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ABSTRACT
We introduce a novel approach for pitch tracking of multiple
sources in mixture signals. Unlike traditional approachesto pitch
tracking, which explicitly attempt to detect periodicities, this ap-
proach is using a learning framework by making use of previously
pitch-tagged recordings as training data to teach spectrum/pitch as-
sociations. We show how the mixture case of this task is a nearest
subspace search problem which is efficiently solved by transform-
ing it to an overcomplete sparse coding formulation. We demon-
strate the use of this algorithm with real mixtures ranging from solo
up to a quintet recordings.

Index Terms— Polyphonic pitch tracking

1. INTRODUCTION

Pitch tracking is a problem that has always been central in the au-
dio sciences. Traditionally, this problem is approached asone of a
physical measurement, the goal of which is to measure how many
times a second a waveform repeats. Formulated this way, in both
the single and multiple source case, one can imagine a wealthof op-
tions to perform this task ranging from simple time-domain cross-
correlation to more complex systems that examine a relevantfeature
space, such as the Fourier transform, constant-Q transforms, as well
as more sophisticated approaches [1].

A criticism of that approach is that humans do not seem to oper-
ate by making exact periodicity measurements, but rather welearn
to recognize notes as we get increasingly experienced with music.
In this paper we will try to replicate this model of pitch perception.
We will show that we can efficiently learn to perform pitch tracking
of polyphonic signals given training that is designed to teach a map
of sounds to multiple pitches (or notes). We will keep this approach
in the context of large training data, and in the process we will re-
move the need for a complex model and use a very simple learning
core instead.

In the remaining sections of this chapter we will first define the
basic framework and work our way from a simple toy example to a
real woodwind quintet recording.

2. PITCH-TRACKING BY EXAMPLE

Let us consider a naive way of performing pitch tracking by ex-
ample. Assume that we have two already pitch-tagged recordings
xi(t), i = {1, 2}, in this example recordings of a piano and a flute.
We take the magnitude spectrograms of each of these recordings
which we represent with time-stamped magnitude spectral vectors
fxi

(t). Because we are only concerned to estimate pitch, loudness
is an irrelevant factor so we take the additional step of normaliz-
ing these vectors so that they sum to 1. For the recordings at hand,
these vectors are shown at the top plots of figure 1. Additionally we
obtain a pitch labelpxi

(t) for eachfxi
(t) by using a regular pitch
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Figure 1: The pitched-tracked spectra of two sources are shown in
the top figures. Their respective pitch values are shown in the mid-
dle two figures, and two recordings with unknown pitch are shown
in the bottom two.

tracker. These are shown in the center plots of figure 1. Let usas-
sume that having knowledge of the above data we are now presented
with two more recordingsyi(t) of the same instruments for which
we computefyi(t) as described above. Instead of using the pitch
tracker again we can use an alternative approach by leveraging the
available data. For each spectrumfyi(t) we find its most similar
spectrum out offxi

(t) and use its pitch label to describefyi(t), i.e.:

τ = argmin
τ

D [fyi(t)||fxi
(τ )] (1)

p̂yi(t) ≡ pxi
(τ ), (2)

whereD[·||·] is a user-defined similarity metric between two spec-
tra, andp̂yi(t) is our estimate of the pitch offyi(t). This is essen-
tially a nearest-neighbor search from the training data after which
we associate the tag of the nearest neighbor to the query datapoint.
The only assumption that we make is that the correct pitch tags
for yi(t) are a subset of the training data pitch tagspxi

(t). If that
assumption does not hold then there isn’t enough information to
properly tag new pitch values.

Running this process on the data in figure 1 we obtain the results
shown in figure 2. For the functionD[·||·] we used the Kullback-
Leibler divergence since it provides an appropriate distance-like
measure for normalized non-negative data [2]. As a simple mea-
sure of performance we estimate the mean and standard deviation
of the difference between the true pitch valuespyi(t), which we can
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Figure 2: Results of nearest neighbor-based pitch tracking.

obtain using the same pitch tracker we used to tag the training data,
and the estimated pitch valuesp̂yi(t). In this case these values were
µ = 0.02 Hz andσ = 1.1 Hz respectively. The pitch estimates
that were off by more than a semitone are highlighted by circles in
figure 2. All such cases take place in transitionary sectionswhere
exact estimation of pitch is usually inaccurate. As a means of com-
parison, if we compare two well known pitch trackers, Praat [5] and
Yin [4], operating on these segments we observe a mean and stan-
dard deviation of their estimates asµ = 0.1 Hz andσ = 1.2 Hz,
which leads to conjecture that this is a viable pitch tracking model.

