Computational audition has always been a subject of multiple theories.  Unfortu-
nately very few place audition in the grander scheme of perception, and even fewer 
facilitate formal and robust definitions as well as efficient implementations.  In our 
work we set forth to address these issues.

We present mathematical principles that unify the objectives of lower level listening 
functions, in an attempt to formulate a global and plausible theory of computational 
audition.  Using tools to perform redundancy reduction, and adhering to theories of 
its incorporation in a perceptual framework, we pursue results that support our 
approach.  Our experiments focus on three major auditory functions, preprocessing, 
grouping and scene analysis.  For auditory preprocessing, we prove that it is possible 
to evolve cochlear-like filters by adaptation to natural sounds.   Following that and 
using the same principles as in preprocessing, we present a treatment that collapses 
the heuristic set of the gestalt auditory grouping rules, down to one efficient and for-
mal rule.  We successfully apply the same elements once again to form an auditory 
scene analysis foundation, capable of detection, autonomous feature extraction, and 
separation of sources in real-world complex scenes.

Our treatment was designed in such a manner so as to be independent of parameter 
estimations and data representations specific to the auditory domain.  Some of our 
experiments have been replicated in other domains of perception, providing equally 
satisfying results, and a potential for defining global ground rules for computational 
perception, even outside the realm of our five senses.
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Chapter 1.  Introduction

 

1 . 1     Introduction

 

Human perception has always been an exciting and mysterious field of study.  Although 
other fields pertaining to human behavior are easy to rationalize and mimic with com-
puters, perception is covered by the veil of subconsciousness.  Trying to define what it 
means to perceive an image, getting used to background noise, or reminiscing a smell is 
not an easy task.  Unlike higher-level thinking where individual steps can be rational-
ized and described, perceptual functions just happen without our active intervention.  
This very inability to describe our perception has made it a fruitful subject for debates 
and development of theories.
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Introduction

 

This thesis deals with a specific perceptual domain, the auditory domain.  Although this 
is not a domain in the forefront of perceptual research, we believe it is a most appropri-
ate one with which to study the foundations of perception.  It is a domain that incorpo-
rates hard perceptual issues such as time, simultaneous processing and a strong aesthetic 
sense.  It is also convenient for research since it takes place on a one dimensional space, 
thereby simplifying the computational and conceptual models.  Most importantly it is 
not intimately linked to our way of thinking.  Unlike the other prominent domain, 
vision, for which it is relatively clear to us what happens (we do tend to think in pictures 
after all!), in audition we lack this convenience.  We have no grasp of what sounds are, 
and what it means to perceive them separately, we don’t know how we listen, and only 
those trained in listening can start to vaguely describe sounds.  Our state of ignorance 
when it comes to listening, makes it a fresh new ground on which to perform research 
without preconceptions and hasty judgements.

The goals of this thesis are multiple and highly intertwined.  First and foremost is to 
bring a touch of mathematical formalization to the field of computational auditory per-
ception and place it inside the grander picture of perception.  Most auditory work has 
been quite isolated from general perception, yielding highly specialized theories, many 
of them based on a bootstrapped heuristic foundation.  The resulting complexity from 
such poor descriptions has been a prohibiting factor in computational implementations.  
We will try to avoid this approach and instead deal with more solid and abstract formu-
lations that are not audio specific, and provide a clear definition of our ideas.  This will 
be done in hopes of providing a deeper insight about perception in general, and of pro-
viding something that can be easily implemented on a computer.

Mathematically modelling audition is certainly a daunting task which will have to 
address multiple processes and functions.  To bypass this problem we will use a differ-
ent approach to studying audition.  We will take interest in finding the unifying basic 
principles of perception rather than examining different stages of perception with vary-
ing methodologies.  To do so our approach will be to model the development of auditory 
perception.  It is inarguable that perception did not always exist; it did evolve from some 
first principles, and it was somehow shaped through time.  We will try to explore what it 
was that drove this evolution and hope to mimic it (in shorter time frames!).  We are 
interested in the basis of perceptual evolution and its driving principles.  This approach 
will hopefully shed more light on how perception can develop and give us a deeper, yet 
simpler, insight on what perception does.  This evolutionary approach reveals an addi-
tional goal: to examine and stress the effect of the environment on our perception.  
Adopting the developmental approach we will see how it is that audition developed to 
be what it is, and how the statistics of its environment have shaped it.  It is quite accept-
able by now that the basic principles of perceptual development have been driven and 
latched onto the statistics of environmental stimuli.  We will point out how these statis-
tics have affected our development and, in some cases, speculate on some alternate sce-
naria.

With our experiments, we will construct simulations of the auditory functions, which 
will have evolved to be as such and not instructed to.  We feel this is a very important 
point and we will stress it throughout this thesis.  We do not wish to construct high per-
formance systems that draw from our knowledge and experience.  We want to make 
‘tabula rasa’ systems that adapt to their stimuli and ‘grow’ to perform useful functions.  
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We will also not deal with a proper and accurate portrayal of human perception.  We 
will draw inspiration from it and assume it is an example well worth copying.  Our goal 
however is to construct artificial perception.  We will investigate the suspected princi-
ples that shaped human perception, in hope of using this knowledge to construct its arti-
ficial counterparts.  The motive for this investigation is the possible application of this 
knowledge, to the design of data processing machines.  Machines that deal with data, 
such as cameras, microphones, text parsers or stock displays, machines that can benefit 
from their own intimate link of their environment, rather than our interpretation of it.

The theories we will comply with have long been developed in an abstract form, but 
have been never applied to listening, and are only recently starting to make a big impact 
on visual perception.  Our work will address this gap in auditory research and demon-
strate that listening functions that have been traditionally seen as unrelated do in fact 
perform the same kind of processing.  We will cover three major fields of lower level lis-
tening, preprocessing, grouping and object segmentation, and provide a common under-
lying theory.  In conclusion we will propose similar applications that span to higher-
level listening processes that include music parsing and memory.

 

1 . 2     Computational Perception

 

1 . 2 . 1  General Perception

 

Measurements and explanations of perceptual functions are the focus of experimental 
psychology and psychophysics. Perceptual responses to a vast amount of stimuli have 
been documented and are our only objective window to this world.  Based on this 
knowledge and with the use of some additional reasoning and theorizing, researchers in 
artificial intelligence have long tried to make computational implementations of percep-
tion.  This type of work requires coming up with a mathematical formulation of particu-
lar perceptual functions and then translating it to computer code.  The rigor of the 
mathematical formulation ranges from extremely involved modelling of neuronal 
responses to superficial binary decisions, and is a matter of research direction and goals.  
The entire field is too broad to adequately cover here, but we will examine a particular 
trend which is closely related to this thesis.

Of interest to our work are the writings of Horace Barlow (1959, 1961, 1989).  His 
viewpoints epitomize a significant thread of perceptual research, which spans about a 
century.  Starting from early researchers of perception, like Helmholtz and Mach, it was 
observed that the environment that we live in has been a major shaping factor to the 
development of our perception.  Unfortunately at the time, there were neither the proper 
mathematical foundations, not the means to develop models of such observations.  
Upon the creation of information theory by Shannon in the 40’s, a new language was 
developed with which perception researchers could express these ideas.  Information 
theory provided the means to mathematically express the coding and transmission of 
data through channels.  This work was soon intimately connected to the perception 
which was starting to be looked at as a data processing problem.  One of the first to use 
information theory in the perceptual framework was Attneave (1954), who used the 
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principles of information, channel capacity and redundancy to express perceptual pro-
cesses.  His key observation was that the perceptually important information on natural 
images are the borders of the image.  These are also the points where most information 
lies, rendering the rest of the image as redundant information.  Barlow (1959, 1961, 
1989), was expressing similar ideas and explored a possible structure of our neural sys-
tem to perform such optimizations.  He elaborated on Attneave’s observation that sen-
sory input redundancy is crucial to perception, an observation that it is a recurring 
principle throughout perception from the basis preprocessing stages to higher level cog-
nitive functions.  He suggested that the sensory mechanism strives for Mach’s ‘economy 
of thought’  and achieves that by performing sparse or factorial coding.  Sparse coding 
being a decomposition of a signal that yields as little energy as possible in the resulting 
coefficients, and factorial coding being a decomposition that strives for maximally inde-
pendent output (these are two related problems that we will cover computationally in the 
succeeding sections).  Barlow subsequently revised his idea and let go of the economy 
principle, he did however maintain the position that redundancy exploitation is very 
important.  Following suit, Watanabe (1960) introduced the idea that inductive inference 
was related to the Minimum Description Length (MDL) principle.  This is a principle 
closely related to Occam’s razor and strongly linked to information theory.  It states that 
among various possible models for describing a data set, the preferred one is the one 
that yields the shortest and most compact description.  

All of these ideas were a central theme in the late 80’s where research led by Linsker 
(1986a, 1986b, 1986c, 1988) and Field (1987), used statistics to understand the visual 
system at the neural level.  From this work stemmed the opinion that the perceptual sys-
tem is defined by adapting to its environment, an approach that was further elaborated 
by Atick (1991) by elegantly making use of information theory and ecological adapta-
tion to explain sensory processing.  Related experiments were conducted by Atick and 
Redlich (1990) and Redlich (1993), who experimentally explored the possibilities that 
our neural system exploits redundancy.  Their simulations proved to be very successful, 
yielding feature maps that were in agreement with transfer functions of neural process-
ing.  Although convincing, these experiments were complicated due to limited develop-
ment of related computational techniques and processing power by that time.  More 
recently developments have come from Olshausen and Field (1996), Bell and Sejnowski 
(1997), and Hyvärinen and Hoyer (2000), who have used modern information theory 
optimization algorithms to sparsely analyze natural images.  Their analyses, which 
strived for different interpretations of redundancy reduction, obtained decompositions 
which were very similar to the receptive fields our visual system uses.  They have 
thereby made a very convincing argument that sparse and factorial coding are functions 
that are closely linked to perception, and its development.  The other important point 
that came from their work was the fact that they employed natural image scenes to arrive 
to their results.  Their systems were not trained on clean or synthetic data.  They were 
then in a position to say that there is a strong relation between our visual system and its 
surrounding environment.  As this field is now slowly opening up, further computational 
advances are gradually made that allow for more complex processing and better expres-
sion of these ideas on perception to develop.

The common thread through all this work, is that perception is an information process-
ing system which could be analyzed with the appropriate theories.  What makes this sys-
tem coherent and possible to analyze, is the fact that it deals with a structured input.  
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Thus comes the second important observation highlighted in this work: we live in a 
highly structured world.  If our perceptual system is indeed performing an information 
processing task, it would have to adapt to the statistical regularities of its environment.  
Our environment is biasing and shaping our perception, thus if we wish to examine per-
ception itself we can start by examining the environment.  In the case of computational 
perception, this means that it is worthwhile to implement perceptual systems that learn 
from their environment rather than try to emulate a set of observed perceptual behav-
iors.  

 

1 . 2 . 2  Auditory Perception

 

Most of the auditory perception research is epitomized by the work of Bregman (1990).  
His book explains the workings of auditory scene analysis through a lot of careful 
experiments.  An astounding mass of the computational auditory scene analysis research 
has been influenced by this work and applies direct translation of his observations onto 
computer programs.  Such implementations aspire to construct a fairly complete listen-
ing system which could perform like a human listener, analyzing audio, making judge-
ments on the existence objects and deal with short-term memory.  The most notable 
work in auditory perception includes the systems build by Vercoe and Cumming (1988), 
Duda et al. (1990), Mellinger (1991), Cooke (1991), Brown (1992) and Ellis (1992, 
1996).  Most of these systems included a decomposition stage inspired by our hearing 
mechanisms, and then moved on to selectively group components of this decomposition 
to extract individual objects.  Although these implementations were fairly successful in 
solving the problems they attacked, they did tend to give up in cases outside their exper-
tise.  That left a lot of researchers in this field hoping for more general models of com-
putational audition.

It was soon quite evident that the even though Bregman’s book is a very significant 
work in the field of experimental psychology, it does not reveal the foundations of audi-
tion.  The fact that it is a collection of experiments and heuristic interpretations of iso-
lated effects has been neglected, and many a researcher has used them as ground rules 
for audition.  That use of experimental psychology observations has hindered the imple-
mentation of computationally robust systems, since it introduced fuzzy concepts such as 
‘similar’, ‘parallel’, in an inherently deterministic and strict platform.  The translation of 
these verbal descriptions to computer implementations is a daunting task, which often 
creates systems with pathological problems by design.  This has created a research bias 
in the auditory research community, which has been lagging compared to visual 
research mainly due to lack of formal definitions and robust formulations.  This is an 
issue that is now starting to draw attention, and we try to address in this thesis.

Aside from all the aforementioned research, there has been a significant amount of addi-
tional work on audio processing and analysis which can be related to human auditory 
processes.  However, most of it is specific and does not fit a general framework of artifi-
cial perception, being instead mostly applications of pattern recognitions and signal pro-
cessing.  We will therefore not cover this work and the interested reader is referred to 
Kahrs and Brandenburg (1998) and Rhoads (1996) as a starting point.
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1 . 3     Statistics for Perception

 

In this section we will present some of statistical concepts, especially as they relate to 
this dissertation and perceptual research.

 

1 . 3 . 1  Decorrelation and Statistical Independence

 

Especially after the observations by Barlow the concept of decorrelating or making sen-
sory stimuli statistically independent became a central theme in computational percep-
tion.  We will now deal with their definitions and present the relevant general purpose 
algorithms.

Decorrelation, also known as orthogonality or linear independence, is a well known and 
widely used principle in statistics.  Two random variables 

 

x

 

1

 

 and 

 

x

 

2

 

 are said to be decor-
related when:

(1)

where 
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} is the expected value of 
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.  The measure cov(
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) is known as the covari-
ance of 
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 and 
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.  It is symmetric since:
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and if 
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 it equals the variance of 
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(3)

If 
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<

 

 0, 
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1

 

 decreases.

In order to evaluate whether a set of random variables are correlated or not we construct 
the 

 

covariance matrix

 

, a matrix containing information about the covariances between 
all possible variable pairs.  It is defined as:

(4)

cov x1 x2,( ) = E x1x2{ } E x1{ }E x2{ }– 0=

cov x1 x2,( ) E x1x2{ } E x1{ }E x2{ }– E x2x1{ } E x2{ }E x1{ }– cov x2 x1,( )= = =

cov x1 x1,( ) E x1

2{ } E x1{ }2– var x1( ) var x2( )= = =

cov x1 x2,( ) 0π

V x1 º x, N,( )
cov x1 x1,( )      cov x1 xN,( )

   

cov xN x1,( )  cov xN xN,( )

= ...... ...

...

...



Introduction

Statistics for Perception 17 

The diagonal elements cov( xi, xi), are equal to the variances of xi, which are usually 
greater than zero.  The off-diagonal elements, are the covariances which will be zero if 
our set of variables xi are decorrelated.  The covariance matrix is symmetric since we 
have cov( x1, x2) = cov( x2, x1), and it is also positive semidefinite.

In general decorrelation does not imply statistical independence.  Statistical indepen-
dence between a set of variables xi exists if:

(5)

where P(x) is the probability density function of x.  We can visually inspect indepen-
dence by plotting the product of the estimated marginal densities of xi and comparing it 
to the estimated joint density of xi.  Figure 1 displays the real and reconstructed joint  
densities of a set of two dependent and two independent random variables.

Figure 1 The two left figures display the joint probability density for two dependent 
variables, as measured from the data (top plot), and as calculated from the product 
of the marginals (bottom plot).  Likewise the figures on the right, display the 
equivalent distributions of an independent set of variables.  Note how the joint 
distributions of the dependent variables are different, an indication of 
dependence.  The same effect does not take place for the independent variables.

This particular definition of independence is somewhat irksome and not very intuitive.  
An alternative condition more akin to decorrelation is defined for two variables x1 and 
x2 as:

P x1 º xN, ,( ) P xi( )
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(6)

where f(◊) and g(◊) are measurable functions.  This is the same condition as for decorre-
lation, with the added complication of the two functions.  As is clear from this defini-
tion, independence implies decorrelation (the case where f(x) = x, g(x) = x), but the 
inverse does not hold.  Decorrelation, by definition, denotes independence only up to 
second-order statistics.  In the special case where the measured variables are drawn from 
the Gaussian distribution, decorrelation and independence are equivalent since the 
Gaussian distribution doesn’t contain any information in orders higher than second.

Measurement of the amount of statistical independence between a set of variables can 
be done using many different approaches.  The most straightforward one comes from 
the definition of statistical independence as presented in Equation (5) and the applica-
tion of the Kullback-Leibler divergence (also known as the KL divergence or the KL 
distance), a measure of difference between two probability densities.  The KL distance 
between two distributions P(x) and P(y) is defined as:

(7)

It assumes the value of zero if the two distributions are the same, and is a positive value 
otherwise.  Using this and Equation (5) we can express the distance of the joint density 
of a vector x and the product of the marginal of its variates xi.  If these two sets of vari-
ables are independent their distributions will be the same and their the KL distance will 
be zero.  This reasoning results in the formula:

(8)

This value is also known as the mutual information of x which is notated as I(x).  It is a 
measure of the common information between the variates of x and as, noted is positive 
and zero iff the variates of x are independent.

For practical reasons, the estimation of P(x) is a hard and unreliable process.  This 
means that for computational implementations the independence measures in Equation 
(5) and Equation (8) are not good candidates for optimization.  To address this issue 
researchers have used alternative methods, one of the most popular being cumulant 
expansions.  Such expansions involve a series approximation of the density functions by 
polynomials that include a set of easily estimated measures known as cumulants.  These 
approximations can potentially extend to many terms prompting to a costly estimation.  
However through experience it has been found that using up to fourth order approxima-
tion the results can be satisfactory.  Computationally a cumulant can be estimated by the 
k-statistics which are expressions of expectation values.  They are defined as:

E f x1( )g x2( ){ } E f x1( ){ }E g x2( ){ }– 0=

D x y||( ) P x( ) P x( )
P y( )
-----------Ë ¯

Ê ˆlog xdÚ=

D x( ) P x( ) P x( )
P xi( )’

----------------------Ë ¯
Ê ˆlog xdÚ=
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(9)

where the summation extends over all possible partitions (s1, s2, ..., sp) of all integers up 
to N.  For example for N = 2 we have:

(10)

since the only partitions of {1,2} are {1,2} and {{1} {2}}.  From this definition it is 
easy to see that cumulants are symmetric functions with respect to their arguments.  
This particular case of N = 2, should be reminiscent of Equation (1), the expression of 
covariance.  Second order cumulants are the covariances.

Even though the cumulants originate as density function approximations, they do neces-
sarily not have to be used for this purpose.  It is easy to show that when statistical inde-
pendence exists between any two arguments of a cumulant, then the cumulant value 
equals zero (Comon 1994).  Consider for example all of the second order cumulants.  
They are all expressed in the covariance matrix.  The off-diagonal elements will be zero 
since independence implied decorrelation, and the diagonal will not.  The off-diagonal 
elements, will be cumulants of two independent arguments, whereas the diagonal ele-
ments will not.  Based on that observation and on that second and fourth order statistics 
are sufficient to approximately express independence, we can define the concept of the 
‘quadricovariance tensor’ (Cardoso 1990, 1995a).  This is a fourth-order tensor (can be 
loosely thought of as a four dimensional matrix), for which the element with the index 
{i,j,k,l} is equal to Cum{xi,xj,xk,xl}.  If we construct this tensor for two independent 
variables x1 and x2 we will only have nonzero values at indexes of the form {i,i,i,i} (the 
diagonal of the tensor).  In other words it will be diagonalized.  This is the equivalent of 
the covariance matrix for fourth-order statistics.  Similar extensions can be conceived 
for even higher orders, however the need for such hasn’t arised yet since they do not 
seem necessary and their computation requires significantly more operations.

