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ABSTRACT

In this paper we present a novel approach for isolating and
removing sounds from dense monophonic mixtures. The
approach is user-based, and requires the presentation of a
guide sound that mimics the desired target the user wishes
to extract. The guide sound can be simply produced from a
user by vocalizing or otherwise replicating the target sound
marked for separation. Using that guide as a prior in a statis-
tical sound mixtures model, we propose a methodology that
allows us to efficiently extract complex structured sounds
from dense mixtures.

1. INTRODUCTION

A long running problem in systems that perform source sep-
aration, is that of specifying the sound one wants to sepa-
rate. Varying source separation approaches treat this issue
in a form that best fits their framework. Research on fully
determined multichannel mixtures [1] is predominantly de-
signed to extract all sources and sidesteps the issue, whereas
undetermined multichannel approaches and beamforming
tend to focus on the loudest sources, or sources emanating
from a given direction [2, 3]. Single channel approaches
[4, 5, 6] are usually designed to conform to a predefined
sound model (e.g. a known speaker, or a harmonic series),
and denoising approaches such as Wiener filtering rely on
a known noise profile. In many situations, the above ap-
proaches do not pose significant problems when it comes
to picking the right source. However in complex single-
channel situations, such as the cases where one observes
multiple similar sources, or cases where the sound of inter-
est is not easy to model, one can often encounter difficulties
pointing a separation routine towards the desired sound.

In this paper we present a novel approach in pointing
an algorithm towards a target sound. We incorporate infor-
mation provided by the user, who is expected to provide a
sound that roughly mimics the desired source. For example,
in order to separate a singer from a music recording, the
user can simply sing or hum that part, or in the case of other
sounds vocalize (or otherwise roughly replicate) the part of
interest. In order to do this we present a statistical model for
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sound mixtures, and an appropriate priors framework which
allows us to incorporate the user’s guidance in the separa-
tion process. The resulting system is very efficient, provides
the ability to extract hard to pinpoint sources, and as we will
demonstrate produces very satisfactory results from difficult
mixtures.

2. MODELING SOUND MIXTURES

In this section we describe the statistical model we use for
our approach. We first define its basic formulation, and then
present an extension which makes use of a priors structure
which is necessary for the needs of this paper.

2.1. The PLCA Model

The model we choose to use is that of the Probabilistic La-
tent Component Analysis (PLCA) [6]. This is an additive
model which is applied in the magnitude time/frequency do-
main and is a member of a wide family of similar models
which have recently been very successful in decomposing
mixtures of sounds [5, 6, 7, 8]. These models decompose
magnitude or power spectrograms into sums of outer prod-
ucts of spectral and temporal components, which can be
thought of as spectral bases and their corresponding weights.
More specifically, in the case of PLCA, a magnitude spec-
trogram F, is interpreted as a histogram that measures en-
ergy at every time/frequency cell and thus decomposed by a
weighted series of products of marginal distributions along
the frequency and time axes, i.e.:

M
~ vy P()P(f2)P(t]2) (1)

The parameters P(f|z) and P(¢|z) are distribution pairs
along the frequency (f) and time (t) axes, conditional on
a latent variable index z. The distribution P(z) defines how
these pairs are weighted to approximate the input, and the
constant 7y is a scaling factor. Effectively in P(f|z) we learn
frequency distributions that are used to construct the input
mixture, and P(¢|z) represents how they appear in time.
The constant M defines how many of these pairs we use
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to approximate the input. In the case where M = 1, P(f|z)
ends up being the magnitude spectrum of the input, and
P(t|z) its magnitude envelope across time. The parame-
ters in this model can be estimated using the Expectation-
Maximization algorithm, which results in the following up-
date equations:
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2.2. Dirichlet Priors