3. MULTIPLE SOURCES

Let us know see how we can attack this problem if we observe
a mixture of the two untagged recordings. Unlike the previous
case, we will now have to deal with a more complex polyphonic
pitch tracking problem. In the following two sections we will de-
scribe a straightforward search-based solution and a more efficient
optimization-based approach that results in practical performance.

3.1. Nearest Subspace Search

Assume that we observe the mixturez(t) = y1(t) + y2(t). We
will also assume thatfz(t) = αfy1(t) + βfy2(t), where the scalars
α, β weigh the relative amplitude for each source. Although this
equality is not strictly correct, it is a widely accepted approximation
for various audio mixture problems. Given this setup, we will now
generalize the previous process to:

{τ1, τ2} = argmin
τ1,τ2

D [fz(t)||αfx1
(τ1) + βfx2

(τ2)] (3)

p̂yi(t) ≡ pxi
(τi) (4)

This kind of problem is known as the nearest subspace search
and is substantially more complex than a nearest neighbor search.
The objective in this problem is to explain each input as a weighted
sum of two training data points, one from each source. A brute
force approach to this problem is to construct all the possible lines
that connect any pair between the spectra infx1

and infx2
and find

which line passes the closest to the query point. A simple illus-
tration of that is shown in figure 3, where the inputfz is best ex-
plained by only one specific pair of the training datafx1

andfx2
.

For N sources this search would involve constructing a(N − 1)-
dimensional subspace and measuring how close it is to the query
point. As is clearly evident, the computational complexityof this
approach can quickly get very demanding once we have a few thou-
sand spectra or more than a couple of sources in our training data.
There are efficient algorithms to resolve this problem [3], however

fx1

fx2

fz

Figure 3: An example nearest subspace search.

the data sizes we intent to use for our purposes render even these
approaches intractable, making the nearest subspace search an im-
practical approach for anything but trivial pitch trackingproblems.

For the sake of demonstration we analyzed the mixture of
y1(t)+y2(t) from the data in figure 1. Even though this time we an-
alyzed a mixture, the results were almost identical to the search on
the isolated source recordings therefore we have a correct model,
albeit one with a slow computational solution. As compared to
the previous results the mean and standard deviation of the differ-
ence between the true and estimated values wereµ = 0.1 Hz and
σ = 2.2 Hz. Just as before there are very few spectra that have been
wrongly pitch tagged, and they all lie in transitional sections where
pitch can be ambiguous.

3.2. An Efficient Algorithm

At this point we know that we have a potentially powerful approach
to perform pitch tracking with mixtures, we do not however have an
efficient method to complete this task. In this section we will use an
efficient algorithm that can approximate the correct solution to the
nearest subspace problem. We will use the approach shown in [2].

We will attempt to explain each input spectrum as a superpo-
sition of one spectrum from each of the two training sets. Addi-
tionally we want to consider the case where one of the instruments
is not active, so explaining an input using only one spectrumfrom
one of the sources is also desirable. Since we ruled out search tech-
niques because of a high computational complexity, we will reinter-
pret this process as a sparse coding problem. Both of the preceding
statements can be interpreted in the context of sparsity. Wewant to
approximate the input spectrum as a sparse combination fromeach
source training data, and in addition we want to use these sources
sparsely. These two statements combine naturally and collapse to a
simpler problem where we try to explain each input point as a sparse
combination of all the training data combined. If only one source
is active then a sparse solution will use only one spectrum, presum-
ably one from the correct source, if two sources are active then an
appropriate sparse solution is to use one spectrum from eachsource.