Other ways to evaluate independence have also been devised and tailored to different 
applications, however we feel that the ones presented are the most important for our 
purposes and we will not delve into others.  In the following sections we will see how 
we can take advantage of these measures to impose decorrelation or independence on a 
set of variables.

1 . 3 . 2  Principal Components Analysis

Principal Component Analysis (PCA), is also known as the Karhunen-Loève transform 
(or KLT) or data whitening.  It is a method to attain decorrelation between a set of vari-
ables by applying a linear transformation.  Recall that decorrelation implies that the 
covariance matrix of our data will be diagonal.  If we assume a zero mean set of vari-
ables xi ordered as:

Cum x1 x2 º xN, , ,{ } 1–( )p 1– p 1–( )!E xi
i s1Œ
’

Ó ˛
Ì ˝
Ï ¸

E xi
i s2Œ
’

Ó ˛
Ì ˝
Ï ¸

ºE xi
i spŒ
’

Ó ˛
Ì ˝
Ï ¸

◊Â=

Cum x1 x2,{ } E x1x2{ } E x1{ }E x2{ }–=
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(11)

then the covariance matrix will be defined as:

(12)

We therefore need to apply a linear transformation on x that will result in a diagonal 
matrix V.  This is usually achieved by obtaining the eigenvectors of V.  If the matrix U 
contains the eigenvectors ui of V:

(13)

then by the properties of the eigenvectors

(14)

where li are the eigenvalues of V.  Since V is positive semidefinite (all covariance matri-

ces are), then the eigenvectors are mutually orthonormal†, which, for real matrices, 

means that U-1 = UT. Combining that with Equation (12) and Equation (14) we have:

(15)

This means that by applying UT on x, we obtain a covariance matrix that is diagonal.  So 

we have effectively decorrelated x.  We can additionally multiply x by  (where the 
square root operation applies element-wise), so that the resulting covariance matrix is 

†. In general this property is not always true since U is not a  unique eigenvector set; if multiplied by a constant it will still satisfy 
all conditions to be an eigenvector set.  All standard numerical implementations though return the case where Equation (14) 
holds.  For all other possible eigenvector sets the right hand side is multiplied by a constant.  In either case the covariance 
matrix is diagonalized.

x
x1

 

xN

= ...

V E x xT◊{ }=

U
≠ ≠
u1 º uN

Ø Ø

=

U 1– V U◊ ◊
l1 0

    

0 lN

LLLL= =...

L UT E x xT◊{ } U◊ ◊ E UT x◊( ) UT x◊( )
T

◊{ }= =

LLLL 1–
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the unit matrix.  If this extra step of normalization is applied then x is said to be whit-
ened.

In practical terms the matrix U contains a set of vectors that point towards the directions 
of maximal variance of our data and LLLL contains the variances in these directions.  

Applying UT (= U-1) on x, rotates its joint distribution so that the directions with maxi-
mal variance are orthogonal to each other and coincide with the xi axes.  Additionally 

applying  will scale these variances to unity.

To illustrate this consider the bivariate joint distribution in Figure 2, generated by:

(16)

where ni are two uncorrelated uniformly distributed random variables with zero mean 
and unit variance.

Figure 2 The estimated bivariate joint probability density, of two correlated uniformly 
distributed random variables.

Obviously since one element of x contains a portion of the other one, they will be corre-
lated.  The covariance matrix of x will be:
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(17)

The above is that due to the linearity of the E{◊} operator we have E{x+y} = E{x}+E{y} 

and E{ax} = aE{x}.  We’ve also declared that E{x2} = 1 (unit variance) and  since n1 

and n2
  are decorrelated we also have that E{n1n2} = 0.  Combining all the above we 

have:

(18)

The eigenanalysis of V will be,

 and (19)

The set of vectors defined as the columns of  will be pointing into the maximal 
variance directions (Figure 3).

Figure 3 The estimated bivariate probability density of x1 and x2 with the vectors of  
superimposed.  As we can see there vectors coincide with the directions of 
maximal variance and have an analogous length.
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by applying  on x we obtain a new random variable y:

(20)

The covariance matrix Vy of this linear transformation of x will be:

(21)

Which is the unit matrix, hence the variates of y are decorrelated and normalized to unit 
variance.  The joint distribution of y is shown in Figure 4.

Figure 4 The estimated probability density of the variables in Figure 2 after decorrelation.  
The covariance matrix of this linear transformation of x1 and x2 results in a 
diagonal matrix.  Also note that the rotation which we achieve is the one that 
places the two maximal variance directions (denoted by the plotted vectors) on the 
axes of x1 and x2.

Alternative algorithms for the estimation of the proper PCA rotation have been devel-
oped.  The most notable set is that of adaptive (also known as online) algorithms, algo-
rithms that estimate the rotation on a sample per sample basis, without using a 
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covariance matrix (Hertz et al. 1991).  Such approaches are very useful in the case 
where the amount of data prohibits the calculation of the covariances, of when we work 
with real-time systems with little memory.

An alternative approach to PCA which produces similar results is to directly solve 

 to find the transformation we seek.  This solution results in the transfor-

mation .  This is however a less common approach since it is com-
putationally complicated (in particular the square root of a matrix is not an easy or 
always accurate computation), and it doesn’t have the convenient semantic properties 
that PCA has.  It has been used successfully though and has properties of its own, pro-
viding a symmetric transform (as opposed to the orthogonal transform of PCA), and a 
zero phase set of bases (Bell and Sejnowski 1996).  This transform is referred to as 
Gaussian Components Analysis (GCA).  In addition to PCA and GCA there are addi-
tional solutions to this diagonalization problem subject to varying constrains on the 
resulting transform, however they are not as common or useful and rarely appear in the 
literature.

Historically PCA has been a heavily used tool in statistics.  It was used either as a mech-
anism to discover the ‘interesting’ directions of a multivariate distribution, or as a 
method to for data compression.  Finding interesting directions has been one of the sta-
ples of pattern recognition where PCA is often used to discover significant features and 
axes of importance.  The perceptual implications of PCA, and related methods, on sen-
sory data were also examined by Linsker (1988), who paved the way to more the more 
sophisticated methods used today.  In terms of compression and dimensionality reduc-
tion, by performing PCA on a set of data and discarding the variates with the minimal 
variance contribution we can reduce the amount of data and improve transmission and 
storage requirements, with limited degradation effect on the original data (in a least 
mean error sense).  This approach has found a lot of applications on coding theory and 
signal processing and forms the basis of many industry standards on compression.

1 . 3 . 3  Independent Components Analysis

As seen from the above example, PCA performs a valuable task, it doesn’t however 
return an even more desirable result.  A result whose value uncovers the nature of x as it 
relates to a set of independent variables.  Such an undertaking would imply an algorithm 
that not only decorrelates, but also makes the variates of x statistically independent.  In 
the general linear model where x is defined as:

(22)

that process translates into finding the structure of A so as to recover the underlying data 

n, by applying W = A-1 on x.  The data n is in many cases a highly desirable discovery 
since it expresses x in the barest possible way.  This problem has been studied rigorously 
and has provided a family of algorithms known as Independent Component Analysis 
(ICA).

V E x xT◊{ }=

W 2E x xT◊{ }
1– 2§

=

x A n◊=
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In general most approaches to this problem implement the solution

(23)

where the variates of  were strived to be as independent as possible by fine tuning of 
W.  Since independence is defined in relation to either hard to estimate density functions 
(Equation (5)), or to a very large (if not infinite) set of constraints (Equation (6)), a pro-
cess similar to PCA is hard to devise.  These problems prompted researchers to use 
alternative ways to define independence, so as to be able to implement them.

One of the earliest examples of ICA at work was by Herrault and Jutten (1991), who 
devised a neural network that performed decorrelation of non-linear transformations of 
variables.  In effect they imposed the constraint

(24)

for a single set of the functions f(◊) and g(◊).  Their results were highly dependent on a 
careful selection of these functions in relation to the statistical characteristics of the 
variables to decorrelate.  They did however produce good results and effectively imple-
mented a first practical, albeit limited, implementation of ICA.  Later on, this approach 
was revisited by researchers working on non-linear PCA (Oja 1995).  This is a form of 
PCA in which adaptive PCA algorithms were modified so as to decorrelate non-linear 
transformations of variables in hopes of achieving independence.  This approach pre-
sented a unifying theory between PCA and ICA and provided a common platform for 
their analysis.

The first formal ICA definition came from Comon (1989), who coined the problem in 
terms of statistical independence and provided a solution based on mutual information 
minimization.  As formulated by Comon, ICA attempts to minimize the mutual infor-
mation of the output of the transformation in Equation (23).  This definition contained 
the hard to estimate density functions, so Comon approximated mutual information 
using joint-cumulant approximations.  In the process of doing so he proposed an algo-
rithm and provided a wealth of information pertaining to this process.  Cardoso (1993) 
also provided robust algorithms which were based on cumulants.  He introduced the 
concept the ‘quadricovariance tensor’.  By providing a diagonalization method for this 
tensor he performed an operation similar to PCA, but also for fourth order statistics, 
hence doing more than just decorrelation.  Although technically this does not yield sta-
tistical independence (since there needs to independence for all orders, not just 2 and 4), 
for practical reasons it has proved to be satisfactory.

The seminal work on online ICA was presented by Bell and Sejnowski (1995), who 
were successful in formulating an online algorithm which provided relatively robust 
performance and efficiency.  Their approach was termed information maximization 
(infomax), since it relied in maximization of joint entropy.  Their network operated on a 
slightly modified version of Equation (23):

n̂ W x◊=

n̂

E f n̂1( )g n̂2( ){ } E f n̂1( ){ }E g n̂2( ){ }– 0=



Introduction

26 Statistics for Perception

(25)

where f(◊) is an appropriately chosen function applied on all elements of its input (usu-
ally the logistic or the hyperbolic tangent).  Maximization of entropy occurs on y by 
adaptation of W.  By doing so it effectively minimizes mutual information between the 
variates of y and provides the desired W.  The update rule assumed the very simple 
form:

(26)

where the -T operator denotes inversion and transposition, and g(◊) was applied to all ele-
ments of u.  The selection of g(◊) is closely related to f(◊) and is defined as:

(27)

Their results were obtained by observing that:

(28)

and

(29)

where H(◊) is the entropy operator, P(◊) the probability density function and J the jaco-
bian of the transformation f(W◊x).  From the equation above we can see that the effect of 
W on joint entropy is dependent solely on J.  Hence maximization of entropy can be 
carried out by maximizing J.  By carrying out the proper differentiations to ensure max-
imization by gradient descent, we obtain the rule in Equation (26).

Their approach was subsequently improved by Amari et al (1996), for more robust per-
formance.  They performed adaptation using a more proper form of gradient for the 
problem (known as the natural gradient) that allowed for better convergence characteris-
tics, such as performance independent of the mixing conditions, and faster adaptation 
speed.  The resulting rule was the original rule in Equation (26) right multiplied by 

WTW:

(30)

y f u( ) f W x◊( )= =

DW W T– g u( ) xT◊+µ

g ui( )
ui∂

∂ y'ilog=

P y( ) P x( )
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-----------=

H y( ) E Jlog{ } E P x( )log{ }–=
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Similar results were independently obtained by Cardoso (1995b) who coined this form 
of gradient the relative gradient, and by McKay (1996) who recast ICA in the maximum 
likelihood context and employed Newton’s method to obtain similar results.  It is inter-
esting to note in retrospect that this approach is effectively performing decorrelation 
between g(y) and x since DDDDW becomes 0 when the product g(y)◊x equals I.  When that is 
the case we have the implication that g(y) and x are decorrelated.  Referring back to 
Equation (6) we see that this is a condition for likely statistical independence.  Bell and 
Sejnowski (1995) note that a suitable choice for the function f(◊) is the cumulative den-
sity function of the sources.  Although there has been work on the optimization of f(◊) in 
addition to the W matrix (Nadal and Parga 1994), this is not always necessary.  It has 
been observed that if f(◊) is a cdf of a super-Gaussian distribution (a peakier distribution 
than the Gaussian, exhibiting a positive kurtosis), then it is sufficient to perform ICA on 
any other super-Gaussian distribution, and like-wise for sub-Gaussian.  Although this 
effect has not been explained so far, it is a fortunate one since application of ICA only 
requires knowledge of super- or sub- Gaussianity of the sources.  For audio, due to its 
mostly super-Gaussian character, employing f(◊) as the logistic or the hyperbolic tangent 
is sufficient for most cases.

The latest major algorithm to emerge is FastICA (Hyvärinen 1999), a fixed-point algo-
rithm that exhibits fast convergence by employing an algebraic algorithm based on 
fixed-point iterations.  This approach yields very fast results and ample flexibility, and 
has also risen to the forefront of ICA algorithms.

In order to build a better intuition on ICA we refer back to the numerical example we 
used in the previous section.  Applying any of the ICA algorithms to the data in Figure 
2, we obtain an different rotation.  A resulting transformation was:

(31)

which when applied on the input data obtains the original independent distributions we 
used to create it.

(32)

This result† can be interpreted in a number of ways.  One is that we have linearly trans-
formed the data so as to make them statistically independent.  This is equivalent to the 
notion of factorial coding, in which we desire an transformation that results in maxi-
mally independent output.  We can also claim that we have discovered the underlying 
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model and data that generated our observations.  A result of significance when we are 
concerned with the generative process of our data.  The resulting W matrix is also worth 
examining since it provides a sparsifying transformation.  In many cases knowledge of 
this transform is more important than the independent data.

Figure 5 The estimated probability density of the data in Figure 2 after application of ICA.  
We can see that we have managed to obtain an independent set of two uniform 
distributions.

1 . 3 . 4  Applications of ICA

As should be evident, ICA performs a very important task in terms of statistics.  It is a 
relatively new technique which is still being explored.  So far its applications have been 
limited in scope, it does however contain a lot more potential (and part of our work is to 
present additional uses of ICA).

The most common application of ICA, up to the point of being virtually synonymous to 
it, has been blind source separation.  Blind source separation is defined as the process 
where a set of linearly superimposed sources that are randomly mixed are recovered by 
only observing only their mixtures and having no knowledge about the mixing condi-
tions.  It is formulated by using a set of sources si and mixing them using what is 
referred to as the mixing matrix A.  This produces the mixtures xi:

†. It should be noted that ICA algorithms are invariant to scaling and permutations.  Another valid solution to our data would be 

any matrix of the form , where L is a diagonal scaling matrix, P a permutation matrix and W the result we have 
obtained above.  This is not generally a problem though since we are often interested in just obtaining an independent set of 
outputs, and scaling and ordering are not as important.
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(33)

By using this formulation we can apply an ICA algorithm on x to obtain the unmixing 

matrix W = A-1 and use it for recovering s (Bell and Sejnowski 1995).  This approach 
was initially used for auditory mixtures attempting to solve the scenario of N sources 
captured by N microphones.  It was also applied on electroencephalographic (EEG) and 
magnetoencephalographic (MEG) data as well as to other electrophysiological data, in 
which case multisensor signals of neurological activity are recorder and a need for isola-
tion of specific sources is key for subsequent analysis (Makeig et al 1996).  Additional 
applications of this particular technique took place in other domains such as image, 
financial analyses, they are fields that have still to mature.

Blind source separation using ICA was also applied for signal deconvolution.  This was 
done by observation that convolution is equivalent to mixing of time delayed versions of 
the same signal:

(34)

Using this interpretation of filtering we can represent the filter as a mixing matrix, and 
recover its inverse with application of ICA on the y vector (Bell and Sejnowski 1995).  
By subsequent application of the inverse filter on y we can recover an estimate of the 
original signal x.

Due to the nature of sound mixing in the real world, the simple blind separation model 
was expanded to include delay propagations and source filtering, an approach that com-
bined the two problems above.  Although it is still a generally unsolved problem, under 
reasonable conditions, solutions are possible (Torkkola 1996, Smaragdis 1997, Lee 
1997, Ikeda 1999).  Effords in this field are exaustivelly covered by Torkkola (1999).

An additional application for which ICA was used was that of feature extraction.  
Although the ICA applications so far were concerned with obtaining a particular linear 
transformation of the input, the transformation itself is also worth examining.  In the 
above examples it represents the inverse mixing and/or filtering conditions from the 
ones present.  If we however supply arbitrary data as an input, then the transformation 
will be one that ensures a maximally sparse coding.  In particular the obtained matrix 
will contain a set of sparsifying filters in it.  There filters can be associated with detec-
tors for extracting important features.  This approach was applied for natural image cod-
ing and the results were of great perceptual importance since the discovered filters 
proved to be close to neurologically measured filters in our visual cortex (Olshausen and 
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Field 1996, Bell and Sejnowski 1997, Hyvärinen 2000).  To further strengthen the value 
of this research, the approach agreed with the information redundancy theories on per-
ception and vision which makes a plausible argument on environmental perception 
development.

Apart from separation and feature extraction, additional applications of ICA have been 
scarce so far.  There has been some work on substituting PCA with ICA for coding pur-
poses, and research that has produced denoising algorithms (Hyvärinen et al 2000).

1 . 4     Putting It All Together

The concepts that we have presented in this chapter are the backbone of this thesis.  So 
far we have made a connection between perception and information processing, and 
described some popular algorithms that achieve data transformations which can reveal 
useful information about data and be paralleled with low level perceptual processes.  In 
the succeeding sections, we will use these principles, and the inspiration from the work 
linking information theory and perception, to construct various perceptual-like functions 
in the auditory domain.  These functions will be shaped by their environment and abide 
by a common and simple set of evolutionary rules.  Our focus will be to make a machine 
behave similarly to how we do, but under these restrictions.  The focus will be on con-
structing a system that learns to perform its function by data observation, and in contrast 
to past approaches for computational audition we will avoid any form of external influ-
ence or guidance.
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Chapter 2. Auditory Preprocessing and Basis 
Selection

2 . 1     Introduction

In this chapter we will consider the preprocessing step of auditory systems.  We will 
present an introduction to preprocessing and basis selection as it applies in both the per-
ceptual and the computational domains.  A recently introduced method for discovering 
bases for perceptual data will be applied in the auditory domain, and will be used to 
argue a connection between the statistics of natural sounds and the development of our 
hearing interface.
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2 . 2     Computation Background

Basis selection is an important part of the design of analysis systems.  Basis decomposi-
tion provides a translation of raw data to a collection of known functions.  Having trans-
formed our data to this known set of functions, which usually have some desirable 
properties, we can manipulate the original data with greater ease.

2 . 2 . 1  Fixed Bases

The use of basis functions came to light with the work of Jean Baptiste Joseph Fourier, 
early in the 19th century.  His work on the expansion of functions into trigonometric 
series sparked the beginning of the field of functional analysis.  Functional analysis 
deals with the translation of a function to a sequence of simpler functions that converge 
to it.  Studies of linear transformations by Jacobi, Kronecker, Cayley and others, created 
an algebra dealing with operators that perform such translations and thus helped define 
basis decomposition for discrete sequences as we use it today.

The idea behind basis decomposition is fairly simple.  Assume we have an unknown set 
of data like the one depicted in Figure 1.

 

Figure 1 An unknown function.

Some calculations and mathematical manipulations on this curve might be hard because 
it exhibits an unknown structure.  We have no list of properties to take advantage of, and 
no knowledge of its statistics.  However, if we were to decompose it into known and 
simpler functions, we could instantly manipulate it with greater ease.  These simpler 
functions will be the basis functions we will extract from that data.  For the specific data 
above, a possible set of basis functions is the one shown in Figure 2.  The superposition 
of these bases reconstructs the original data exactly.
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Figure 2  Two basis functions of  the data in Figure 1

With our newfound knowledge that the initial function can be decomposed to the sum of 

the two functions   and  we are now free to perform various analysis proce-
dures taking advantage of their properties.  Simplified integration/differentiation can be 
performed using linearity and the properties of simple exponentials, local minima can 
be discovered by examining the intersection of the two bases, etc.  Although this was a 
simple example, in more complicated data sets basis decomposition is crucial for most 
analysis procedures.

