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ABSTRACT
In this paper we present a methodology for analyzing
polyphonic musical passages comprised by notes that
exhibit a harmonically fixed spectral profile (such as piano
notes).  Taking advantage of this unique note structure we
can model the audio content of the musical passage by a
linear basis transform and use non-negative matrix
decomposition methods to estimate the spectral profile and
the temporal information of every note.  This approach
results in a very simple and compact system that is not
knowledge-based, but rather learns notes by observation.

1. INTRODUCTION

Polyphonic music transcription has long been an extremely
hard problem.  Many knowledge-based approaches have been
proposed in the past which have predominantly resulted in
highly complex systems.  In this paper we propose a lighter
approach, akin to scene analysis, that is data driven and does
not incorporate any prior knowledge of musical structure.  It
is based on the concept of redundancy reduction [1] an idea
that for the last few years has been gaining momentum for
many perceptual applications.  More recently it has been
applied to the polyphonic music transcription problem [2],
[3] with very encouraging results.  In this paper we pursue
the same approach using a different computational angle.
We show that it is possible to efficiently perform
polyphonic music transcription using non-negative matrix
factorization of musical spectra.

1. NON-NEGATIVE FACTORIZATION

1.1. Definitions and cost functions
Non-negative matrix factorization (NMF) was first proposed
by Lee and Seung [4] and was inspired from previous work
by Paatero [5] on positive matrix factorization. Starting with
a non-negative M by N matrix X ∈ !≥0,M!N the goal of NMF is
to approximate it as a product of two non-negative matrices   
W  ∈  !≥0,M!R and H  ∈  ! ≥0,R!N where R  ≤ M , such that we
minimize the error of reconstruction.  We do so by
minimizing the cost function:
C = || X - W⋅H ||F, (1)

where ||⋅||F is the Frobenius norm, or by using an alternative
measure:
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where ⊗  is the Hadamard product (an element-wise
multiplication of the matrices), and the division is element-
wise. Both of these measures equal zero iff X = W ⋅H .  The
cost function in Eq. (2) is somewhat akin to the Kullback-
Liebler divergence.  Algorithms for finding the appropriate
values for W and H are shown in appendix A.

We could alternatively examine this factorization
as a reduced-rank basis decomposition so that X ≈ W ⋅H , and
subsequently H = A⋅X, where A ∈ !≥0,R!M = W+ and the +
operator signifies the Moore-Penrose matrix inverse.  The
latter equation allows us to associate this operation with
standard components analysis methods such as Principal
Components Analysis (PCA) and Independent Components
Analysis (ICA).   In fact using the cost function in Eq. (1) we
have found that the result of NMF is always a rotation of the
equivalent result using PCA (PCA in fact minimizes the same
cost function but with an orthogonality constraint).  Based
on this fact we conjecture that NMF is possibly performing
non-negative ICA given that is satisfies the conditions set
forth by Plumbley [6].

In more common terms what NMF does i s
summarize the profiles of the rows of X in the rows of H, and
likewise for the columns of X in the columns of W.  The
parameter R that sets the rank of the approximation controls
the power of summarization.  If R = M then we have an exact
decomposition where the contents of W  and H  are not
particularly informative.  As we decrease the value of R the
elements of W  and H  start to take values that concisely
describe the main elements in the composition of X.  If we
choose appropriate values for R then it is possible to extract
the major elements of the structure of X.  A simple example
of that is shown in the following section.