Now let us introduce a mechanism to impose priors for the
estimated parameters of this model. The distributions P(f|z)
and P(t|z) in the PLCA model are multinomial distribu-
tions. As the Dirichlet distribution is a conjugate prior dis-
tribution to the multinomial distribution, it can be used to
enforce our biases on the structure of the model distribu-
tions. The Dirichlet distribution is defined by a set of pos-
itive and real hyperparameters o(i). For our purposes, and
with no loss of generality, we will assume that > «(i) = 1
and we use an additional weight parameter to scale them
arbitrarily. Doing so, we can then interpret the Dirichlet hy-
perparameters as a multinomial distribution that can serve
as an exemplar for our estimates. The priors for all the fre-
quency distributions A y, and temporal distributions A, are:

P(Af) X HHP(ﬂz)fsza(f\z)
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where a(f|z) and a(t|z) are the “exemplar” hyperparam-
eters. The weight scalars «, and p, can be interpreted as
parameters expressing how much we wish to impose the pri-
ors. Using the above, the estimation equations for P(f|z)
and P(t|z) now change to:
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3. USING SOUNDS TO SELECT SOUNDS

As shown in [6], the PLCA model can be used to separate
sounds if it is provided with pre-trained components that
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can describe at least some of the sounds in a mixture. In the
situation we examine here, we do not use pre-trained models
and are provided only with a full mixture. In this section we
show how we can use a user’s guiding audio input to help
us model the mixture, and then how we can isolate a desired
target sound and the background mixture.

3.1. Modeling mixtures using an example

Our goal is to use a sound provided by a user, that can help
define the target sound in the separation process. We will
do that using the priors models introduced in the previous
section. The overall separation process is described in the
following steps:

e Record a sound s,, () that mimicks the target sound in
a mixture $,,(t). There should be some audible simi-
larities in both frequency and temporal behavior.

e Obtain the magnitude spectrograms F* and F™ of s,,(t)
and s, () respectively.

e Estimate a M-component PLCA model with parame-
ters P, (f|z) and P, (t|z) from F*.

e Estimate a { M + N }-component PLCA model with pa-
rameters P, (f|z) and P, (t|z) from F™.

e Use P,(f|z) and P,(t|z) as hyperparameters c( f|z)
and «(t|z) for the first M components of P, (f|z)
and P,, (t|z). Gradually decrease &, and 1, from 1
to 0 throughout iterations.

e Simultaneously learn the remaining /N components
of the model without using any priors.

What this process will result in, is M/ components that will
describe the target sound, as defined by the user, and N
components that will describe the rest of the mixture. If
$4(t) is a fair approximation of the target sound, then the
outlined procedure will slowly transform the components
P,(f|z) and P, (t|2) to an appropriate P,,,(f|z) and P,,,(t|2)
that model the target sound. The rest of the components of
the mixture model, will not be biased to look like the target
sound and will start explaining other parts of the input.

3.2. Separation process

Once we go through the process outlined in the previous
section we will be left with a model which is segmented
in two groups. Components in group 21 = {1,..., M} of
P, (f|z) and P,,(t|z) will model the time/frequency en-
ergy of the target sound, and components in group Z; =
{M + 1, ..., N} will model the rest of the mixture. Know-
ing that, we can approximate the magnitude spectrogram
contribution of the target by > 2, P (2) P (f|2) P(t]2),
and the remainder by »_ > Pp.(2) P (f|2) Pn(t|2). Since
these two submodels are not guaranteed to explain all of the
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original energy in the input magnitude spectrogram, we will
instead use their posterior distributions which will distribute
all of the original input’s energy to both. In this case, we
will compute the contribution of each component set using:

2vez, P(2)P(fl2)P(t]2)
Yveqz,z) PE)P(fl2)P(tz)
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where P(z € Zi|f,t) and P(z € Zs|f,t) are essentially
two soft masks for the target and the remainder of the mix-
ture respectively. We can now modulate these two masks
with the complex spectrogram of the original mixture, and
then invert the results in order to obtain the two time-series
for the target sound and the rest of the mixture. We can also
add an additional binary masking step which in practice im-
proves audible separation performance. We can compute a
hard assignment for each time/frequency cell to each of the
two resulting sounds. We do so by comparing the poste-
rior likelihoods of the two groups and assigning each spec-
trogram element to the highest-likelihood group. We can
additionally impose some frequency and temporal masking
properties by convolving the posteriors with a Gaussian dis-
tribution. This results in increased suppression of the back-
ground sounds, although it can produce separation artifacts
such a musical noise.