It should be obvious here that there is never just one set of basis functions for any data.  
The bases used in the preceding example were exponential and were chosen as such 
because the original data set was created using them.  When we deal with unknown data 
this is not the case, and the selection of a set of basis functions is determined by the 
nature of our problem, and the techniques we wish to apply to it.  Even then, some basis 
functions have become more popular than others and are more frequently used.

One of the most popular set of basis functions are the ones originally introduced by 
Fourier.  He was able to prove that any integrable function  can be decomposed to 

a sum of trigonometric functions scaled in amplitude by the scalars :

 (1)

In the discrete case, we use the Discrete Fourier Transform (DFT), which is defined as:
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 (2)

where ,  and .  The latter 

matrix is called the Fourier matrix or DFT Matrix.

His work was found to be invaluable for the analysis of time-series, and through the 
work of Norbert Wiener (1949) and Andrey Nikolayevich Kolmogorov it has become a 
staple of communications and signal processing sciences.  Figure 3 illustrates a simple 
function and its corresponding discrete Fourier transform.  As is evident the Fourier 
transform gives us a clear interpretation of the signal it terms of frequency ordered sinu-
soids.

  

Figure 3 The left figure displays the function .  The magnitude of its 

Fourier analysis is shown in the right figure.  The stems signify the amplitude of 
each trigonometric basis, as we expect the bases with the strongest amplitude are 
the ones with frequencies mapping to 1 and 30 (note that the output of the 
magnitude of the Fourier transform is symmetric about 0, hence the four peaks).

With the advancement of telecommunications and signal processing theory, a number of 
variants of the Fourier transform were introduced, most notably the Cosine transform, 
the Sine transform, the Haar transform and others.  Of these, the Cosine transform 
(Ahmed 1972) was found to be very popular, since it was purely real (unlike the Fourier 
transform which contains imaginary parts) and because it had a straightforward interpre-
tation, as well as some beautiful properties.  In discrete time it also has a matrix formu-
lation same as the Fourier transform (Equation (2)), in which the transformation matrix 
is:
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(3)

As we will see later the Discrete Cosine Transform (DCT) has a special property in 
decomposing some time series such as sounds.

Although the aforementioned transforms have proved to be very useful, they lack the 
ability to track the evolution of bases across time.  Consider as an example the signal in 
Figure 4; it exhibits a simple amplitude modulation of a single Fourier base, but the 
Fourier transform doesn’t reveal that in any intuitive way.  It returns an interpretation 
that contains many neighboring sinusoids, whose sum creates a beating effect resulting 
in the original amplitude modulation.  However in terms of bases we would rather have 
an interpretation that a single base is amplitude modulated through time.  In other 
words, we wish to introduce the time dimension in the Fourier transform.

  

Figure 4 A constant-frequency time-modulated signal has a Fourier transform that 
obscures its true structure.

To overcome the time insensitivity illustrated above, the Short Time Fourier Transform 
(STFT) was introduced by Gabor in 1946.  The STFT performs Fourier transforms on a 
moving time window across our data (Figure 5).

CN
i j,( )

1

2
------- j 1

2
---+Ë ¯

Ê ˆ ip
N
-----Ë ¯

Ê ˆ for i = 0cos

j 1

2
---+Ë ¯

Ê ˆ ip
N
-----¯

ˆ for i 0>Ë
Êcos

Ë
Á
Á
Á
Á
Á
Ê

=

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
f(x) = sin( 2x) sin( 30x)

x

f(
x)

 -50  -40  -30  -20  -10    0   10   20   30   40   50
0

5

10

15

20

25
DFT( f(x) = sin( 2x) sin( 30x))

x

F
(x

)



Auditory Preprocessing and Basis Selection

36 Computation Background

 

Figure 5 Short Time Fourier Transform process.  A set of windows are positioned on the 
time axis, selecting time-localized parts of the function to be analyzed.   They are 
then individually Fourier-transformed and result in time-localized Fourier 
analyses. 

Thus for each time instance t we have a corresponding Fourier transform  decom-
posing just the data from x(t) to x(t+T).  For practical reasons that data can be optionally 
scaled by a window w(t) before the Fourier transform, so as to remove some analysis 
artifacts caused by the, otherwise abrupt, boundaries.  In the continuous time it is formu-
lated as:

(4)

and in the discrete case: 

 (5)

where , , , 

w is the scaling window and the ƒ operator denotes the Hadamard product (element-
wise multiplication).

Using this system we only perform basis estimation for a given time neighborhood, thus 
improving the time localization of our decompositions.  The rate by which the variable t 
advances is dependent on how dense we want our decompositions to be in time.   How-
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ever it seldom exceeds the time span of the transformation, and is typically an integer 
fraction of the transform size.  This type of transform is of course not only restricted to 
Fourier analysis.  We could substitute the DFT matrix in Equation (5), with other trans-
form matrices such as the DCT matrix.  Revisiting the example in Figure 4, we can visu-
ally display the STFT of that time series (Figure 6).  Unlike the plain Fourier analysis, 
the STFT forms a peak corresponding to the modulated frequency in our signal, which 
is modulated in time.  This interpretation is more intuitive and easier to understand than 
the one given by Fourier.

This kind of joint time-frequency analysis, is also referred to as a spectrogram or a 
sonogram (Figure 7), and it has been an invaluable tool for harmonic analysis of sounds 
(Risset 1965).  Just as the Fourier analysis is a great tool for making manipulations on 
the harmonic structure of a sound, the STFT has extended this facility on the time axis.  
Using the STFT it is easy to perform time-variable filtering and complicated convolu-
tion operations.  A derivative of the STFT is the phase vocoder which has been a most 
valuable tool for the manipulation of speech (Flanagan and Golden 1966, Dolson 1986).

Figure 6 STFT analysis of the signal in Figure 4.  Note how, unlike the Fourier transform, we 
get basis estimates in different times, thereby representing the nature of the 
signal in a more comprehensible way.

It should also be noted that the STFT is intimately linked with filterbanks.  Filterbanks 
are sets of filters that operate concurrently on a signal  to distribute its energy on a fre-
quency axis.  Most commonly they are used for spectral analysis by employing band-
pass filters in series, a function equivalent to what the STFT performs.  In fact the STFT 
is a filterbank (Allen and Rabiner 1977, Moore 1990) and it can be analyzed and treated 
as such.
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Figure 7 An STFT analysis of speech.  Each column of this graph is an individual Fourier 
transform at a corresponding time point.  Darkness denoted amplitude.  Using this 
type of analysis we can visualize features which an ordinary Fourier transform 
would not display.  In this example it is clear to see the formant structure of 
speech.

The move to composite time-frequency transforms opened the way for additional explo-
ration that resulted in the field of time-frequency analysis.  Heisenberg’s uncertainty 
principle applies to this type of analysis, and it translates the momentum/position trade-
off, to a time/frequency trade-off.  It states that a higher frequency tracking resolution 
will lessen the time tracking resolution and vice versa.  In particular, for a basis function 
f(t), where  (f is unit norm), the time spread  and the frequency 

spread , are related by:

 (6)

Whenever equality exists the basis offers optimal resolution for both frequency and time 

(this occurs when ).  However, in both the Fourier transform and by inherit-

ance the STFT, as we examine bases of higher frequencies,  remains the same whereas 

 grows.  That means that we are not performing an optimal detection for the higher 
frequencies.  This is easy to understand intuitively, by observing that for a fixed time 
spread the lowest frequency will only occupy one period, hence we will only need to 
estimate its amplitude with one number.  Higher frequencies, however, will contain 
many more periods whose mean energy will be what the DFT will return.  We are obvi-
ously discarding information about the temporal changes within this frame, but if we 
were to make the time window smaller to compensate we would not be able to track the 
lower frequencies.  This observation was the starting point of multiresolution analysis 
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theory, which culminated with the development of the constant-Q and wavelet trans-
forms that address this problem.  These transforms are still basis decompositions, albeit 
with more elaborate structure so as to avoid suboptimal resolution problems.

Of course harmonic decompositions presented in this section are not the only type of 
basis analyses, they are however the most popular and are indeed some of the most use-
ful in the analysis of auditory signals.  Other non-harmonic popular bases are radial 
basis functions, mixture models,  sums of sigmoids (Haykin 1994).  However, they have 
not yet been put to any significant use in the audio processing research literature, and 
they lack the intuitive appeal of the harmonic transforms.

2 . 2 . 2  Data-dependent Bases

Although basis decomposition to a set of known and well-understood bases is some-
thing to pursue, it is not necessarily the only way to perform analysis.  Sometimes it is 
not the form of the bases that is important, but rather their mutual properties and their 
relation to the original data.  A lot of these transforms derive the bases from the data 
given some property constraints.  Usually these transformations are statistical in nature 
and are closely related to statistical analysis.

Linear algebra provides multiple examples of such basis decompositions that are 
defined by their properties rather than their form.  One particularly useful example is the 
Principal Components Analysis (PCA, also known as the Karhunen-Loève transform, or 
KLT).  In PCA the goal is to deduce from the data a set of basis functions which are 
orthogonal to each other and ordered in rank of variance contribution.  They addition-
ally have to apply a transformation to the data that results into decorrelated outputs.  
The significant difference of this approach from the transforms in the previous section is 
the fact that the basis functions will be derived by observation of the data.

Generally, when dealing with time series an appropriate way to apply any linear algebra 
decomposition is as follows.  For a zero-mean discrete time series f(t) we construct the 

vector  where N is an integer equal to the time span of the 

bases we wish to discover.  We can then construct a matrix containing the entire series:

 (7)

Where M is the index of the last possible frame, and the temporal spacing of the col-
umns can take place at an arbitrary rate (in some cases there is no need that the f vectors 
are even spaced in strict time order, nor that all possible frames exist).  Having this rep-
resentation, our goal is to find a set of basis functions that will be able to reconstruct 
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matrix F.  We can proceed by analyzing this matrix according to our favorite linear alge-

bra decomposition method†.  Since PCA exhibits a lot of interesting features for sound 
analysis, we will proceed with its formulation in this framework.

As we have covered before, in order to perform PCA we need to obtain the covariance 
matrix of our data.  As described above our data is now the matrix F (Equation (7)).  The 
covariance we need is defined as:

 (8)

We then proceed by factorizing C as:

 (9)

where Q is an orthogonal and L a diagonal matrix.  In Q we obtain an orthogonal set of 
bases qi:

 (10)

These estimated basis functions comply with the PCA orthogonality requirement since 

, and they are fine-tuned to our particular data set.  The factorization 

in Equation (9) can be numerically performed by either the Singular Value Decomposi-
tion (SVD) or by symmetric matrix eigenvector analysis (Golub and Van Loan 1983).

As mentioned previously, PCA has a special feature making it a good analysis tool for 
sounds.  It is very interesting to note its relationship with the Discrete Cosine Trans-
form.  We can draw an analog by observing that PCA and DCT both feature orthogonal 
bases.  So it not unimaginable that some sets of data, when analyzed by PCA, will result 
in the DCT bases.  It turns out that if we were to use the aforementioned method of 
deriving PCA bases from a set of sounds which exhibit some temporal coherency, we 
actually get very similar bases with the DCT (Ahmed 1972).  The bases in Figure 8 were 
derived from a recording of speech, note how they are approximately sinusoids ordered 
in frequency, just like the DCT bases.  N was 36.

†. Keen observers will notice that this is a similar scheme to the STFT transform in the discrete domain.  Had our linear decom-
position been multiplication with the DFT matrix, we would be implementing Equation (5) with no windowing.
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Figure 8 The set of basis functions derived using PCA on sounds exhibiting harmonicity.  
The requested basis size was 36 samples.  Note that these functions are similar to 
DCT bases, in the sense that they are frequency localized and sinusoidal in 
nature.

This interesting result has been studied in the field of data coding, where PCA is often 
used.  It can be shown that the DCT, is indeed asymptotically equivalent to such PCA 
analysis of time coherent time series.  Rao and Yip (1990) show that the DCT bases can 
be derived from a Karhunen-Loève transform of a first order Marcov process (a process 

with a covariance matrix with elements C(i,j) = r|i-j| for any 0 < r < 1).  Strang (1999), 
proves the same for the case where the covariance matrix is the second difference 
matrix, and Sánchez et al (1995), repeat the same task for all finite order Markov pro-
cesses.  Interestingly enough the same results apply to the DFT (Grenander and Szegö 
1958, Gray 1972), although it is less optimal than the DCT.

We did however mention that PCA should be highly dependent on the type of input 
data, and there are cases where the above constraints do not hold.  To illustrate the effect 
of the analyzed time series data on the estimated bases, we consider two more examples 
of input sounds.  First we assume that f(t) is white noise.  That implies that there are no 
time regularities as in natural sounds, henceforth we would not be able to estimate as 
coherent a set of bases like before.  In fact the individual bases turn out to be white noise 
(Figure 9).

Speech PCA bases
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Figure 9 PCA-derived bases from a white noise signal.  The bases themselves are white 
noise since there was no temporal regularity to be discovered.

We repeat the same experiment for a signal that was generated by a sparse and random 
placement of the signal {1,-1} on the time axis.  This time, temporal regularities are 
present (all 1’s are followed by a –1), but they are not enough to deduce the harmonic 
series from them.  Our analysis produces the bases in Figure 10.

 

Figure 10 PCA-derived bases for sparse time-delayed instances of {1,–1}.  Note that the 
bases are influenced by the structure of the input signal in the form of maintaining 
a high-frequency character.

White noise PCA bases

Click signal PCA bases
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Other basis decomposition operations in the linear algebra domain include the Singular 
Value Decomposition (SVD) and eigenvector decomposition (which are both closely 
related to PCA), the LU, QR, QZ decompositions, as well as a multitude of more spe-
cialized ones.  All of these result in bases that have unique features.  Depending on our 
goals, we can pick the most relevant transformation to help us.

As in the case of the Fourier transform we can apply these bases in a sliding window 
fashion so as to emulate the STFT process.  This allows us to track the change of bases 
through time.  Unlike with harmonic transforms there is no time-frequency trade-off, 
since these bases do not have a frequency by design, neither is there a need for a win-
dow in STFT type analysis, since the bases don’t have any specific features that result in 
artifacts.

2 . 2 . 3  Auditory Perception and Basis Decompositions

In the studies of auditory perception, basis decompositions are highly prominent.  This 
fact is caused by the excessive study of the preprocessing parts of the auditory system, 
in particular the mechanics of an organ known as the cochlea.

   

Figure 11 A schematic of the physiology of the ear (left) and a picture of a cochlea (right).

The cochlea is the most dominant organ in the physiology of the mammalian ear.  As its 
name implies, it is a snail-like organ and it resides at the inner ear (Figure 11). Uncoiled 
it measures about 35mm in length.  It is mechanically connected to vibrating parts of the 
ear and it is responsible for the transduction of physical energy to neural impulses.  
Inside it lies the basilar membrane floating in the cochlear fluids. The basilar membrane 
extends throughout the length of the cochlea, starting out as being narrow at the begin-
ning and gradually becoming three to four times wider at the other end.  As vibrations 
caused by sounds excite the basilar membrane, it tends to resonate with the higher fre-
quencies near its base at the beginning of the cochlea, while progressively lower fre-
quencies create displacements towards its apex (Figure 12).
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Figure 12 Resonating behavior of the basilar membrane under different frequencies.

In effect it distributes the energy of different frequency bands throughout its length.  
These displacements of the basilar membrane are detected by a series of hair cells inside 
the cochlea, that upon stimulation release chemical transmitters through a connection 
with the nervous system and cause neural pulses in proportion to the detected activity.

As the cochlear function suggests, it performs a decomposition very similar to a har-
monic analysis. This observation was noted by many researchers who have worked on 
computational audition models and spawned an entire culture of research dealing with 
front-end design for audition.

The visual appeal of harmonic analyses and the further justification that our hearing sys-
tem includes one, have been catalysts for their adoption in audio analysis systems.  The 
STFT has been, and still is, a dominant model for a front-end.  It was used early on by 
Moorer (1975) and Parsons (1976) to create sound separation systems.  It is easy to 
manipulate, efficient and well-understood (albeit limited).  A later model, closer to the 
cochlear function, as well as a better estimator of time-frequency analysis, are constant-
Q transforms (harmonic transforms in which the frequency spread versus the time 
spread are constant throughout the bases).  They were used by Petersen (1980) and 
Brown (1991), as  front-ends for audio analysis systems, reporting a better analysis per-
formance as compared to STFT.  McAuley and Quartieri (1986) introduced a sinusoidal 
analysis technique, in which tracks of sinusoidal partials are formed by event formation 
over peaks in a time-frequency analysis (Figure 13).  Serra (1986), extended the sinuso-
idal model by employing a shaped noise generator to model noisy sound segments, 
which the McAulay-Quatiery system failed to represent well since their finite number of 
sinusoids were unable to cover the frequency spread of noise.  Ellis and Vercoe (1992), 
also made use of the McAuley-Quartieri sinusoidal analysis technique in conjunction 
with a constant-Q transform to mimic the behavior of the auditory system and provide 
what was coined as a ‘perceptual representation’.  Grossman, Kronland-Martinet and 
Morlet have published a lot of work on audio analysis incorporating wavelets as the 
front-end (Grossman et al 1990).  Using the unique multiresolution properties of wave-
lets they were able to perform very accurate analyses with superior results as compared 
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to the STFT.  Additional transform methods such as the cepstrum (Oppenheim and 
Schafer 1989) and LPC (Makhoul 1975) have been employed, their uses however are 
specifically application based and we will deal with them.

  

Figure 13 Illustration of various auditory front-ends.  The first two figures illustrate the time-
frequency tiling of bases in the STFT (left), and a constant-Q transform or wavelet 
(center).  In the STFT the tiles are the same throughout frequencies; as a result the 
upper tiles capture more periods of the corresponding harmonic, resulting in an 
averaged estimate.  This problem is solved in a constant-Q tiling since the time 
spread is reduced for higher frequencies.  The right figure illustrates sinusoidal 
analysis, from which sinusoidal tracks are formed by examination of an underlying 
time-frequency transform (the original sound is displayed in Figure 7).

Although the aforementioned decompositions are inspired by the function of the 
cochlea, they were by no means meant to be biologically accurate.  The accurate recon-
struction of the cochlear function has been extensively studied and has become a field of 
study on its own. (Flanagan 1960).  Today, by convention, the dominant model 
employes a gammatone filterbank (Johannesma 1972) to approximate the function of 
the cochlea.  A gammatone filterbank is composed of basis functions which are sinusoi-
dal tones  modulated by gamma distributions, that is:

 (11)

where f, a and b are arbitrary values and  is defined as:

 (12)

Examples of some instances of gammatones are displayed in Figure 14.  The various 
reasons attributed to its relative success are somewhat ad-hoc (at least as far auditory 
perception is concerned), and primarily include the ‘pseudo-resonant’ transfer function 
of gammatones, the simple description of the filterbank, and the efficiency of implemen-
tations in either digital or analog form (Lyon 1996).
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Figure 14 Gammatone examples for various values of f, a and b.

Various ruminations of the basic model exist, but mostly dealing with implementation 
issues and efficiency matters.