1.2. NMF on Magnitude Spectra
Let us start with a sound segment:
s(t) = g(α t) sin(γ t) + g(β t) sin(δ t), (3)

where g(⋅) is a gate function with a period of 2π and α, β, γ, δ
are arbitrary scalars with α and β significantly smaller than γ
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and δ .  We then compute its L-length time dependent
magnitude spectrum x(t) =DFT( [s(t) … s(t + L)]).  The set
of all the x(t) can be packed as columns into a non-negative
matrix X ∈ !≥0,M!N, where N are the total number of spectra
we computed and M  (= L /2+1) is the number of their
frequencies.  The matrix X  (essentially the magnitude
spectrogram of s(t)) is shown in figure 1.
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Figure 1. Time dependent magnitude spectrum of a
simple sound scene
We can now try to perform NMF on our non-negative matrix
X.  Before we do so we note some of its characteristics.  There
is very little energy except for a few frequency bins, and in
these bins we see a very regular pattern.  In fact one could say
that this is a highly redundant spectrogram (a compression
engineer’s best case scenario!)  By performing NMF on this
matrix we see how this redundancy can be taken advantage of
to create a more compact and informative description.  We
optimize the cost function in Eq. (1) with R = 2 and display
the results in figure 2.
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Figure 2. NMF decomposition of the matrix pictured
in figure 1
By examination of the results we see a very useful behavior.
The two rows of H  contain two time series that best
summarize the horizontal structure of X .  Likewise the
columns of W  do so for the vertical structure of X .  The
pairing of the nth row of H with the nth row of W describes
the two elements that made up this scene.

In the remaining sections we will generalize this
idea to the case where X contains musical spectra.  We will
show that in this case the elements of W  and H  will
respectively contain the spectrum and the temporal
information of the notes in the analyzed passage.  As this
example demonstrates the proposed framework is robust
enough to deal with multiple overlapping notes, a point to
be made clearer using real world data in the following
sections.

2. RESULTS ON MUSICAL SPECTRA

In this section we will demonstrate some results from real
piano recordings and consider some of the issues that arise
when performing NMF on musical spectra.  We will first treat
the case of isolated notes, discuss some of the issues
regarding coinciding notes and conclude with a polyphonic
transcription example.  All of the examples are from a real
piano recording by Keith Jarrett of Bach’s fugue XVI in G
minor [7] sampled at 44,100kHz and converted to mono by
averaging the left and right channels.

2.1. Isolated notes

For the first example we will consider the first few notes of
the fugue.  There are no major overlapping note regions.

This passage contains five events made up from four
different notes.  We produce the time dependent magnitude
transform spectrum and analyze it using NMF with the cost
function in Eq. (1) and R = 4.  For the spectrum analysis we
used a 4096-point DFT and a Hanning window.  The results
of the analysis are shown in figure 3.
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Figure 3. NMF decomposition of the fugue bar 1
Upon examination of the results it is clear that the rows of H
each correspond to the temporal activity of the four notes,
whereas the columns of W  contain their respective spectra.
The lowest significant frequency peaks from each of the
columns of W are at 193.7Hz, 301.4Hz, 204.5Hz and 322.9Hz
which correspond to the passage notes F¤3, D4, G3 and EŸ4.
Deviations from the actual note frequencies are due to
frequency quantization by the DFT.  In general individual
peaks will not help in note identification, instead we use the
harmonic profile that all peaks collectively outline.

At this point it is worthwhile to ask what happens
when R does not equal the number of present notes.  For a
smaller R  we do not have enough expressive power to
describe the scene and we are bound to have an incomplete
analysis.  To be on the safe side we can always choose a large
enough R.  In this case depending on the algorithm we use we
can have one of many outcomes. NMF optimizing the cost
function in Eq. (1) will produce the least desirable results
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distributing the energy of the most dominant notes across
columns and rows of W and H.  To counter this effect we can
modify the cost function as:
C2 = || X - W⋅H ||F + λ ||H||F (4)

This cost function ensures that we not only accurately
approximate our input, but that we do so with as low an
energy representation as possible.  This is similar to the cost
function introduced by Hoyer [8].  The parameter λ weighs
the importance of a good reconstruction as apposed to low
energy.  This forces the optimization to not distribute notes
across many rows of H  since that way it introduces more
energy.  With this cost function, extra components end up as
lower energy noisy signals, as compared to the note
components.  However, the drawback of this approach is that
we need an appropriate choice for λ.

Perhaps the most convenient algorithm when we are
unsure of the value of R is NMF using the cost function in
Eq. (2).  In this case the extra components end up as very
spiky rows of H that have a corresponding column of W that
is a low energy wideband spectrum.  An example of this i s
shown in figure 4 where R = 5 and the input was the four note
passage we used before.
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Figure 4. NMF decomposition of fugue bar 1 with
more components than notes
In general identification of the non-note components is very
easy and has not posed a problem in our analyses.

2.2. Coinciding notes
We now proceed to a simple example of polyphonic
transcription.  We analyze the second bar of our fugue.  It is:

It exhibits ten events using seven different notes.  Towards
the end we have two notes (G3 and BŸ4) sounding at the same
time.