P(z € Zi|f,t) =

P(Z€ZQ|fat):

4. RESULTS

We now present results from a suite of experiments. We
first validate that this approach can perform separation us-
ing synthetic mixtures simulations, and then we show a rep-
resentative result from a real-world mixture.

4.1. Synthetic examples

In order to obtain some quantitative analysis of the perfor-
mance of this algorithm, we run a series of synthetic mono-
phonic mixtures of speech and music. We examined three
distinct cases. The first case was the oracle test, in which
the user provided speech utterance was the same as the tar-
get. The second case, used two different speakers of the
same gender, and the third case used two different speakers
of different genders. We additionally replicated the second
case experiment by also using a binary mask as described in
the previous section. In all these experiments we measured
the Signal to Distortion Ratio (SDR), the Signal to Interfer-
ence Ratio (SIR), and the Signal to Artifacts Ratio (SAR)
as defined in [9]. The resulting values are shown in figure
1. As expected the oracle case if the best performer, pro-
ducing audibly almost perfect results. When the user was
the same gender as the one producing the target speech, the
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Performance metrics on synthetic examples
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Figure 1: Performance metrics for synthetic example data
of speech on music. We show averaged results from 50 runs
of four distinct experiments. The leftmost set of bars shows
the oracle performance, in which the guide sound was the
same as the target. The second plot shows the case where
the guide sound was the same gender as the target sound,
and binary masking was used. The third example shows the
same case but without the binary masking, and the rightmost
bars show the case where the guide and target sounds were
substantially different.

results were somewhat worse since there was less overlap in
tonal character and in timing. We see this exaggerated even
more so when the user/target genders were different. The
use of a binary mask results in an interesting behavior. We
see a significant increase in the SIR performance, but much
worse scores in SDR and SIR. The increase in SIR is due to
the fact that the interfering sound is suppressed much more
abruptly since we completely zero-out some of its parts, on
the other hand that process introduces distortions and musi-
cal noise which are to blame for the worse SDR and SAR
values.

4.2. Results on real recordings

We also performed a variety of tests on music tracks in
which the user attempted to remove some instrument in the
mixture, by vocalizing that part. The results are hard to
quantify since these were performed in pre-mixed commer-
cial recordings, but user feedback was in general positive.
In most of these cases the user attempted to extract targets
such as vocals, lead guitars, and drums'. An example set of
spectrograms of extracting a vocal track is shown in figure
2. In this particular example the target sound was a female
singer, the user was male and spoke the lyrics, as opposed
to singing them. Despite these differences the singer’s voice
was cleanly removed from the recording.

ISee demo at:http://www.media.mit.edu/~paris/w9.mov
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Figure 2: Example results from analysis of "My baby just
cares for me” by Nina Simone. The top plot shows a spec-
trogram of the input mixture. The second plot shows the
sound provided by a user. The user was male and spoke the
lyrics, roughly in time with the singing in the mixture. The
third plot shows the extracted vocal part, and the fourth plot
the remainder from the original input.
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5. CONCLUSIONS

In this paper we introduced a novel approach for specify-
ing a target sound in a mixture and then extracting it. In it
we recruit the user who has to provide a mimicking sound
that is then used to help guide a separation algorithm to-
wards a target sound. In contrast to similar work that uses
pre-trained target examples, we do not require a close match
between the user’s input and the target source, but instead
use that input as a rough approximation which is then auto-
matically refined. We showed how this approach can help
us efficiently and satisfactorily extract targeted sources from
complex mixtures, and be used as a new type of interface for
mixture modeling.
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