Researchers in computational audition, drawing inspiration from cochlear modelling 
research, have employed even more complex front-ends, most notably the correlogram 
and its derivatives (Slaney et al 1994).  Although it is arguable as to whether this is just a 
preprocessing process or not, many people have used it as a front end for listening func-
tions.  The use of correlogram usually consists of a cochlear-like filterbank extended by 
an extra dimension, which represents the lag time of autocorrelations applied on the 
energies of every frequency channel.  Building on that model, the weft was introduced 
by Ellis and Rosenthal (1995), as an element for decompositions of primarily harmonic 
sounds.  The weft is extracted from the correlogram data and is inherently linked to 
common modulation between frequency bands.

2 . 3     Environmental Statistics

Barlow (1989) speculated that the processing of sensory signals from neural mecha-
nisms performs factorial coding.  Factorial coding performs a decomposition which 
results in statistically independent from features, thereby storing maximal information 
in a non-redundant manner.  The fact that our environment contains strong and consis-
tent statistical regularities which our sensory system has to parse, makes it conceivable 
that our neural mechanisms are fine-tuned to them in order to perform such a coding.

Atick and Redlich (1990), following Barlow’s redundancy reduction theory, were able 
to derive transfer functions for visual encoding which were excellent approximations to 
experimental data derived from visual cortices of  monkeys.  They had effectively made 
the point that the visual system is indeed tuned to the regularities of visual scenes, and it 

Bases in time domain



Auditory Preprocessing and Basis Selection

Measuring Bases from Real Sounds 47 

can be evolved by the use of some information based transformation.  The idea that the 
receptive fields of neurons in our visual system, are tuned to natural image statistics had 
been around since Barlow (1987), but this was one of the first practical implementations 
to confirm it.  Olshausen and Field (1996), and Bell and Sejnowski (1997), made a sim-
ilar argument by experimentally deriving filters equivalent to the ones found in the 
visual cortex, by performing optimization striving for filter sparseness and optimal 
encoding.  This work was followed by Hyvärinen (2000), who extended the framework 
to deal with shift invariant bases.  Further work on this subject is been pursued, and by 
now it is believed as very probable that the receptive fields of the V1 neurons, one of the 
early stages of the visual processing system, are indeed tuned to natural images and 
their statistics.

This work has shed new light on the development of visual front ends through their 
environment.  It presents plausible argument which is grounded on a reasonable theory 
of perception.  However, no matter how compelling these results have been they have 
not been applied in the auditory domain.  The following section performs the auditory 
analogue to these visual experiments in the auditory domain and results in an equally 
interesting outcome.

2 . 4     Measuring Bases from Real Sounds

Although the idea of deriving bases from ensembles of real sounds† was touched upon 
(Bell 1996), it was never examined in depth neither compared to physiological data 
from our auditory system.  We will address this area in this section.

We begin by employing a method similar to that we used for PCA analysis of sounds as 
introduced in a preceding section.  We construct a matrix which features segments 

 from the data f(t) to be analyzed:

(13)

According to our theory, our goal would be to estimate a set of bases that result in max-
imally sparse outputs.  That is that instead of looking for second order decorrelating 
transforms as we do in PCA, we look for a maximally statistically independent output.  
As it was shown in the previous chapter Independent Component Analysis (ICA), pro-
vides us with the means to perform such a decomposition.

†. Real sounds is a loose definition describing mostly naturally created sounds.  These are sounds that encapsulate some sta-
tistical features that specialized synthetic sounds might not have.
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We start by whitening (decorrelating) the data using PCA, by which we incidentally 
obtain the approximate DCT bases CN.  The whitening matrix WP is:

(14)

and the whitened data, Fp are obtained from

(15)

We then employ ICA on the whitened data FP from which we obtain WI 

(16)

Our derived bases, will be contained in the product of the two analysis matrices,

(17)

where the vectors wi will be our desired bases.

We first try this method on a set of speech sounds at a sampling rate of 8kHz.  The input 
was segmented into 36 sample blocks (9 ms) and ordered into a 36 by 6000 matrix as in 
Equation (13).  The PCA bases were obtained first, using the Singular Value Decompo-

sition†, and they were used to whiten the data.  An ICA step was then applied to the 
whitened data.  We employed an Amari update rule, using the tanh(·) for f(·), for 800 

sample batches and a learning rate of 10-4 for 500 epochs.  The initial form of the ICA 
bases before training was Gaussian noise.  The experiment was repeated multiple times, 
always resulting in quantitatively similar results.  The derived bases of both steps are 
displayed in Figure 15.

†. Singular Value Decomposition (SVD) decomposes a matrix  to the product .  where  and  are orthogonal 

matrices and  is a diagonal.  In the case where  is symmetric,   and also contains the eigenvectors of .
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Figure 15 Derived bases from speech segments.  On the left figure are the bases derived 
from PCA and on the left the bases derived from the subsequent ICA processing.

As we expected from previous experiments, the PCA bases are approximate sinusoids 
with variable frequency.  The subsequent ICA step though, extends the expressiveness 
of the bases by introducing an additional variation in the time axis, very much like the 
STFT extends the DFT.  Low frequencies do not have a significant time variance since 
they do occupy a longer time frame, but, as we examine higher frequencies, we notice 
an increasing time localization.  This is a structure similar to the wavelet and constant-Q 
transforms, where higher frequency bases are designed to be more localized in time so 
as to produce an optimal time/frequency analysis according to the Heisenberg constraint 
(Equation (6)).  

Differences between the PCA and ICA bases are more clearly illustrated in Figure 16, 
where we can see the time and frequency distributions of each set.  The PCA bases are 
clearly clustered in the center of the time axis, extending significantly towards the sides, 
whereas the ICA bases have a more uniform spread through time, with shorter time 
spans.  The frequency distributions are fairly uniform as expected.  The ICA bases have 
more localized frequency distributions caused by the fact that the bases adapt to the 
dominant frequencies of the input.  In the case of PCA the orthogonality constraint 
forced the bases to extend evenly throughout the frequency axis.  Also displayed are the 
joint distributions of time and frequency which help us visualize the joint localization 
features of both analyses.  From these joint-distributions we can see once more how 
PCA has a wide time spread which attempts to cover all the length of the analysis, 
whereas ICA forms time localized bumps uniformly through time.

Bases in time domain Bases in time domain
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Figure 16 Time and frequency distributions of the PCA bases (left), and the ICA bases (right).  
Note how the PCA bases are mostly wider and centered in time.  The ICA bases 
have a more uniform time distribution, forming localized time-frequency bumps.

The difference in the results is attributed to the fact that the more stringent constraint of 
statistical independence that ICA imposes (Figure 17), provides for a more compact set 
of bases that optimally decompose the input sound.  Given the nature of speech, which 
includes rapid frequency changes and busy temporal activity, the optimal set of bases to 
capture this structure are time localized sinusoids (constant amplitude sinusoids are not 
expressive enough to efficiently capture such features).  To illustrate this we can con-
sider the analysis of a sinusoid with constantly decreasing frequency and a silent part in 
the middle of its progression.  To model this with the PCA/DCT set of bases, we would 
have to use almost all of them so that with proper cancellations we would create the slid-
ing effect and the discontinuities from the silence.  This would imply a coding which 
would be fairly redundant since it activates many bases at once.  The ICA bases, can 
handle this more elegantly (very much like the STFT), by using the advantage of time 
localization, to analyze this scene with much less simultaneous base activation.

 

Figure 17 Kullback-Leibler distances between the outputs of the PCA and ICA transforms.  
The left figure depicts the PCA transform, the right figure the ICA transform.  
Lighter color implies lesser statistical dependence.  Note how the ICA outputs are 
in general more independent as compared to the PCA outputs.
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Another interesting thing to note about the ICA bases is the fact that, as bases, they are 
significantly more sparse than their PCA counterparts.  One way to note this difference 
is to examine their probability distributions (Figure 18).  From the kurtosis (a measure 
of peaky-ness of the distribution and a rough approximation of sparsity) of their distri-
butions we can validate this.

Figure 18 Comparison of mean univariate and pairwise joint distribution of the PCA and ICA 
bases.  The top figure displays the univariate distributions, PCA depicted with the 
dashed line, and ICA with the solid.

As we can see both joint and univariate distributions of ICA are considerably more 
sparse than their PCA counterparts.  This peakyness of the ICA distributions is attrib-
uted to the high occurrence of near-zero values in the bases.  This is an interesting fact, 
since it implies that not only the transformation that ICA produces is statistically opti-
mal, but also that the transform itself, is actually quite compact and simple.

This experiment was repeated with a bigger base size (N = 64), which again extended 
about 9ms.  The same convergence parameters were used only this time the PCA step 
was omitted, so that the ICA bases had to converge from the initial Gaussian noise state.  
Even without the preprocessing, the results through multiple runs have been consistent 
and still produced time-frequency localized bases.  A representative outcome is shown 
in Figure 19.
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Figure 19 ICA bases for N = 64

Similar experiments with varying base sizes have yielded similar results.  Different 
types of sources had an effect on the strength of the time-localization of the ICA bases. 
Musical signals did tend to have worse localization due to their constant frequency char-
acteristic, and sources of natural scenes (rain, rustling leaves, etc.) did tend to have bet-
ter time localization due to the density of their events.  In general, however, time 
localization was always present and much more pronounced from its PCA counterpart.

2 . 5     Conclusions

At this point we can make the connection to the psychoacoustical research.  As men-
tioned before, gammatone filterbanks have been measured to be accurate models for the 
frequency response of the cochlea.  According to an ecological evolution point of view 
such a design would have been an adaptation to the statistics of natural sounds.  As our 
experiment proves, we can obtain very similar bases by using a sensory coding scheme 
which conforms with leading theories on perception.  To further strengthen our point, 
the same principle has been used to derive the corresponding visual bases, with equiva-
lent results.  The significance of this experiment is to validate factorial coding theories 
of perception as they apply to audition.  This was a first application to these theories on 
a domain other than the visual.  We can therefore make a strong argument on a common 
manner that our neural mechanisms treat sensory signals and open the way for experi-
mentation in the additional domains (Olfaction is a sense that is also heavily modelled 
with basis decompositions (Hopfield 1991)).

Other than the psychophysical conclusions we can make from this experiment, we can 
also use this knowledge for designing sensory preprocessors for alternative domains.  It 
is conceivable that this method can be used to derive optimal filters for parsing text 
streams, electromagnetic sensor fields, messages routed between network nodes, data 

Bases in time domain
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traffic inside a computer, etc.  Employing this technique, we have a tool to construct 
perceptual front-ends for arbitrary data stream domains, as long as their exhibit some 
consistent statistical coherence.
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Chapter 3.  Perceptual Grouping

3 . 1     Introduction

Perceptual grouping holds a rather prominent spot in the world of auditory research.  
Due to the attention it has received in the psychoacoustics literature and its speculated 
importance on discriminating between sounds, it came to be a key operations in imple-
mentations of many auditory scene analysis systems.  In this chapter we will present the 
principles of auditory grouping and reformulate them so as to fit our information theo-
retic viewpoint.  The resulting formulation proves to be more compact and computation-
ally efficient than previous approaches.  It provides a good interface to the Barlowian 
theories and exhibits various desirable properties, such as invariance to data representa-
tion, bypassing of parameter estimation and good scaling.
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3 . 2     Perceptual Grouping

3 . 2 . 1  The Gestalt School

In 1912 Max Wertheimer and his two colleagues Wolfgang Köhler and Kurt Koffka pub-
lished the paper that founded the gestalt school of psychology.  Although the early work 
of the gestalt school was concerned with visual perception, the field quickly grew to 
encompass perception in general, and in time extended to other branches of psychology 
such as learning, thinking, social psychology, personality etc.

The goal of the gestalt school was to encompass the qualities of form and meaning that 
were traditionally ignored in psychology.  Its very name, gestalt, comes from the Ger-
man word that translates to “placed”, or “put together”.  This expressed one of the cen-
tral issues explored, the perceptual integration of parts to form a whole.  An early 
example of the gestalt work was an investigation of the perception of movement from 
series of rapidly interchanged stills.  In time similar phenomena, where a percept was 
formed from smaller and seemingly irrelevant observations were also studied.  The 
organizational principles which were observed, were formulated as the law of Prägnanz, 
which states that the formation of a whole from its parts is dependent on a good config-
uration of these that has such properties as simplicity, stability, regularity, symmetry, 
continuity, unity and etc.

Famous examples of gestalt perception are some optical illusions, where prägnanz prin-
ciples form a percept that isn’t there (Figure 1).

  

Figure 1 Gestalt at work.  The left figure creates a percept of a white triangle covering three 
black circles.  Although there is not an explicit triangle drawn, we infer its 
existence from the configuration of the black circles.  Likewise the ouchi illusion, 
on the right,  makes us form a percept of a circle hovering over a plane, even 
though the drawing just reorients some of rectangles.

One of the Gestalt school concepts with major impact in the perceptual computing 
world was the notion of perceptual grouping.  Perceptual grouping was defined as the 
process of finding out which components of an analyzed scene should be grouped 
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together in such a way so as to form an individual object.  This notion that individual 
objects are formed by a proper combination of simpler components had a profound 
impact the field of machine listening.

3 . 2 . 2  Auditory Grouping

The effect of gestalt psychology in auditory perception was epitomized by Bregman 
(1992).  His work collectively presented a set of experiments that highlighted different 
cases of auditory grouping.  It was speculated that these rules were crucial to the percep-
tion of individual auditory objects.  This work inspired many computational implemen-
tations which worked by integrating component decompositions with the appropriate 
grouping systems.   That way it was possible to decompose a scene to basic elements 
that when grouped correctly would reconstruct individual sounds.  Such work was pur-
sued by many researchers, most notably by Parsons (1976), Weintraub (1986), Cooke 
(1991), Mellinger (1991), Ellis and Vercoe (1992), Brown (1992) and Ellis (1994).  In 
some form or another these systems performed a decomposition of the input sounds to 
auditory atoms, that were subsequently grouped together with various algorithms.  The 
preferred component representation was that of a sinusoid, or in some cases some more 
abstract frequency localized objects.  The most important cues utilized for grouping 
these elements were the following.

a. Common Frequency/Amplitude Modulation

These are two of the major and most important cues for auditory grouping.  They 
are also referred to as common fate cues.  They are basically cues that originate due 
to common frequency and/or amplitude modulation between two auditory compo-
nents.  Such component groups that exhibit these commonalities are generally per-
ceived as one object, making it hard for the human listener to focus on the 
individual components.  An example is pointed out by the arrows in Figure 2.
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Figure 2 Grouping examples.  The sound described in this figure contains a set of 
sinusoidal components derived from a speech segment.  The arrows point out to 
components that should be grouped due to harmonicity and common frequency 
modulation.  The circles point out subgroups with common onsets and offsets.  
The squared cluster points out a group due to time and harmonic proximity.

Our behavior under these cues is attributed to the fact that physical sound produc-
ing systems, under manipulation that would change their frequency or amplitude 
characteristics, will imprint that modulation in all of their auditory components.  
For example, changing pitch as we speak results in a common shift on all modal 
oscillations of our vocal tract.  Likewise, whenever we change the level of our 
voice, we again amplify or suppress all frequency components in a common man-
ner.  Given our auditory development in a world where this auditory consistency 
exists, it is only natural to create a perceptual mapping of such common behavior to 
the indication that the modulated components originate from the same source, 
hence they constitute an individual object.  This mapping is known as the common 
frequency and common amplitude grouping cue.  

In order to computationally take advantage of these cues, it was deemed necessary 
to estimate frequency and amplitude.  Estimation of common amplitude modulation 
is a simple matter to measure.  In the case of frequency modulation though we have 
issues of resolution and estimation artifacts which can bias the estimate and conceal 
the true value we wish to obtain.  This is a well recognized problem which has been 
addressed by a continuous revision of front ends to more accurate estimation meth-
ods.  However the fact that the parameter estimation has to be done remains, as does 
the possibility of errors.
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b. Common Onsets

Common onset is another key cue in computational implementations.  Although it 
is considered a cue of its own, it can be seen as a special case of common amplitude 
modulation, where the modulating function is a rectangle window.  This cue can be 
accredited to the fact that most physical systems when excited produce complex 
sounds whose components have the same event timing.  This regularity in our audi-
tory environment has shaped an interpretation of common onsets between compo-
nents, as an indication that these components belong to the same sound.  Although 
not as strong a cue, sometimes the common offset is also taken into account.  It is 
not however as reliable a cue as the onset.  Figure 2 also presents some cases of 
common onset groups (the groups in circles).  Estimation of these features is easy 
to make and is generally not an issue.

c. Harmonic Relationship

This is a cue that is unique to audio, and rather intriguing.  Although the preceding 
cues can be adapted to other time based senses (e.g. vision), this is a cue that is only 
so strong in audio, and it is probably one of the most important ones.

Components that are harmonics of a common fundamental frequency tend to fuse 
together.  In fact most pitched sounds we perceive are summations of fairly har-
monic modal oscillations of physical systems.  We are usually unaware of this 
structure, due to strong fusing.  Due to the high occurrence of this regularity, our 
ears have adapted to detecting harmonic series as one object and we have very little 
ability to detect individual harmonic components.  Estimation of harmonicity is a 
complex operation, which is often achieved using frequency estimates.  As also 
mentioned before, such estimates cannot always be reliable and sometimes derail 
the grouping process.

Another issue in harmonicity which is related to grouping is that of harmonic prox-
imity.  It has been observed that harmonic pairs of components that are closer in 
frequency are more likely to fuse.  For example a fundamental and its first har-
monic will fuse much stronger than the fundamental with its seventh harmonic.  
When given harmonic components with frequency gaps between them, the fre-
quency distance between the components becomes a factor on whether they will be 
grouped or not.  This can be again attributed to the environment since the occur-
rence of harmonic gaps is very rare.  Most pitched sounds will never miss more 
than a few consecutive harmonics.  Estimation of this cue is once more dependent 
on frequency detection.

d. Higher Level Cues

Various other cues have been put to use, many of them basic and fundamental in 
nature.  An example is spatial cues, which arise from timing commonalities 
between sounds as they are captured across our two ears.  We should also consider 
the case where our components are more complex sounds rather than sinusoids.  In 
this case common modulation assumes new meanings that are dependent on the 
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characteristics of the components.  Such grouping criteria can include common 
spectral shaping, or some commonly modulated statistical property.

e. Streaming Cues

There is an additional class of grouping cues which we will not deal with in this 
chapter.  These are cues that relate to the formation of streams.  Although these cues 
have been used extensively, they are not as low-level as the ones presented so far.  
The reason why they are regarded as important, in both the psychological and com-
putational literature, has to do with the interpretation of an individual sound, and 

sometimes with the chosen representation†.  The goal of many research projects is 
to extract entire auditory ‘sentences’ of a sound, not the individual instances.  For 
example, in a scene with a piano melody, the effort is usually to extract the entire 
piano performance as one sound, not the individual piano notes.  Such streaming 
cues have to do with event structure and are sometimes a cognitive process rather 
than a perceptual one.  Examples of these are closure, continuity, pattern repetition, 
etc.  This is an issue which we are not interested in at the moment and we’ll cover in 
a later chapter.  In this chapter we will be dealing with grouping criteria that deal 
mostly with grouping of simultaneous components.  We will however refer the 
reader to the discussion at the end of the chapter on possible integrations of these 
cues in this chapter’s framework.

Most computational implementations had to deal with these cues.  Parsons (1976) dealt 
with Fourier components and performed grouping based on harmonicity, Weintraub 
(1986) employed a cochlear filterbank and a similar grouping approach. Mellinger 
(1992), bootstrapped his model for musical scenes, used mostly common onsets and 
common frequency modulation.  Brown and Cooke (1994), used a filterbank, and most 
of the aforementioned grouping cues.  Using similar cues Ellis (1992, 1994), employed 
a constant-Q transform, and later (1996), an alternative representation called the weft.