We perform NMF with the cost function in Eq. (2)
and the same parameters we used before except for R that was
set to 7.  The results are shown in figure 5.
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Figure 5. NMF decomposition of fugue bar 2
To our distress we see that although the events were very
nicely transcribed we have a non-note component, and we see
that the two simultaneous notes BŸ4 and G3 were
consolidated as one component.  The reason for this
unexpected result is rather easy to track.  As we stated before,
this is a transcription technique based on the system’s
accumulated experience from the presented input and not on
predefined knowledge.  Due to this all unique events are
understood to be a new component.  It is important to
understand that this method will not extract notes, but rather
unique events.  We do not provide enough knowledge to
purposely extract notes; but rather the algorithm has to
examine the data to discover what appear to be unique events
which should correspond to notes.  The reason why in this
case we end up with two notes being identified as one
component is because they always occur at the same time.  As
far as the data goes the pair of BŸ4 and G3 is a unique event
and it should be one component not two.

The way to alleviate this problem is to present
enough data so that all notes are exposed as either isolated
events, or as parts of different polyphonic groups so as to
highlight their individuality. In our case by analyzing the
first two bars we provide an extra instance of the note G3
which is enough to break up our previously fused
component into two note components.  The results are shown
in figure 6.  Upon examination it is easy to see that we have
perfectly transcribed the input.

F#
2

G2

A2

Bb
2

C3

D3

Eb
3

G3

Bb
3

Rows of H

Time

F#
2

G2

A2

Bb
2

C3

D3

Eb
3

G3

Bb
3

Frequency

Columns of W

C
or

re
sp

on
di

ng
 n

ot
es

C
or

re
sp

on
di

ng
 n

ot
es

Figure 6. NMF analysis of the first two fugue bars
The same procedure scales well to additional bars of the
fugues where the polyphonic element becomes more
pronounced.  Figure 7 displays the results for the first six
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bars of the fugue with R = 27.  Upon convergence we removed
2 components that were clearly not notes and they are not
displayed.  Correlating the results with the score of the fugue
we can verify that the musical structure has been almost
correctly identified.  The only mistakes in the transcription
are the consolidation of EŸ4 and EŸ5 into one component and
not tracking the note F¤5 (possibly because it only appears
once as part of a chord).
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Figure 7. Results from the first six bars of the fugue.
Pictured are the only rows of H.

3. CONCLUSIONS

We have presented a polyphonic music transcription system
that is based on non-negative matrix factorization of
magnitude spectra.  We’ve demonstrated that this approach
can produce good results without a prohibitive
computational requirement or cumbersome system design.
One of the shortcomings of this approach is that it requires
music passages from instruments with notes that exhibit a
static harmonic profile.  In future work we anticipate
addressing this issue with alternative decomposition
methods that have more expressive power than linear
transforms.

4. APPENDIX A: ALGORITHMS FOR NMF

There are many ways to minimize the cost function in Eqs.
(1), (2) and (4).  Due to space constraints we will show only
two that we used in this paper.

The first method is for steepest descent on the cost
functions from Eqs. (1) and (4).  We need to optimize on two
variables, W and H, so we need to find their derivatives with
respect to C and C2.  Applying matrix differential calculus we
can easily derive:
        ∆H ∝ (W⋅H – X)⋅HT and ∆W ∝ WT⋅(W ⋅H  – X) (5)
We can simultaneously update H  and W  and ensure their
non-negativity by forcing them to be non-negative at the
end of each iteration1.  To add the low energy constraint from
the cost function in Eq. (4) we have to modify ∆H to:

∆H ∝ (W⋅H – X)⋅HT + λ2H (6)

The second algorithm we consider is for the cost function in
Eq. (2) and is more complicated to derive.  Lee and Seung
introduce and prove [1] a multiplicative algorithm that
exhibits rapid convergence and is defined as:
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where the notation A i j means the element of A at row i and
column j.
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1 We can alternatively optimize ||X – (W⊗W)⋅(H⊗H)||F which ensures
matrix non-negativity.  However the extra computational cost and
computational complexity are not worth the admittedly less elegant non-
negativity enforcement we introduce above.