However most of these implementation had to deal with some problems of semantic 
nature.  A major problem in computationally implementing all of the above rules is their 
complex description.  Although these principles are well understood and regarded as 
simple in a heuristic sense, they are hard to translate to mathematics and input to a com-
puter implementation.  For example consider the case of frequency modulation, 
although it is easy to describe semantically and even visually detect it from a time-fre-
quency decomposition, it is a very complicated cue to detect.  It involves, precise fre-
quency tracking, and a smart correlation algorithm.  In addition to this, considering that 
many time-frequency analyses produce a lot of artifacts in analysis it is easy to see that 
this problem becomes very hard to deal with.

To further muddle matters, all said in the auditory grouping is quite irrelevant to other 
perceptual domains.  Cues such as harmonicity and common frequency modulations are 

†. Upon examination of Figure 2, we see a lot of small seemingly noisy components in temporal and frequency proximity.  These 
are mainly artifacts of the analysis, quite unrelated to the true components of the original sound (laughing speech).  Yet they 
have to be grouped together for a proper resynthesis.  Certain implementations were obliged to use proximity grouping criteria 
as lower level grouping.  This was however something which was mandated by the analysis procedures used and not as much 
by perceptual studies.
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not easily mappable to the visual domain.  For the researcher of perception in general, 
this is a very perplexing matter, since it forms an obvious barrier in finding unifying 
principles of perception.  In the auditory domain the selection of the cues is highly 
dependent by the sinusoidal component representation (harmonicity and frequency 
modulation, two of the strongest cues, are sometimes hard to define for other compo-
nent types).  This particular component selection, is an obvious influence by the 
observed cochlear filtering and the visual appeal that such representations have (sadly a 
lot of researchers strive to find a decomposition in which the auditory grouping problem 
translates to an image grouping problem).  Although this is not something that necessar-
ily effects the performance of systems, it is an upsetting issue when in comes to inte-
grating such systems in a more general perceptual theory.

Recent work on blind source separation did come close to the concept of grouping since 
it is based on matching across multisensor recordings, however it was never conceptu-
ally connected with perceptual grouping.  It was however free of the aforementioned 
problems and gives a good example to imitate.  Our approach will build on this observa-
tion.

3 . 3     Grouping as redundancy reduction

3 . 3 . 1  The Theory

As we do throughout this thesis, we will adopt the Barlowian approach to perception 
(1959).  We will try to formulate the auditory grouping process in terms of minimizing 
statistical dependencies of the inputs and coming up with a compact and sparse code.  
Although the following is an obvious approach, it was ignored by many computational 
auditory researchers.  Most grouping principles, even more evidently for audio, are 
interpretations of statistical dependencies.  It is easy to see that common modulations 
between two signals will introduce some form of statistical dependency between them.  
This stems from the fact that components that are generated by the same physical sys-
tem are by design dependent, and we have adapted to using the various consistent rela-
tions between them to perceive them as one sound.  By using this statistical layer of 
abstraction in a computational implementation, we can bypass psychological literature 
interpretations and deal with the realities embedded in the data.  This forms a much 
more compact description of grouping rules and creates a straightforward computa-
tional basis.  It also provides an plausible interface to the role of the environment in the 
development of our auditory behavior.

Throughout this chapter we will assume that successful grouping is a result of minimum 
mutual information partitioning (a form of sparse coding).  We will show that perceptual 
fusion is stronger whenever two components exhibit high mutual information.  By parti-
tioning a set of these components so that each group has maximum mutual information, 
we will be reducing the overall mutual information of the groups, and making a sparse 
partition.
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3 . 3 . 2  The Method

In the following sections we will iterate the same procedure for different grouping sce-
naria.  We will pick a simple two or three object auditory scene which we will parame-
terize over a variable n.  For a specific value of that variable we would get a scene that 
would exhibit perceived auditory fusion between the components.  If our suspicions are 
correct, this value of n will also give a maximum at their mutual information.  In effect, 
mutual information will be an indication of strength of fusing.

One way to easily evaluate mutual information is numerically.  Information theoretic 
measurements are not easy to make, and they are often very approximate, so at first we 
will only use these results as evidence, and we will try to explain how they arise.  In a 
later section these results are considered in the design of a grouping mechanism, which 
does not rely on discrete approximations.  The numerical operations we will perform are 
based on the discretization of the mutual information definition.  Recall the definition of 
mutual information:

(1)

where the H(x1,...,xN) is the joint entropy of all the xi and H(xi) the marginal entropy of 
each xi.  We will estimate these entropies from their definitions:

(2)

and

(3)

where  is the probability density function of a variable.  We will estimate  from 

a histogram , which is normalized so that .  That makes our computa-

tion:

(4)

Although for probability density estimation, it is a popular practice to use more sophisti-
cated methods than histograms, in this particular case it not a recommended approach.  
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The objects we will be dealing with are sometimes sinusoidal and they feature peculiar 
density functions which have sharp peaks and abrupt ends at their extrema.  Using a ker-
nel estimation method such as a Partzen window, or Gaussian mixtures, would be alter-
ing the density functions dramatically and will remove some very important features.  
We employed a straightforward algorithm for histogram estimation and took special 
care in using histograms which were not plagued by gaps and gross inaccuracies.

3 . 4     Harmonicity - Frequency Proximity

Harmonicity is one of the major gestalt principles in auditory grouping.  Auditory 
grouping theory states that two sinusoids, where one of which has a frequency which is 
an integer multiple of the other’s (harmonic relation), are grouped together.  

Harmonic relations exhibit more mutual information than non-harmonic relations.  We 
will first attempt to present an intuitive justification for this before we proceed to the 
numerical tests.  Mutual information has a direct relationship with the amount of possi-
ble value sets between our variables.  Consider the case where our variables are the 
identical series x = {1, -1, 1, -1, ...} and y = {1, -1, 1, -1, ...}.  In this case we only wit-
ness two kinds of sets, {x,y} = {1,1} and {x,y} = {-1,-1}, which will create a joint prob-
ability density with only two points at {1,1} and {-1,-1}, both having values of 0.5.  
This pointy and uniform in values probability density implies a low joint entropy, which 
assuming a constant set of marginal entropies, translates to a high mutual information 
(refer to Equation (1)).  In this example we do indeed have a lot of mutual information 
since each of the two sequences is fully described from the other.  In the other end we 
can have the sequences x = {1,1,1,1,...}, y = {1, 2, 3, 4, ...}, in which we have an infinite 
amount of value pairs, hence zero mutual information.  That is easy to intuitively see by 
noting that  knowing one of the sequences it is impossible to deduce any information 
about the other.  Back in the harmonicity case, if we have two sinusoids of frequencies 1 
and 2 the possible pairs will be:

(5)

Assuming infinitely long sinusoids and given the periodicity of the signals, we only 
need to examine the pairs in the interval of one joint period, i.e. the time span between 
which the two sinusoids assume the same phase twice.  In this case the joint period is 
from 0 to , which is the interval in which both sinusoids assume the phase pair {0,0} 
twice.  The number of pairs of these functions in that interval is roughly all the points in 

between†.  Assuming frequencies of 1 and 1.5, the interval which we will examine will 
be from 0 to .  The number of pairs will be three times as many, which will result in 
a reduction of pair repetition by three, hence a reduced mutual information.  Similar rea-
soning can show that the more irrational the frequency ratio becomes, the less mutual 
information we will have since the number of possible pairs tends to be larger (for a 

†. We will have a repetition of the pair {0,0}, at t = 0 and t = ,  so not all samples should be counted, but for now we assume the 
effect of these solutions to be negligent.  Later we will see the effect of this on harmonic proximity.
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more rigorous derivation see Smaragdis 2001).  We will now use some numerical results 
to validate these theories.

The experiment below attempts to detect grouping based on harmonicity by measuring 
mutual information numerically.  We construct a parameterized scene from a set of two 
sinusoids as:

(6)

where n was swept from 1 to 6, and f was randomly chosen to be 1321.  As discussed 
above, we would expect the mutual information to be peaking when n is an integer, the 
case when the two sinusoids would be harmonic and have a stronger tendency to group.   
The results are shown in Figure 3.

Figure 3 Mutual information measurements for harmonicity experiment

As is evident, our prediction about the relationship of mutual information and harmonic-
ity was right.  We obviously have the strongest fusion at the case where the two sinuso-
ids have the same frequency, then as the second sinusoid assumes the role of harmonics 
we get local peaks.  However we will also make some additional important observa-
tions.  First, we appear to have local peaks at points where n = 1.5, 2.5, 3.5, 4.5 ....  At 
these points we have an interesting effect.  The two sinusoids act as a first and second 

harmonic to a non-existing fundamental at .  This is also a case of harmonicity, albeit 

with a missing fundamental.  We can observe additional diminishing local peaks at pro-
gressively more irrational frequency ratios.  These peaks correspond to a progressively 
more distant fundamental at , where  is the fractional part of n.  
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Although the resolution in Figure 3 is not high enough to display this effect consistently, 
there will be values that will have zero mutual information when the frequency ratios 
are fully irrational.

We also note that when n = 2 we get a stronger predicted grouping than when n = 3, 
something which we can (subjectively) verify by ear.  This leads us to yet another obser-
vation to be made; harmonic proximity can also be tracked using mutual information.  
Note that the more distant the second sinusoid becomes in frequency, the less the mutual 
information peaks.  This is an effect caused by the increasing number of common pairs 
in Equation (5).  The bigger the joint period is, the more repetitions of {0,0} will be 
present.  This peak of the joint probability at {0,0} causes the joint entropy to increase, 
hence lowering the mutual information (once again see Smaragdis 2001, for a more rig-
orous treatment).

In order to further verify the proximity point numerically we can insert another sinusoid 
in Equation (6) and transform it to:

 (7)

We would expect this to make the peaks near 4 more prominent, this the second sinu-
soid assumes this frequency.  It should also introduce a maximum at the third harmonic 
(n = 4), since that value along with n = 1 produces the most harmonic set.  The results 
are shown in Figure 4.

Figure 4 Mutual information measurements for proximity experiment
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As can be seen, at n = 4 we have a maximal peak (sharing the honor with the peak at n = 
1), and the neighboring peaks at integer values of n are relatively higher than before.  
This demonstrates the ability to track harmonic proximity.

3 . 5     Common Fate

3 . 5 . 1  Frequency and Amplitude Modulation

Common fate in the auditory domain is usually linked to two parameters, frequency and 
amplitude, and it is usually described as their common modulation.  If a set of sinusoids 
feature common modulation in either amplitude or frequency (or both), then they are 
most likely perceived as one sound.  Mutual information in this case is created from the 
statistical dependencies that a common frequency or amplitude track will generate.  

According to our theory, we would expect the mutual information measure to peak 
when we have co-modulated sinusoids.  The following two short experiments prove to 
behave as the gestalt rules predict for common modulation cases.

In the first case the auditory scene s(n) is a parameterized set of two frequency modu-
lated sinusoids.  One will be modulated by an arbitrary function a and the other by 

, where e will be a noise signal having the standard normal distribution.  That  
is:

 (8)

where f was chosen to be 1321.  The square root of two is used as an irrational frequency 
ratio between the sinusoids so as to remove any possible harmonicity which might skew 
the results.  Intuitively what this equation does is maintain a modulation on the two 
sinusoids which is common only when the n = 0.  The scene at this value, according to 
psychoacoustics, will increase the chance of perceptual grouping.  If we were to mea-
sure the mutual information of s(n), with respect to n, we would expect a peak at that 
point.

Similarly we set up the same experiment with amplitude modulation rather than fre-
quency modulation, where:

 (9)

Our measurements shown in Figure 5, validate our hypotheses.
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Figure 5 Averaged mutual information measurements for common amplitude modulation 
(left), and common frequency modulation (right).  The results are the average of 12 
trials.  For better visualization purposes n ranged from -0.1 to 0.1.  At the limit 
however, the plots are symmetric around 0 and the negative values are redundant.

We can see how the system is much more sensitive when it comes to frequency modula-
tion, as compared to amplitude modulation.  This applies in human perception too, 
where we are more sensitive to frequency discrepancies as opposed to amplitude ones.  
Similar results arise for sound sources other than sinusoids, with the only difference 
being the scale of the n parameter and the relative size of the mutual information peak.  
Simple waveforms such as triangle, sawtooth and square waves display virtually identi-
cal results.  Using real sounds, such as speech and environmental noises, the plots were 
similar, but extended throughout a larger scale of the parameter n, so as to average out 
the modulation already existent in these sounds.

We can refer to the intuitive foundation we formed in the previous section to analyze 
frequency modulation  The two sinusoids will have a fixed number of pairs without the 
modulation applied.  By frequency modulating them with the same function, we will 
approximately maintain this number of pairs since the harmonic relationship of these 
sounds will still be the same, although at a local level.  When we modulate by different 
functions, we offset this number to a smaller value due to the instantaneous relative 
inharmonicities we introduce (although it is possible to envision cases where this 

doesn’t hold, they are not as probable)†.

3 . 5 . 2  Common onsets/offsets

Common onset and offset of partials is another example of common fate and also a key 
clue in auditory grouping.  If two sounds coincide in time, then they exhibit a correla-
tion which results in additional mutual information.  Just like in the previous section, 
this is maximized when the on and off boundaries are exactly the same for both sounds.

†. It should be noted that grouping of sinusoids with a constant frequency slopes is a special case of common frequency modu-
lation.  When the slopes of the sinusoids are parallel, we perceive them as a group, and this is obviously a case of common 
frequency modulation where the function a in Equation (8) is a line, and the noise injection e is altering its slope.
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The following scene is set up:

(10)

where:

(11)

The function f is essentially a time-bounded sinusoid from t1 to t2.  By varying the value 

of n we produce two sinusoids that are misaligned in time for , and perfectly 
aligned otherwise.  We would expect to see a peak in the mutual information of s(n) at 
the point where the two sinusoids align.  The results are shown in Figure 6.  Similar 
results are obtained when we change only the onset or the offset of the second sinusoid 
rather than both.  The same results can be obtained by using real sounds instead of sinu-
soids.  The mutual information peak is formed by the fact that the more common silence 
the two sounds will have the more prominent the pair {0,0} will be, forcing the joint 
entropy to minimize, hence the mutual information to maximize.

Figure 6 Mutual information measurements for common time onset/offset

It should be noted that the common onset/offset can also be seen as a special case of 
common amplitude modulation, where the modulating functions are instances of time 
localized rectangle windows or gate functions.
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3 . 5 . 3  Time Proximity

Time proximity is also a factor in grouping, especially in cases of large concentrations 
of short-timed components.  We set the following experiment to deal with it.  Our scene 
is defined as:

(12)

where fi were random frequencies and gi defined as:

(13)

where C1,i and C2,i are time constants, which are different for each component.  What 
this scene effectively performs is, place three time localized sinusoids in temporal dis-
tances whose proximity is dependent on n.  As n tends towards 0, the three sinusoids 
will increasingly overlap until they coincide in time (for n = 0).  For larger values of n, 
the three sinusoids will not overlap as much if at all.  The results are shown in Figure 7.

Figure 7 Time proximity experiment.  As the sinusoids move closer in time they increase 
their mutual information.
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Similar results were obtained when instead if sinusoids, real sounds were used.

The behavior of this experiment is explained by the same observation used for the com-
mon onset.  The gradual peaking in the mutual information is caused by the increasing 
cases of coinciding silence across the three sounds (the triplet {0,0,0}).  In other words 
the mutual information is in the silence and not the contents of the sinusoids.  This inter-
pretation fits in very well with the higher level status of this cue, since that form of 
grouping is quite ignorant of the contents of the components and more involved with 
their time positioning.

3 . 6     Prägnanz and Higher-order principles

Due to the fact that gestalt principles were formulated to be general and applicable to all 
perceptual functions, there are a lot of special statistical dependencies that are not 
described.  As an effort to include all of these unknown and vague factors, the prägnanz 
principle was used.  The prägnanz principle states that “of several geometrically possi-
ble organizations that one will actually occur which possesses the best, simplest and 
most stable shape.”  (Koffka 1935).  It is arguable that descriptions such as simple, best 
and stable, tend to denote strong statistical dependencies.  A square for example which 
would fall under the best/simple/stable description exhibits a lot of structure and redun-
dancy, when compared to the complicated and unstable random polygon.  This is of 
course a direct statement of this thesis’ argument.  Simplicity, stability, predictability 
and order are features of high mutual information systems.  Instead of using them by 
name and having to resort to their estimation, we can indirectly solve the problem by 
measuring their side effects from statistics.

3 . 7     Putting it all together

The main observation that we derived from the experiments above, is that perceptual 
grouping can be judged by measuring the redundancy of a scene.  We’ve noticed that 
whenever two elements should be grouped, they exhibit common information which in 
turn generates a lot or redundancy.  By measuring the amount or redundancy we can 
make a decision on grouping.  In the case of many elements and multiple groups, based 
on our experiments we can theorize that by manipulating the scene so that we reduce 
redundancy we would infer the proper groups.  One way to do so and maintain an inter-
face to the other chapters of this thesis, is to employ ICA.  ICA is designed to find a lin-
ear combination of its inputs that will minimize the redundancy between its outputs.  In 
effect the linear transformation we obtain from it will be some kind of an adjacency 
matrix which will attempt to group strongly related inputs.  An example of how we 
could use this algorithm to perform auditory grouping is presented in the following 
experiment.

We assume that we have a set of sinusoids which comprise a simple auditory scene.  We 
would like to partition them in such a way so that we identify the different groups in the 
scene.  Ten sinusoids were ordered as rows on a 10 row matrix.  Out of these rows, the 
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sinusoids at rows 1, 8 and 9 were related, as were the sinusoids at rows 2, 6 and 7 and at 
rows 3, 4, 5 and 10.  In effect we had three groups, being the rows {1,8,9}, {2,6,7} and 
{3,4,5,10}.  The relations between the sinusoids in each group, were harmonic ratios 
and common frequency and amplitude modulation.  Across different groups the sinuso-
ids had no such common information.  Figure 8 displays the spectrograms of each of the 
three groups, as well as the entire scene.

               

Figure 8 A spectrogram of all the sinusoids combined (left) and the three groups 
individually (right).  Each group exhibited some gestalt grouping criterion between 
its members.

The matrix that contained the ten sinusoids was submitted, without any partitioning 
hints, to an ICA algorithm.  As we described before, we would expect the ICA algo-
rithm to return something like an adjacency matrix which would point relationships 
between elements, based on their mutual information.  Its values with larger magnitude, 
will indicate a relationship between the two elements they link, whereas smaller in mag-
nitude values will indicate the opposite (this is a function similar to the covariance 
matrix, it is however derived from information measures as measured by ICA rather 
than just second order statistics that we use for covariance).  The algorithm we used was 
the same as in the previous chapter, Amari’s rule with a hyperbolic tangent nonlinearity.  
We trained until convergence.  The magnitudes of the matrix that we obtained are shown 
in Figure 9.
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Figure 9 Magnitudes of the weight matrix returned from ICA analysis of auditory 
components.  This can be perceived as a higher order covariance matrix, where 
values  greater in magnitude (lighter color) will be denoting a significant statistical 
dependence between the elements they link.

As it is clearly evident, the values that have a some magnitude reveal the correlations of 
the scene.  To make our results more readable we can also force this weight matrix to be 
symmetric (thereby making all measured correlations be bidirectional) and rounding the 
values to either 0 or not 0 (Figure 10).  For the case of the first group, which contains the 
sinusoids 1, 8, and 9, we can discover its structure as reflected by our result, by observ-
ing that the values that correspond to these elements, {8,1}, {9,1}, {1,9}, {1,8}, {8,9} 
and {9,8} are non zero.  Likewise we can infer the rest of the groups.

Figure 10 Resolved weights.  By simply rounding the elements of the ICA output (Figure 9), 
to 0 and not 0, and forcing it to be symmetric, we can reveal the exact groups in 
the given scene.  The answer is given in the form of an adjacency matrix.  In this 
case it easier to see the three groups which are formed.
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This approach yields results even in the presence of approximately common modulation 
between the sinusoids of the same group.  In general about 5% difference between mod-
ulation functions which are supposedly common, would be the tolerance limit for suc-
cessful grouping.  Identical results arise by using different types of elementary 
waveforms instead of sinusoids, such as triangles, sawteeth, etc. (refer to appendix A, 
for a multimodal example that uses non-uniform elements across the visual and auditory 
domains).

What is unique to this approach from past work is that, it is exhibits more generalization 
potential by abolishing the notion of a parameter.  In terms of representation, there is the 
problem that any parameter based approaches will be irrelevant to other forms of 
objects.  By operating on pure data, without parameter definitions such as frequency and 
amplitude, we can abstract the algorithm and apply it on arbitrary representations.  In 
terms of estimation, there were no pitch track, amplitude or on/offset estimates.  Con-
siderable research has been expended on just the parameter tracking of the objects to 
group, which complicates matters.  Not only is it sometimes hard to perform such esti-
mations, but there is the increased risk that the estimation algorithm peculiarities will 
skew the results.  Instead of focusing on the parameters, we bypass them by examining 
their statistical side-effects.

An additional point to make is that there was no indication of how many groups to 
extract from the scene.  The number of groups was inferred from the data and their 
cross-statistics.  It is encoded as the rank of the adjacency matrix that we deduce from 
the analysis.

Finally, perhaps the most practical feature of this approach, is that the required compu-
tational load is comparatively small.  ICA algorithms execute operations on the scale of 

O{N3}, spending most of their time on matrix multiplications equal in order to the num-
ber of components.  Alternative approaches based on parameter extraction can utilize 
some kind of exhaustive pairing algorithm that would examine common traits between 
all possible groups.  If such a complete search was to be chosen, the complexity could 
rise up to O{BN} where BN is the bell number (the number of ways a set of N elements 
can be partitioned to non-empty subsets).  This number grows with an extremely high 

rate†, making grouping of more than a handful components a daunting task.  Even disre-
garding the parameter estimation steps, which can be also expensive, for cases where 
we are presented with more than 20 sinusoids the problem becomes almost intractable.  
Luckily, most implementations do not perform a complete search, but they still have to 
deal with more complex operations than the ICA model.

3 . 8     Conclusions

In this section we presented an information theoretic treatment of the auditory grouping 
problem.  It was shown that many auditory grouping cues are just specific cases of sta-
tistical dependencies and that they are easy to detect by employing standard statistical 

†. The first few values are B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877, B8 = 4140, B9 = 21147, B10 = 115975, ...
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measurements.  This approach is characterized by many advantages, as compared to 
previously used heuristic methods.  The most important advantage is a perceptual justifi-
cation.  Most approaches have been grounded on experimental psychoacoustic litera-
ture, but there was never an attempt to explain these findings as they relate to our 
environment, the development of our listening capabilities, and perception in general.  
By adhering to a Barlowian perspective, we were able to address these issues and come 
up with a more formal definition of grouping, which was easily translated to a computa-
tional algorithm.  The implementation successfully performed in a similar manner as 
our auditory grouping process.

This approach also provided us with a solution to trade-off and fusing decision prob-
lems.  Many implementations that are hard wired to fuse components exhibiting some 
fusing cues, are unable to deal with the case where two cues compete.  This is because 
fusing decisions tend to be binary (components either fuse, or not), which sometimes 
removes the flexibility of judging more complex situations or even sharing components  
between two different sounds.

We have also purposely avoided the definition of a component.  Although the examples 
we presented were done on a sinusoidal component framework, the resulting rule for 
grouping is quite independent of the component properties.  In fact the only reason we 
used this representation is to construct a familiar interface to psychoacoustics.  This is 
not a necessary representation though, in fact it is easy to use whatever seems appropri-
ate instead.  By using the abstraction of statistics we have made no assumption about the 
nature of a component, something that we will employ in the next chapter.  The observa-
tion that many gestalt behaviors are stemming from statistics of natural sound producing 
systems might also be an indicator that it is possible to use this technique in different 
domains where consistent statistics exist.  The visual domain is an obvious example 
since it exhibits strong structure.

One issue that we have not addressed in this section is that of time related grouping and 
streaming effects.  In fact the common onset and proximity measures that we presented 
are unable to perform robust grouping for very long sequences and are only valid for 
short time scales.  Unfortunately the algorithms required to deal with time related ICA 
processing are not yet developed and we are reluctant to go ahead in this direction.  
However, entropy for time stamped random series is defined as the entropy rate and the 
relevant mathematical theories exist.  But until a computational framework is build we 
will not be in a position to validate such experiments.  In the following chapter we will 
deal with streaming effects though in a different way that does not require generaliza-
tion to time dependent information measures.
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Chapter 4.  Auditory Scene Analysis

4 . 1     Introduction

In the previous chapters we focused on low level perceptual elements.  The operations 
that we performed were taking place in short timescales and they were modelling sub-
conscious perceptual processes.  In this chapter we will describe similar techniques that 
deal with larger time spans and result in seemingly more complex tasks.  We will 
explore the applications of ICA on extracting features from auditory scenes and relate 
this to the perception of separate sounds.  Our approach will draw inspiration from two 
very different fields with opposing viewpoints.  One is the field of multichannel statisti-
cal methods, and the other the field of psychoacoustic-based monaural scene analysis.
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4 . 2     Source Separation and Scene Analysis

Source separation is the holy grail of audio processing.  Its goal is to extract auditory 
objects from a scene.  It is an elusive process that has attracted a lot of attention and has 
commanded a lot of research.  Due to this there has been development on many different 
approaches towards solving it.  The two dominant methods that relate to this thesis, are 
the statistical and the psychoacoustic approaches.

4 . 2 . 1  Psychoacoustic Separation

Psychoacoustic separation methods have been investigated ever since the definition of 
the cocktail party problem.  This problem was defined by Cherry (1953) and raised the 
issue on how it is possible that a human at a cocktail party, as subjected in many audi-
tory sources, can understand and extract from the scene only the source that draws the 
listener’s attention.  Through time this problem has been transformed to finding a 
method that can computationally isolate auditory sources of a scene from a monophonic 
recording.  This work was termed as Computational Auditory Scene Analysis (CASA) 
and drew a wide array of approaches.

In their most basic form most of the CASA approaches are attempting to extract objects 
by some form of perceptual grouping in the frequency domain.  The usual path has been 
to utilize a time-frequency transformation and then extracting individual elements based 
on a set psychoacoustic grouping procedures.  This approach flourished in the early 90’s 
where any conceivable transform and set of grouping rules were used to this extend.  
Notable work in this vein has been by Weintraub (1986), Cooke (1991), Mellinger 
(1991), Ellis and Vercoe (1992), Brown (1992) and Ellis (1994, 1996), and has been 
partly described in the preceding chapter.

These various approaches introduced different methods that work best within their 
domain of sources, but they were not universal extractors.  Most were bootstrapped for 
either music or vocal data, exploiting knowledge and procedures specific to these 
domains.  In most of these cases separation extracted distorted sources, partly because 
of the loss of information due to mixing.  In light of the realization that exact reconstruc-
tion is not always possible, recently the opinion of many researchers has changed to that 
accurate reconstruction should not be the goal of CASA.  Auditory perception is more 
concerned with the detection and outlining of sound objects, rather than the exact recon-
struction (which is not always feasible).  This is a step closer to the initial cocktail party 
problem and presumably to human listening, which brought CASA back against a more 
reasonable challenge.

In a hostile viewpoint, most of CASA is still rather primitive and short-sighted.  This is 
partly because of the fuzzy nature of its goals and unconditional faith to psychoacousti-
cal literature.  The most important problem however is that most of CASA approaches 
still don’t have a definition of what a source is.  Most often a source is heuristically 
defined as something that fulfills the requirements of being a separate object according 
to perceptual grouping.  Given that perceptual grouping itself is also poorly defined, it is 
no surprise that there is a high incidence of extremely complex systems that produce 
extremely basic results.  There is also a significant disregard towards general perception 
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which results in highly specific systems that cannot shed any light on the inner workings 
of the human mind.  Finally the strong belief into psychological literature, prohibits the 
use of formal mathematical definitions.  These problems are acknowledged by many in 
this field and are not personal musings.  The desire to overcome these obstacles has 
been noted, and is an active subject of debate.

4 . 2 . 2  Multichannel Blind Source Separation

In contrast to CASA approaches, multichannel separation is a clean, well defined and 
understood operation.  It deals with the case where we have a number of sound sources 
as recorded by a set of sensors.  Each of these sensor recordings will contain a superpo-
sition of the sources, thereby concealing their individual form.  By modelling the 
recording process and using knowledge of the setup, or some measurable statistics, we 
can cancel out interfering sources to extract the desired ones.  This operation is easy to 
formulate in the context of linear algebra.  Assuming a set of sources 

 we can model a multisensor recording process as:

(1)

where  are the recorded series and A is a real M by N matrix, 

known as the ‘mixing matrix’.  The structure and contents of the mixing matrix are 
dependent on the sensor and source numbers and physical locations (Figure 1).

  

Figure 1 Example of a multichannel setup.  The stars s1 and s2 are the sources and the 
dotted lines their paths to the microphones.  The solid lines indicate their 
corresponding distances.  Assuming a simple inverse distance attenuation rule 
for the propagation of sound, we can deduce the mixing matrix for this scene
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If  and A is full rank it is possible to recover the exact original sources by:

(2)

where  is the inverse (or pseudoinverse if ) of A.  In practice the invertibility 

constraints that  and full rank of A, mean that no two or more sensors or sources 
can be at the same position, and that we have at least as many sensors as sources (If 
these constraints do not apply, it is only possible to try to reinforce the sources as much 
as the situation allows, but in general it not possible to fully recover them.  We will not 
consider these cases here).  This scenario is referred to as the instantaneous mixing sce-
nario, since it does not model propagation delays and other filtering issues, thereby 
assuming an instantaneous transmittance of sound

More realistic mixing systems were subsequently formulated, modeling the mixing pro-
cess as:

(3)

where  is an FIR matrix.  That means that instead of scalar elements the matrix con-
tains FIR filters and matrix multiplication of this object with a vector is defined as:

(4)

where the * operator denotes convolution and a(i,j) are FIR filters.  This model accounts 
for the effect of reflections, propagation delay and reverberation in a recording environ-
ment.

In both of the above cases the objective of a source separation algorithm is to estimate 
an inverse of the mixing matrix (A or ).  In general this matrix is not available to us, 
and it is deduced from observation of the recordings, and/or knowledge of the sources 
and the geometry of the setup.  Modern techniques, known as blind processing tech-
niques, have no knowledge of the environment (hence the term blind), and only use the 
statistics of the recordings to make their estimation.  The only assumptions made are 
that different sources are not dependent to each other, so by trying to find an unmixing 
matrix that produces maximally independent outputs it is possible to obtain the original 
sources.  Although there are many ways to attack this problem when armed with this 
assumption, the most relevant to our work is the application of ICA methods.  It is quite 
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obvious that the outputs of Equation (2) can be forced to be independent using an ICA 
algorithm.  This has been exploited by many researchers (see Torkkola 1999 for exhaus-
tive reference) and in the case of instantaneous mixing is regarded as a solved problem.  
Equation (3), commands more complex implementations of ICA, it has been however 
successfully solved for a reasonable number of sources and filter sizes (Smaragdis 1997, 
Lee et al 1997).

Overall the ICA approaches to source separation yielded impressive results, superior to 
their CASA counterparts.  However, the use of multisensor methods for source separa-
tion has not been accepted by the CASA community since it deviates on a key point for  
perceptual studies.  Auditory perception is based at most on a two channel input (our 
two ears), and the constraint that current ICA algorithms impose is that we have at least 
as many inputs as sources.  Although there is this obstacle in bridging ICA and CASA, 
ICA can boast a relation to redundancy reduction and the relevant perceptual theories 
which by far supersede the CASA philosophies in both depth and breadth.

Scene analysis, as has been pursued in the auditory community, has been intimately 
linked to source separation.  In the rest of this chapter we will not abide by this conven-
tion.  We feel that it is important to realize that understanding a scene and extracting 
useful information from it, is a distinct task from source separation (it is however driven 
by the same principles).  This is a realization that has come to mature only recently 
(Ellis 1997, Scheirer 2000), and source separation is nowadays seen as a probably 
impossible task, and not crucial to perceptual processing.  We will adopt this point of 
view and continue with this chapter presenting methods that lie in the fine line between 
detection and separation.  Our primary goal will be awareness of the structure of an 
auditory scene.  Issues of separation will be examined as side effects.  Our approach will 
start from a methodology introduced by Casey and Westner (2000), which combines the 
formal rigor of the multichannel approach, with the realistic constraints of the percep-
tual approach.

4 . 3     Decompositions of Magnitude Transforms

4 . 3 . 1  Object Detection

In this section we will examine the problem of detecting individual sounds from an 
auditory scene.  Our assumption, as in the previous chapters, is that by performing 
redundancy reduction we can yield interesting results.  We will examine redundancy 
reduction as it applies to the time-frequency energy of signals.  We will show that by 
extracting the energy of components of scenes we can deduce a lot of information about 
the events that take place.  This is an approach that will try to use the philosophy of 
CASA approaches, but backed by the more rigorous theories relating to multichannel 
approaches.

Having a sound scene s(t) we can analyze its energy content with respect to a set of 
bases using the magnitude of the transformation that these bases dictate.  For example, 
the magnitude of a STFT transform will reveal the energy of all the sinusoidal compo-
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nents in the scene as they evolve through time.  In terms of linear algebra that is equiva-
lent to:

(5)

where A is a N by N matrix expressing the desired transformation, the  operator per-

forms element-wise magnitude extraction, and .

The resulting matrix F can be interpreted in two directions.  If we observe it by travers-
ing its columns one after the other, we can think of them as instantaneous magnitude 
transforms of the scene, localized in successive times.  Observing its rows, we can think 
each one as a time series denoting the amount of involvement of a basis.  We will refer 
to the columns of this matrix as spectra and the rows as energy tracks.

Since our thesis is that redundancy reduction of data leads to perceptual-like outputs, we 
will apply the same techniques we’ve used in the previous chapters to this representa-
tion.  In order to build some intuition we will start with a very simple two object scene 
and its magnitude STFT transform (so that the A matrix in Equation (5) will be the Fou-
rier matrix).  The scene is one that displays interesting structure in both the time and the 
frequency axis.  The two components of this scene are two amplitude modulated sinuso-
ids:

(6)

where g(·) is a periodic gate function defined as:

(7)

The odd nature of the constants defined in Equation (6) was such so as to avoid any 
gestalt grouping problems.  The two gated sinusoids are intended to be separate and 
independent sources.

The magnitude of the STFT of this scene is depicted in Figure 2.  To obtain it we used 
an FFT size of 128 and a hop size of 32 samples.  This data will constitute our F matrix 
in Equation (5).  Due to the symmetry properties of the FFT we only to retained the first 
65 samples from each transform (64 frequencies and the constant offset).
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Figure 2 The magnitude STFT of a simple two object scene.  Note that the two objects 
feature different frequency and time characteristics

By observation of the data we can extract basis functions for the matrix F.  We can do so 
in either of the two dimensions.  We’ll first consider basis functions that describe the 
spectra (the columns of F).  They would be 65 samples long and they should be able to 
reconstruct every column of F (the vertical slices in Figure 2).  We will try to estimate 
these basis functions using techniques for redundancy reduction presented in earlier 
chapters.

We will start by using the PCA transform on F.  PCA will provide a matrix Wp so that 
the operation:

(8)

will result in a matrix Cp whose rows will be decorrelated.  The rows of the Wp matrix 
will be a set of bases comprising the transformation that results in Cp.  If we wish to 
resynthesize the matrix F using Wp and Cp we only need to solve Equation (8) with 
respect to F, from which we get:

(9)
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The columns of matrix  will contain a set of bases that are required to resynthesize 

F.  In terms of transforms,  will be the inverse transform† of Wp.

In our case we only require a small number of cases and we do not care as much for an 
accurate reconstruction.  In order to perform this dimensionality reduction on our trans-

form Wp we only keep the first few rows, which correspond to the most significant‡ 
bases.  In order to then recover the inverse transform we need to take the pseudoinverse 
of Wp:

(10)

The columns of  will be the bases of the inverse transform.  They will effectively be 

the elements that when multiplied with Cp will reconstruct the scene.  We will think of 
them as the building blocks of our scene.  We will now examine these bases and their 
resulting transformation.

In the case at hand we will obtain a set of resynthesis bases which will be 65 samples 
long and can be used to recreate all of the spectral instances of Figure 2 (the columns of 
matrix F).  Since we only have two simple objects we will only keep two bases.  The 
results we obtained are shown in Figure 3.

  

Figure 3 Results of the PCA analysis on the data in Figure 2.  This figure displays the 
estimated spectral basis functions, which almost reveal the two sinusoidal 
spectra.

†. In the special case of PCA, the inverse transform matrix is just the transpose of the forward transform matrix (since W is an 
orthogonal matrix), and most references are as such.  However, we generalize and use W-1 to accommodate a more abstract 
framework, which will help later on.

‡. In the case of PCA, ‘significant base’ implies a base that has a significant contribution in terms of variance contribution.
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We note that these two basis functions roughly correspond to the two spectra that con-
struct each of the two sinusoids.  In order to increase the quality of the results, we will 
continue the analysis by a subsequent application of ICA on the resulting matrix Cp.  By 
doing so we will make the operation:

(11)

Where CI is the output of the ICA transform WI, and W the overall transform that we 
have applied on F (the transform that includes both the PCA basis reduction and ICA 
steps).  The inverse (or pseudo inverse if we reduce the number of bases) of W will con-
tain the new ICA resynthesis bases is its columns.  Applying this to our scene we obtain 
the bases in Figure 4.

Figure 4 Spectral bases of the scene in Figure 2 as extracted using ICA.  Each of the two 
bases corresponds to one of the sinusoids in the scene, effectively discovering its 
composition. 

We now notice that the extracted bases are much more clean, and have a interesting rela-
tion to the spectral structure of the scene having highlighted the existence of the two dif-
ferent frequency peaks, each corresponding to one object.  In effect we have isolated the 
frequency contribution of each object.  It is also interesting to examine the resulting 
transformation CI (Figure 5).
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Figure 5 The resulting transformation of the data in Figure 2.  Note how the independent 
components are in fact the amplitude envelopes of the two objects.

The rows of CI  contain the transformed energy tracks of F so that they are now maxi-
mally independent.  We notice that this transformation results into two energy tracks 
describing the amplitude of the two objects in our scene.

The operations that were performed on F were that of reducing unnecessary data by the 
PCA dimensionality reduction, and then forcing the remaining elements to be statisti-
cally independent.  As is easy to see from Figure 2 we had two kinds of significant 
energy tracks (the horizontal slices of F), the tracks that corresponded to the amplitudes 
of the two objects.  These were the two tracks that were retained by the PCA transform, 
they were not however returned in a clearly separated form (and in general they will 
never be), they were returned as two mixtures.  The ICA step was responsible for the 
fine tuning required for separating these two components into two independent tracks.  
In effect this last operation is equivalent to the work in multichannel separation, only we 
are performing it in a subsampled transformed domain.  We have produced the extra 
channels by the magnitude STFT transform and that allowed us to run multichannel ICA 
on an originally  monophonic sound.  The motivation to do this operation stems from the 
fact that the individual objects in a scene are independent.  That means that they feature 
a set of energy tracks that would also be independent.  By attempting to decorrelate 
these energy tracks and then seeing which spectra correspond to them, we hope to reveal 
some of the structure in a scene.  This is the same reasoning applied in the multichannel 
ICA work, only on a different domain.

We will now examine the same operation as applied on the other dimension of the data.  
We will extract time bases by striving for independence of the spectral bases.  To do so 
we only need to repeat the experiment above by setting the input to our analysis being 

FT rather than F.  Just like before we obtain a set of time bases and spectral components, 
which highlight the two objects in the scene.  The results after the ICA step are shown in 
Figure 6.
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Figure 6 PCA analysis of the data in Figure 2.  These results, although similar to Figure 4 
and Figure 5, were obtained by applying the same procedure, but this time on the 
other dimension.  This operation has the effect of making the transformed spectra 
independent, as opposed to the previous approach that made the energy tracks 
independent

It is interesting to note that we obtain qualitatively the same results as we have had 

using F instead of FT.  This fact highlights an interesting point; independence between 
objects in a scene exists in both their frequency and time axes.  Interestingly enough by 
looking at one domain we can extract information about the other.  In the previous case 
we obtained our results by forcing the energy tracks to be independent and then seeing 
which spectral bases corresponded to them.  In this case we performed the opposite, try-
ing to get the spectral components to be independent and then extracting their corre-
sponding energy tracks.  Since clues of the objects’ identities existed in both the time 
and frequency axis, it became possible to detect both by forcing a constraints on only 
one of them.

Obviously the scene we used so far was quite a simple example where there was, on 
average, little overlap in the time domain and none in the frequency domain and good 
discrimination between the two objects.  We’ll now use a more complex scene.  It will 
be a three element scene comprised by the sum of the components displayed in Figure 
7.  These three components are drum instruments, a snare drum, a bass drum and a hi-
hat.  This is an example that displays a more complex mix of spectral and temporal vari-
ation.  The solution is non-trivial since for some time instances we have overlap of mul-
tiple components and between all instruments we have spectral overlaps.
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Figure 7 The left figure displays the individual components of an auditory scene in the time 
domain.  The right figure displays their corresponding power spectra.  The scene 
itself is composed by the summations of these components

By noting the time and frequency characteristics of the instruments we can make some 
observations that will help us in deciphering our results later.  The bass drum contains a 
lot of energy at the lower side of the spectrum and its only isolated instance is its second 
one.  The first and third instances occur simultaneously with the hi-hat.  The snare drum 
has a resonant character in the low-middle frequencies and is somewhat wideband.  Of 
its two instances only the first is isolated, the other coincides with a hi-hat.  The hi-hat 
has a wideband tone with some high resonant frequencies.  In addition to its temporal 
overlaps we mentioned above there is also significant spectral overlap with the snare 
drum.

We analyze this scene using the magnitude STFT again and obtain the matrix F shown 
in Figure 8.  We used an FFT size of 512 and a hop size of 64 samples.  As we had done 
before we truncated the frequency axis to keep only one half of the symmetric spectrum 
plus the constant offset.
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Figure 8 The STFT of the drum loop scene.  The individual components are easily identified 
by eye from their temporal and spectral characteristics.

We apply our previous procedure using PCA dimensionality reduction on F, down to 
four bases, and subsequently follow this step with application of ICA.  This operation 
makes the temporal features maximally independent and provides the results in Figure 
9.

   

Figure 9 Analysis of the data in Figure 8.  The left figure displays the estimated resynthesis 
spectral bases, and the right figure their energy through time.  In contrast to the 
original objects we have a fair decomposition of the scene to its original 
comprising elements

Observation of the results unveils the structure of the scene.  Easier to decipher is the 
resulting transform Cp (right figure in Figure 9).  We can easily see that the second and 
fourth energy tracks correspond to the bass drum.  The fourth appears to deal with the 
snap in the attack portion of the bass drum, whereas the second one deals with its low 
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frequency resonance.  By examining their spectral counterparts, we see that they are 
both exhibiting a low frequency content.  The one corresponding to the attack portion 
has a slightly higher frequency content, whereas the other has most of the low end 
energy.  Likewise we see that the snare drum energy track is well captured in the third 
component.  As we might expect the corresponding spectral base has the same reso-
nances as the snare drum.  Finally the first component is the estimated energy of the hi-
hat.  Due to the fact that it temporally coincides with the bass and the snare drum for 
some instances, the time track is not perfect.  The spectral base though is very accurate 
and encapsulates all of its characteristics.

In order to deal with the temporal problems in our estimation, we repeat the process 

using the other dimension of the spectrum by analysis of FT.  This will perform statisti-
cal separation of the spectra of the objects, rather than the time energies, which should 
alleviate the time tracking problems we have.  The results are very similar, the spectra 
indeed correspond to the sounds we had in the scene, and the temporal functions are 
more complete now.  We do note however that the energy track corresponding to the hi-
hat does contain some extra events.  Due to the spectral similarity of the snare drum and 
the hi-hat (they both feature a wideband spectrum), their separation was not perfect and 
we notice that the hi-hat track also includes the snare drum events.

 

Figure 10 ICA analysis of the data in Figure 9.  The two figures are the corresponding ICA 
outputs to Figure 9.  In contrast we see that the temporal estimation of the hi-hat 
was more accurate, although there is confusion with the snare drum.

In general, the issues that arise with these kinds of overlaps are not easy to solve.  The 
process of monophonically mixing a set of sounds results in information loss that we 
cannot reconstruct without additional knowledge.  For this reason it is hard to extract 
exactly what occurs at all points.  In many cases this requires the use of a knowledge 
system to interpolate missing data.  In our case the only form of knowledge is the 
knowledge discerned from the presented scene.  Considering that the drum scene encap-
sulates all of the auditory experiences of our system, the results are not bad at all.

As hinted by the initial definition of this process, it is not imperative to use the magni-
tude STFT transform for this process.  The magnitude STFT was used due to its desir-
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able phase-invariance properties and since it is a fair approximation to the bases that we 
have discovered in the second chapter which does not complicate the implementation.  
It is quite possible to substitute this transform with a DCT transform, or even PCA or 
ICA derived bases.  In fact, the transform can even be the unit matrix (or for that matter 
any linear transform).  The performance of this algorithm however is strongly biased 
depending on the transform type.  The main goal of the transform step is to obtain a 
sparse decomposition of the data which can consequently assist the PCA and ICA steps 
to have better convergence.  By taking the magnitude of the transform we create an 
invariance to the sign of the data, and in the case of the STFT an invariance to the phase 
of the data.  Perceptually these invariances exist in the human auditory system, and they 
help provide a good sparse coding of what we hear.  Computationally these invariances 
venture in the domain of nonlinear ICA since they deal with a non-linear and non-
invertible transformation, and complicate matters considerably.  It is outside the scope 
of this thesis to delve into this territory (it is also a volatile and relatively unexplored 
subject), but we will however bring up the subject once more in the last chapter.

Similar results to the ones presented can be extracted from a variety of scenes, and the 
results are dependent mostly on the density and overlaps of the scene objects.  The issue 
of invariance comes up again in the case of complex sources.  So far we have dealt with 
auditory objects that have a fairly static spectral character.  Once we attempt to extract 
sources with a more complicated structure, it is quite impossible to obtain results by 
forcing the spectra to be independent due to the absence of consistent spectral charac-
ters.  For such complex scenes it is preferable to force independence of the energy 

tracks instead.  This implies analysis of F rather than FT and we will deal with that in 
later sections.

4 . 3 . 2  Applications in Music Processing

The estimation of independent spectral bases opens avenues of exploration for music 
processing.  A traditionally hard operation on audio processing is music transcription.  It 
involves the translation of a raw audio stream to musical semantics (most systems 
attempt only the extraction of musical notes, a daunting task by itself).

Fitting our framework, we present a brief example of how we could use the method 
developed in the previous section for note detection.  We used the first two bars of 
Bach’s first invention in C major BWV 772 (Gould 1966).  This being a solo piano 
piece, it offers a highly structured scene.  There is a strong dependency to frequency 
templates which are the present piano notes.  This is a structure we can easily extract by 
the aforementioned analysis method.  We repeatedly performed the analysis using win-
dows lasting one bar (total two windows to cover the entire scene).  The first window of 
analysis contained a segment with one note sounding at any time, whereas the second 

one contained a polyphonic passage.  We performed ICA on FT, thereby striving for 
independence of frequency components, since we know that the structure we care for 
lies there.  We kept five components from the first window analysis and twelve from the 
second.  The resulting frequency bases from the first analysis are displayed in Figure 11.
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Figure 11 Frequency components (left) and their corresponding energy (right), from analysis 
of the first bar of the Bach’s first invention.  Note how the frequency bases 
correspond to note spectra and the energies to their respective time locations.

As expected the frequency bases were the spectra of the notes in the scene, and their 
energy tracks provide their corresponding time location.  Cross referencing this data 
with the score of the piece proves that we have correctly identified the position of every 

note†.  The second bar is a more challenging case, since it exhibits polyphony.  To com-
pensate for the added harmonic activity we extracted twelve bases and used a longer 
FFT length.  The results were similar and are displayed in Figure 12.  The first six bases 
correspond to the left hand notes, and we have only one undetected note and an octave 
ambiguity for the last G.  The top six bases capture the trill between C and B, as 
stretched out and jagged energy tracks.

  

Figure 12 Frequency components (left) and their corresponding energy (right), from analysis 
of the second bar of Bach’s first invention.

†. An historically interesting point to make, is one that is reflected in our results.  There is a  reason why the third basis does not 
have a smooth energy track, and seems to accent the start and end of every note instance and is rather low and noisy during 
the middle.  This is an effect due to the fact that the piano used in this recording was damaged during a transfer, and was 
recorded having a middle register that suffered from a mechanical tic that resulted in an audible hiccup.  In the analyzed pas-
sage, the E note, represented by the third basis, is one of the affected notes, and the energy track has reflected that!

50 100 150 200 250 300 350 400 450 500

1

2

3

4

5

C#2
-43c

D2
+46c

E2
+16c

F2
+21c

G2
+14c

Frequency components

Frequency
20 40 60 80 100 120 140 160

1

2

3

4

5

C#2
-43c

D2
+46c

E2
+16c

F2
+21c

G2
+14c

FFT frame

Energy of frequency components

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

7

8

9

10

11

12

G1
+14c

C2
-11c

C2
+23c

D2
-15c

E2
-39c

E2
-11c

B3
-37c

B3
-18c

C3
-28c

C3
-11c

C3
+6c

D3
+1c

Frequency components

Frequency
10 20 30 40 50 60 70

1

2

3

4

5

6

7

8

9

10

11

12

G1
+14c

C2
-11c

C2
+23c

D2
-15c

E2
-39c

E2
-11c

B3
-37c

B3
-18c

C3
-28c

C3
-11c

C3
+6c

D3
+1c

Energy of frequency components

FFT frame



Auditory Scene Analysis

Decompositions of Magnitude Transforms 91 

From an evolutionary standpoint this is a very interesting results, since it highlights the 
connection between statistically strong features and musical building blocks.  The inter-
esting point to make is that the notion of notes was implied by examination of the sound 
scene and it was not specifically pointed out.  We have thus, created an analysis from 
which our system can deduce musical information from listening, rather than being 
explicitly told what to look for.

4 . 3 . 3  Auditory Object Extraction

Since we do have a way to detect and isolate objects in a transformed domain it is con-
ceivable that we can perform an inverse operation to extract individual objects.  Using 
the magnitude transform to obtain our data, we face the ambiguity of phase as we 
attempt to perform the inverse transform.  Having kept only the magnitude data, we 
have no information about the phase.  One, admittedly poor, way of doing this is to use 
the phase values from the initial scene and modulate them with the newfound ampli-
tudes.  Although this is not a precise and clean way to reconstruct the data is provides 
reasonable results (we should keep in mind that exact reconstruction of each auditory 
object is not always possible, and this pursuit is merely to satisfy our curiosity of how 
the components sound).

To explain this more formally, having obtained a set of bases W and their coefficients C 
from the original input F, we can reconstruct F by:

(12)

As we mentioned we do not need to keep all of the bases in W.  If Wr is the matrix that 
contains the reduced set of bases, we can reconstruct the data-reduced F matrix 

(denoted as ) by first doing:

(13)

to obtain the coefficients for the reduced bases, and then:

(14)

to get the thinned-out .  For the sake of illustration had we wanted to obtain a recon-
struction using only one component, we could use:

(15)

F W 1– C◊=

F̂

Cr Wr F◊=

F̂ Wr
+ Cr◊=

F̂

F̂i W i( )
+ C i( )◊=
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where the subscript on the right hand matrices, selects the ith column of W+ and ith row 
of C.  This will give us the magnitude spectrum of only the ith component.  In order to 
convert this to an invertible spectrum we can use the phase of the original input F and 

amplitude modulate it by our new  as:

(16)

Si will contain the approximate time-frequency spectrum of one component, and we can 
use it as the input to an inverse STFT to obtain the component in the time domain.  
Using this reconstruction we can extract audible representations of the sinusoids, drums 
and piano notes presented in the previous examples.

Following is an example of a section from the pop song “Da da da” (Trio 1981).  The 
particular section contains instances of the word “da”, a synthetic clave sound, a bass 
line, some guitar strumming and drums.

Figure 13 Looking at the spectrogram we can locate the individual sounds.  The utterances 
of the word da can be distinguished by the formant structure of speech.  The clave 
is the high frequency ‘beep’ which we see halfway through the spectrum.  The 
snare drum and the guitar strums coincide in time and are the large vertical 
columns.  The bass and the bass drum are located at the bottom of the plot.  For 
legibility purposes not all instances of each sound are marked.

Applying on this scene the aforementioned analysis and resynthesis method we can 
effectively, detect and pseudo-extract the instruments that are present.  In this case we 
analyzed F (looking for independence of energy tracks) and used the STFT with an FFT 
size of 64 and a hop size of 8.  We also applied a hanning window to improve clarity of 
reconstruction and avoid frame to frame clicking transitions.  We used PCA to reduce 
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the number of energy components down to nine.  Out of these nine components, at least 
six corresponded to the various instruments in the scene (Figure 14).

  

  

 

Figure 14 Clockwise from top left: extraction of the ‘da’ utterances (note the formant 
structure), the bass drum (low and short bursts), the clave (high pitched short 
‘beeps’), the snare drum (wideband bursts, low-mid resonance), guitar strumming 
(somewhat contaminated by the snare drum, but exhibits a more harmonic 
structure than the snare drum track), and the bass part (with a clear harmonic 
structure and low notes).

The results have been quite satisfying.  The algorithm successfully tracked the major 
components of the scene and provided a reasonable reconstruction.  Extraction was not 

FFT frame

F
re

qu
en

cy

Da extraction

100 200 300 400 500 600

50

100

150

200

250

FFT frame

F
re

qu
en

cy

Bass drum extraction

100 200 300 400 500 600

50

100

150

200

250

FFT frame

F
re

qu
en

cy

Bass extraction

100 200 300 400 500 600

50

100

150

200

250

FFT frame

F
re

qu
en

cy

Clave extraction

100 200 300 400 500 600

50

100

150

200

250

FFT frame

F
re

qu
en

cy

Guitar strums extraction

100 200 300 400 500 600

50

100

150

200

250

FFT frame

F
re

qu
en

cy

Snare drum extraction

100 200 300 400 500 600

50

100

150

200

250



Auditory Scene Analysis

94 Decompositions of Magnitude Transforms

comparable to multichannel techniques though.  For example the guitar and snare drum, 
whose instances were synchronized, posed a hard, if not impossible, separation prob-
lem.  The missing information due to their mixing cannot be reconstructed and the 
resulting components are not clearly separated (however, we can distinguish them quite 
easily as the guitar and snare drum tracks).

4 . 3 . 4  What is a Source?  What is an Auditory Object?

An issue that arises at this point is the definition of a source, an auditory percept, or an 
auditory object.  It might have been noticeable that in the preceding section we used the 
term “auditory object”, rather than “source”, to describe what it was we extracted from 
the scene.  Preceding researchers have consistently defined their extracts as sources, a 
term we did not use.  In this section we will attempt to make a distinction between a 
source and an object, as they relate to the extraction process.  

The concept of a source is usually defined in terms of human perception.  It is easy to 
make for most sounds; a passing car, a person speaking, or music playing from a 
speaker can be a source.  These are percepts that provide some sense of continuity 
which makes us perceive them as sources.  Even though the car can shift gears, the 
speaker stop speaking for a while, or the music be composed from a changing setting of 
instruments, we still perceive them as one auditory source, regardless of the drastic 
changes they undergo.  This is because we have a prior knowledge of how these sources 
are produced and we are able to make higher level judgements on how to piece such var-
ied sounds together to construct a source.  For different reasons, both the CASA and the 
multichannel approaches perform extraction of sources.  In the CASA case extracting 
sources is a hardwired function and a primary objective; in the case of multichannel sys-
tems the inputs are spatially constrained in such a way so that they imply a source struc-
ture.

Our approach, although heavily indebted to CASA and multichannel work, extracts a 
different kind of auditory entity.  We will use the term auditory object.  An auditory 
object is a simpler element which is easily defined as an independent set of data in the 
scene.  The particular method we provide to extract this independent set works by defin-
ing spectral or temporal templates.  In the case of spectral templates, an object is 
extracted as a frequency response which, in the analyzed scene, is amplitude modulated 
in a statistically independent manner.  Likewise, extracting temporal templates results in 
statistically independent amplitude tracks, being harmonically modulated.  It should be 
quite clear that this type of analysis is inadequate in capturing a source as defined in the 
previous literature.  So it is important at this point to make a distinction between a statis-
tically independent object in the scene and a source.  In a strict mathematical sense a 
person speaking in between long pauses, although a source by itself, provides many 
auditory objects which can be either the syllables, the words, the sentences, or some 
other coherent mass of sound (a fact determined by our method and length of observa-
tion).  Using our particular method, we extract objects that have some common fre-
quency or time modulation.  We cannot expect to extract speech, or music as one object 
because it is not.  We can only pick out coherent pieces that compose them.  If we bring 
ourselves to the ‘mindset’, of our algorithm it is easy to understand this.  The submitted 
scene is the only stimulus the algorithm receives and all knowledge we use is extracted 
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from it.  Had the scene had only spoked word, the algorithm not having the knowledge 
of what speech is, it would be quite natural to say that each different coherent section of 
the speech signal is a different object.  We can not expect at such a low level to extract 
complex representations.  We perceive this as one source, but this is because we also 
analyze the semantic content, and use the timbral continuation to deduce that it origi-
nates from a single speaker, thereby concluding it is one source.  Our algorithm, does 
not have access to all this information and makes a simple statistical judgement.  Now if 
the spoken word was such that it offered some kind of repetition to imply continuity, 
then the connection would be surely made (such is an example of the “da da da” extrac-
tion, where the repetition of the utterance da makes the algorithm extract all of the sung 
part as one object).

The following example highlights the difference between a source and an object.  It is a 
segment from the jazz song “Blue moon” as sung by Billie Holiday (Holiday 1945).  
The section we analyzed contains Holiday singing “you saw me standing alone” over a 
bass line, a piano part and some faint drums (Figure 15).  Our goal was to extract just 
the vocal part.  Since this part is hard to represent with only one component, we tried to 
extract more components and selectively combine them to reconstruct all of the sung 
part.

Figure 15 Extract from ‘Blue Moon’.  The vocal parts, easily seen by their formant structure, 
cannot be extracted by a single frequency template as we have before.  To 
overcome this problem we need to combine a set of components to reconstruct 
the entire sung line.

We extracted nine components, and some of them were corresponding to speech.  Indi-
vidual components have adapted to represent dominant and locally static parts of the 
singing line (the auditory objects).  These were mostly the vowel parts which are sung 
most prominently (Figure 16) and display statistical coherence amongst them.
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Figure 16 Extracted vocal components.  The three components highlight different sections 
of the sung part.  Complete reconstruction of the vocal part requires the 
combination of all these components. 

Once the vocal components are extracted we can reconstruct the entire vocal part by just 
combining them.  Likewise, when we analyze complex scenes we need multiple compo-
nents to extract complex sources such as speech, lines of a solo instrument etc.

Another way to deal with the issue of needing many components to represent one source 
is the use of analysis frames.  As we have done in the previous example analyzing the 
Bach invention, we can subdivide the scene into multiple segments and analyze each 
one individually.  Each frame, due to limited content, will require fewer components to 
represent all the sources, and by proper recombination of components we can recon-
struct a source over the course of many analysis frames.  Unfortunately, finding the suc-
cessor of each component in the consecutive frames is a very hard problem and this 
method of analysis is rather hard in all but trivial cases.  To remedy this, online algo-
rithms can be used to provide a running estimate of the components on a sample by 
sample basis.  Although this approach eliminates a lot of the work required to match 
components over time, it provides poorer estimates due to its short time frame of opera-
tion.  In any case though, the results we have so far are promising and perform fairly 
well under reasonable conditions, the only major drawback being that this process 
requires human guidance.  Most work in this area has been preliminary though, and we 
are confident that in time these problems can be addressed in a more mature manner.

4 . 4     Conclusions

In this chapter we presented a methodology for decomposing auditory scene to a set of 
independent features.  The approach was a hybrid of the multichannel statistical 
approaches, and the monaural psychoacoustical models.  This was inspired by the fact 
that although the psychoacoustic approaches were dealing with a perceptual problem 
(one input, many outputs), they were not using the elegant formulations of the multi-
channel approaches (which in turn were not dealing with a perceptually realistic prob-
lem).  The formulations used for the multichannel approaches, aside from rigor and 
depth, had a strong link with perceptual theories and provided a, conceptually, very 
strong platform for scene analysis.  Once combined with the scenario of the psychoa-
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coustic approaches they resulted in, what we feel, is a much more plausible process for 
scene analysis.

This particular approach is however a starting point rather than a solution.  It has many 
unclear points, and a fair amount of manual fine-tuning to obtain results.  Its relative 
simplicity and conformance to perceptual theories make it a compelling approach which 
can potentially lead to more elegant auditory scene analysis.  Hopefully it will mature in 
time and provide greater autonomy and robustness.
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Chapter 5.  In Closing

5 . 1     Thesis Overview

The driving impetus behind this thesis was the lack of representation of modern percep-
tual theories on auditory perception.  As we have described in previous chapters, the 
majority of work on auditory perception has been rather limited in scope, and highly 
dependent on psychoacoustics.  The approach we have followed, was that of abstract 
perception, with no particular ties to auditory representations.  We also avoided complex 
and heuristic verbal descriptions stemming from psychology, but instead formulated 
various stages of low level auditory perception to fit a compact redundancy reduction 
principle.  In order to avoid using our own biases and knowledge when it comes to lis-
tening, we examined perception from an evolutionary perspective, and pondered on 
what it means to evolve a sense of perception from raw observation of data. 
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In the first section of this thesis we presented the formation of auditory preprocessing 
filters as they relate to their stimuli.  We showed that speech signals are optimally 
decomposed, in terms of redundancy reduction, by time-frequency localized sinusoids, 
very much like the filters used to model human auditory systems.  We then proceeded to 
show that the perceptual grouping rules that apply to audition are also products of the 
same process.  Auditory atoms that belong together can be grouped by attempting 
redundancy reduction.  We speculated that the reason why we tend to fuse the patterns 
we fuse, is a direct consequence of their statistics.  The various cases where fusing hap-
pens are cases where the auditory atoms are dependent, something that implies a com-
mon origin.  Given our development in an environment where these dependencies 
always accompany the auditory atoms of sound producing mechanisms, it makes sense 
that our system interprets these dependencies as a hint of unity.  Finally we formulated 
the most complex process of lower level listening, scene analysis, by employing the 
same principle once more.  We presented results in which we have managed to detect 
individual sounds and extract them.  We did so by building a small kernel of knowledge 
that was deducted by the scene we examined.  By exploiting repetition of spectral and 
temporal characteristics and by trying to find a maximally independent set of these, we 
were able to distinguish the different objects that made up a scene.

Although as presented these three formulations seem rather irrelevant to each other, they 
do have more than just redundancy reduction in common.  The sinusoid representation 
that was deducted in out pursuits for optimal basis selection was used later on in the 
form of the STFT front end for scene analysis.  Having strong indication that an STFT 
type transform is an approximation to the optimal in terms of redundancy reduction we 
used that instead of attempt to derive custom filters using the little data we had.  Admit-
tedly a constant-Q type transform would be a better interpretation of our results for pre-
processing, but in order to accommodate clarity and simplicity the STFT was used 
instead.  This by no means precludes the use of a more advanced transform type, per-
haps one that has better characteristics (Wigner-Ville, or wavelets), or one that is 
entirely derived from the data itself (this however requires large scenes for better 
results).  The way we reduced and combined the energy tracks for scene analysis was 
intimately linked to the grouping section.  Although we had used sinusoids with variable 
frequencies for grouping, we essentially repeated the same procedure for the constant 
frequency narrowbands of auditory scenes.  Due to the data invariant formulation of 
grouping we  used the same computational method, albeit in a different way to accom-
modate the different form of outputs we required.

Taking a step back and observing our work in a global manner, allows us to see a point 
we wish to stress (and have been doing so throughout).  Perception is a process that has 
evolved to interpret the statistics that exist in our environment.  Things that are common 
and repeating we tend to ignore (for example the existence of partials in harmonic rela-
tions), and things that do not make statistical sense confuse us (auditory illusions, 
noise).  Unfortunately with the advent of sound synthesis technology psychoacoustics 
has been focusing on simple scenarios involving highly improbable and unnatural 
sounds, such as the scenes we used in the third chapter.  This allows observation of 
interesting effects, but also skews our interpretation of what perception does.  For exam-
ple, the grouping rules that we have observed are merely side-effects of our experience 
on parsing scenes.  It would be quite improbable that our listening mechanisms are 
using such simple rules to parse complicated inputs.  It is much more likely that the 
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expertise we have acquired for detecting sources and recovering statistics, is influencing 
this behavior.  This is not however a widely understood point and, in our opinion, is a 
cause for misplaced research efforts.  Through our work we hope to stress the impor-
tance of the structure of natural sounds when it comes to modelling and understanding 
auditory perception.

5 . 2     Future Work

As it should be obvious by now, we are staunch believers in the relation between redun-
dancy reduction, perception and environmental statistics.  This is a philosophy that has 
infiltrated other fields of perception but not so much audition.  We provided some indi-
cation on how it relates to lower level auditory perception, but there is no reason to stop 
there.  Redundancy reduction can be used at many levels of listening processes, and 
could be a unifying tool for the creation of compact and elegant systems.  Preliminary 
results were successful in application of these principles to the discovery of themes in 
contrapuntal music, pitch detection based on examination of common information with 
pitch templates, and identification of simple waveforms.  More adventurous topics that 
delve into the realm of aesthetics include the relation between the notion of mutual 
information maximization with consonance.  Just like harmonically related sinusoids 
display are maxima of mutual information, musical intervals and chords can yield simi-
lar characteristics.  Remarkably enough, we note that the intervals and chords that are 
known to be consonant are in fact maxima of mutual information.  To further entice our 
interest we discovered that the more consonant an interval or a chord is believed to be, 
the more mutual information it possessed.  This can prompt theorizing about the aes-
thetics of listening based on informational measures.  Although out of the scope of this 
thesis, this is a project that has been pursued in other domains and looks very promising 
in the case of audition.

In terms of computational backup we have the fortunate assistance of excellent research 
on redundancy reduction and related principles.  Some of the most interesting direc-
tions, as far as this thesis is concerned, are those of multidimensional (Cardoso 1998), 
nonlinear (Hyvärinen 2000) and invariant ICA.  They all deal with problems that are 
very hard and can find immediate application in our work.  Multidimensional ICA deals 
with the issues that deal with groups of components, and not necessarily individual 
components.  In both the grouping and the auditory scene analysis chapters, we had to 
deal with many components, some of which belonged together.  Fortunately in the first 
case we were able to deduct the number of groups, but in the latter we always had to 
make a decision on how many components to use, and which of them were describing 
the same source.  Multidimensional ICA deals with the issue of grouping the proper sets 
of components that ‘belong together’.  It is largely unsolved as a problem although 
some solutions are slowly emerging (Hyvärinen 2000).  Nonlinear ICA deals with 
extracting nonlinear mixtures of components.  We had a taste of nonlinear ICA in the 
scene analysis section where we used the magnitude of the spectral data.  By doing so 
we were able to perform redundancy reduction in a phase invariant manner.  Nonlinear 
ICA is a very general definition and introduces a lot of complications, it is however 
promising when it comes to the design of invariant models.  Such properties are highly 
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desired in perception, and these approaches are bound to play a more prominent role in 
perception when they are better understood.

As far as audio is concerned, this work will hopefully inspire some long overdue studies 
on the statistics of real-world sounds.  Unfortunately most computational audio research 
deals with sounds as being either simple stochastic processes, or even worse, a random 
variable (most often presumed Gaussian).  It is our hope that we have provided some 
proof that sounds are not just a Gaussian variable, and require the appropriate treatment 
for any meaningful statistical operation.  We also hope that we have shown that when 
considering better tailored statistics for audio, it is quite simple to extract meaningful 
information from sounds.  Many of the contrasts between PCA and ICA in this thesis 
were meant to be a demonstration of what happens when a better model is used.  What 
we did not examine though, and is still an open question, is the statistics of sound as a 
process.  A lot of our work was deriving sound structures by statistical analysis of audio.  
It was however constrained in terms of time scales exposing only specific behavior.  Our 
preprocessing method was only used for short time windows seldom exceeding 128 
samples, and likewise the scene analysis work was presented using scenes of a fairly 
short length, yet enough to contain enough information.  This ad-hoc selection of the 
analysis windows was an unfortunate case of external influence which we have tried to 
avoid otherwise.  We can speculate that statistics across different window sizes are dras-
tically changing, prompting the same analysis procedure to result in different outputs, 
intimately linked to the analysis scale.  It should be noted, as an example, that the pre-
processing and the scene analysis methods as presented differ only slightly in the incor-

poration of the frequency transform†.  Their truly primary difference is the difference of 
scale, fractions of a second for preprocessing vs. seconds for scene analysis.  Analysis of 
the possible transitions in the data and the response of these methods as it relates to 
analysis window length is an area still unexplored and open for experimentation.  Pur-
suit of this could result in a better understanding of the nature of sound, leading to better 
tailored approaches of dealing with it.

In the philosophical side, considering the breadth of applications that such an approach 
has, we could stand out on a limb and propose that it might help formulate a set of goals 
for audition.  For example noting the relations between consonance, grouping, identity 
of a source, and mutual information we could assume that the sensory mechanism is 
most satisfied when reaching such optima.  We can theorize that the goal of our auditory 
system is to derive satisfaction by decomposing complex input into simpler structures.  
In such a framework, sounds like white noise or simple tones would be highly unsatis-
factory since they cannot be decomposed any more and they provide little or no struc-
ture to exploit, whereas music, exhibiting a rich structure in many levels, would come as 
a interesting task for examination.  We of course will not go as far so as to back-up such 
an ambitious claim, we do find it however satisfying that we can use the same measure 
we have exploited so far to express global goals of perception.

Hopefully, thinking along the lines of statistics and redundancy reduction can yield a 
complete model for audition (or perhaps perception).  This is a very vibrant and rapidly 

†. As described before, there is no real reason why to only use the STFT as a preprocessing step.  Any other form of transform 
will yield some sort of reasonable results.  If this transform is the identity, then we will be presenting batches of the original 
sound, exactly as we do for extracting the audio bases.
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growing field which promises many interesting development in the near future.  Unfor-
tunately, the auditory community has been largely unaware of these approaches.  We 
hope that through our work we have provided some proof and an encouraging interface 
so that people involved in auditory perception research will consider joining this trend.
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Appendix A.  Multimodal Examples

A . 1     Introduction

As vigorously preached in this thesis, the fact that we avoid to measure parameters and 
assume no particular data format, facilitates the generalization of our work to other 
domains.  Particularly interesting is the case of multimodal perception.  In this appendix 
we present some simple examples on how it is possible to apply our work in video and 
joint audio/video scenaria.  In particular we examine the cases of grouping and scene 
analysis.  Preprocessing similar to our work has been adequately covered in the visual 
domain by Olshausen and Field (1996), Bell and Sejnowski (1997), and Hyvärinen and 
Hoyer (2000).
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A . 2     Multimodal Grouping Example

The grouping process that we described in chapter 3 was purely in the auditory domain 
and it featured simple and similar elements.  In this section we present an example 
which performs grouping across multiple types of stimuli.

In order to illustrate multimodal grouping we construct a scene consisting of one sound 
and a visual stream.  In particular the sound was a speech segment and the visual stream 
was composed of two regions of activity.  One region was intensity modulated by the 
speech signal, whereas the other was modulated by a sinusoid of one period (Figure 1).

Figure 1 The unraveled visual stream.  The composition involved the visual configuration at 
the top left corner,  whose intensity was modulated by a sinusoidal period, and the 
configuration at the lower right corner similarly modulated by a speech signal.

We employed the same scheme we used for grouping in chapter 3.  The speech signal 
was assumed to be one component.  The other components were the time series that 
were formed from the intensity of each pixel through time.  Since the movie was 8 by 8 
pixels, that translated to a grouping problem of 65 objects (1 auditory + 64 pixels).  We 
once again performed ICA on this input until convergence.  The resulting matrix trans-
formation was threshholded so that all values were either 0 or 1 depending on their mag-
nitude, and is displayed in Figure 2.
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Figure 2 The grouping matrix for the data in Figure 1.  Note how we see the formation of two 
regions which correspond to the two visual configurations.  The matrix is 
grouping the rasterized picture so that the two clusters we see correspond exactly 
to the rectangles in the visual stream.  Note also the grouping of the first 
component which is the audio stream, which has been related to the lower right 
configuration.  This means that the grouping operation has recognized the relation 
of the image and the sound.

By examination of the results it is clear to see that the proper grouping has taken place.  
The two visual configurations have been clustered and the audio track appropriately 
associated to the lower right configuration.

The point of this experiment was to emphasize the versatility of our non-parametric 
approach.  It was possible to use the same algorithm we used to group sinusoidal data to 
for a different representation, with equally good results.  This opens makes an even 
stronger point about collapsing grouping rules to one principle since we are now able to 
deal with even more complicated rules which are not clearly defined.

A . 3     Multimodal Scene Analysis

In this section we present an example that employs our scene analysis method for joint 
audio/visual analysis.  The data we used was a movie clip of two hand palms, opening 
and closing in synchrony with the soundtrack.  The soundtrack was the same “Da, da, 
da” audio clip used in the scene analysis system described in chapter 4.  In the movie the 
right palm was closing whenever the word “Da” occurred, whereas the other one was 
mostly opening and closing in synchrony with the snare drum (Figure 3).



108 Multimodal Scene Analysis

  

Figure 3 The three states of the video scene.  One of the two palms closed or both open.  
The first state occurred in synchrony with the word “Da” in the audio soundtrack, 
whereas the second one in some synchrony with the snare drum.

The movie data was ordered in a matrix where the row index indicated frame number, 
and the contents of that row were the respective frames rasterized.  We performed PCA 
on the movie data to compress it down to three components (the “eigenmovies” of our 
data), and subsequently applied ICA so as to minimize their statistical dependencies.  
Upon processing we obtained the overall transformation matrix, W (the inverse?*** of 
the product of the PCA and ICA transformations, WI ◊◊◊◊ WP) and the rasterized image 
components C.  The original movie can be approximated by the multiplication W◊◊◊◊ C.  
This analysis step is identical to the process described in chapter 4, only this time it is 
applied on visual data, rather than magnitude transforms.  By visualizing the three com-
ponents individually we can see that they correspond to meaningful independent regions 
of activity (Figure 4).

  

Figure 4 The energy of the three visual components.  The first one concentrates on the 
region of the left hand, the second on the right hand, and the third on the still 
elements on the scene.  Linear combinations of these three elements can 
approximately reconstruct each frame of the input movie.

By visualizing the columns of the W transformation matrix we can see the temporal 
activity of each of these components (Figure 5).  By doing so we can validate that the 
three components indeed behave as we hope they should.
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Figure 5 The temporal weights of the three visual components.  We see that the first 
component  has three equidistant distinct instances (corresponding to the proper 
times in the movie), the second component has four instances which coincide 
with the “Da” utterances, and the third component has a steady value, which is to 
be expected since it is the still elements of the movie.

Upon obtaining this decomposition of the visual stream, we can repeat the same process 
on the audio portion of the movie by which we derive similar results to the figure 14*** 
in chapter 4.  For reference, the seventh component corresponded to the snare drum, 
whereas the eighth component was the “Da” utterances.

At this point we should point that the same analysis has occurred on the streams of both 
modalities.  We want to stress this point since it makes a good starting point of dealing 
with multimodal perception.  The statistics of the stimuli, regardless of the modality, 
point to the objects in the scenes.  This is a fact of the way that nature works (indepen-
dent systems, produce independent signals), and by using only this we can efficiently 
move cross-modally without having to change representations, of feature detectors.

Now that the scenes are decomposed to a set elementary components, we can use the 
grouping procedure we introduced in the third chapter to perform grouping between the 
temporal  auditory and visual elements.  We constructed a matrix which was composed 
of both the auditory and the visual temporal weights.  In most cases the amount of data 
will not be sampled at the same rate (in our case the auditory matrix is a 9 components 
by 5584 spectral windows matrix, whereas the visual one is 3 components by 124 
frames matrix).  To resolve this problem we resort to interpolation of the smaller matrix.  
For our data the visual matrix was interpolated in the frame axis to as to have 5584 col-
umns (frames) and the two matrices were stacked row-wise (with the auditory data on 
top) to form a 12 by 5584 matrix.  This matrix contains the temporal characteristics of 
both auditory and visual stream components.  Having that we perform ICA on it, as in 
chapter 3, and deduct a grouping matrix (Figure 6).
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Figure 6 The grouping matrix across the auditory and the visual data.  Each element is 
obviously grouped with itself, hence the diagonal.  The set of non diagonal 
elements, link the 7th to the 10th component and the 8th to the 11th.  The auditory 
data are the first 9 rows, hence the 7th and 8th correspond to the snare drum and 
the “Da”’s  respectively.  The remaining components from 10th to 12th, correspond 
to the three visual components.  Keeping this in mind we can see that the snare 
drum was grouped to the first visual component, and the “Da”’s to the second 
component.  These visual components correspond to the two palms that were in 
synchrony with the respective sounds.

Upon decoding our grouping matrix, we see that the snare drum component was 
grouped with the right hand component, and the “Da” component with the left hand.  
We have thus performed cross-modal scene analysis and grouping using one recurring 
computational method.

A . 4     Conclusions

As these experiments should help understand, the generality of our approach allows 
very easy formulations of the same operations we have applied on the auditory domain 
to, not only other domains, but also to multimodal settings.  It is our hope that further 
refinement of our work and the imminent advances in statistics will help us generalize 
our work to formulate an abstract theory of computational perceptual development, 
devoid of data dependencies and our own subjective preconceptions.
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