More concretely, the training data of all the sources are con-
catenated to form a single set of training spectral vectorsF =
[fx1

(1, . . . ), fx2
(1, . . . ), · · · ]. We then assume that the input will

be approximated as a linear superposition of that data, i.e.:

fz(t) ≈ F ·w(t), (5)

where the weight vectorw(t) represents how much each training
data point is used to approximate the current input. In orderto en-
sure sparsity we impose a regularizing term that maximizes theℓ2-
norm ofw(t). Because both the training data and the input spectra
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are normalized to sum to 1, this implies that the weight vector w(t)
will also be normalized to 1. Due to the fact that all of its elements
will be between 0 and 1, maximizing theℓ2-norm of that vector will
result in growing as few as possible weights to be close to 1 and
keeping most near 0, thus achieving sparsity. The overall problem
is therefore to minimize:

D [fz(t)||F ·w(t)]− λ
∑

i

wi(t)
2 (6)

whereλ is a scalar that indicates how strong we want the sparsity
prior to be. For the case whereD[·||·] is set to be the KL-divergence,
this problem can be solved by initializingw(t) with random values
and iterating through the following steps until convergence.

1. Get temporary estimate of weights:

w(t)temp = w(t)⊙

(

F ·
fz(t)

F ·w(t)

)

2. Impose sparsity:

w(t)sparse = w(t)temp + λ
w(t)2temp

∑

w(t)2temp

3. Normalize to ensure proper scaling:

w(t)new =
w(t)sparse

∑

i
wi(t)sparse

where⊙ denotes element-wise multiplication, and the divisions and
exponentiations are also element-wise. Throughout our simulations
λ was set to values between 0.1 and 0.3 we trained for 20 iterations.

Once we obtain all thew(t) we find the training vectors with
the largest weight values (one from each source), and use their as-
sociated pitch labels to explain the mixture. In the case where one
source is inactive we will notice that the weights of its training spec-
tra are uniformly close to zero in which case we assume that there
is no pitched contribution from that source. For polyphonicsources
(e.g. the piano) we will notice that multiple weights will besignifi-
cantly larger than the rest, and these weights will correspond to the
multiple pitches that are present in the input.

The outcome of running this algorithm on the mixturey1(t) +
y2(t) from the data in figure 1 is shown in figure 4. We can see that
the results are qualitatively very similar to what we have obtained
thus far. The mean and standard deviation of the difference between
the true and estimated pitch values areµ = 0.003 Hz andσ = 2.05
Hz. The pitch estimates that are more than a semitone off are once
again taking place in transition points. For all practical purposes we
estimated the pitch values of this segment with satisfactory accu-
racy. In terms of performance it took0.45 sec to pitch trackyi(t)
in order to obtain the true values,0.12 sec to obtain their pitch with
the nearest neighbor search on the separated recordings,64.5 sec
to do the exhaustive nearest subset search on the mixture, and 0.68
sec to estimate the pitch labels from the mixture with the proposed
method1.

3.3. The Details

In this section we will supply some extra information that was with-
held until now for the sake of clarity. For the spectral vectors we use
the warped DFT transform [6] and stretch the spacing of the low

1All times were measured using unoptimized MATLAB code on a
1.86GHz Core 2 Duo CPU.
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Figure 4: Estimated and true pitch values for when applying the
proposed approach on a mixture of two sounds.

frequencies while compressing the high ones, akin to a constant-
Q transform, in order to assist accurate comparisons between the
input and the training data. The result of this is slightly better per-
formance, although not dramatically so as compared to operating
on regular magnitude spectrograms. For all cases the samplerate
was 22,050Hz and we used a 1024pt DFT with a hop size of 256pt,
and a Hann window for the STFT analysis.

As one might imagine when presented with training data not
all of its spectral vectors will correspond to a pitched section. In
order to reduce the size of the problem, training spectra that are not
pitched are not considered in our search. An alternative approach is
to use some unpitched spectra and carry their non-pitch labels.

4. EXPERIMENTS

In this section we will examine the performance of our approach
on some more challenging examples. More specifically we will
consider the data from a multichannel woodwind quintet recording
[7]. Since all tracks are available separately we can easilyobtain
pitch values using traditional pitch tracking and use that in order to
evaluate our approach. For training data we used 7m41s of pitch
tagged content, and we attempted to pitch track 1m10s of poly-
phonic mixtures of a duet, trio, quartet and quintet. After discarding
unpitched parts this amounted to about 10,000 training spectral vec-
tors per source, which were used on 6,000 input spectra to perform
pitch tracking. Using the proposed approach we obtained theresults
shown in figure 5. For the case of the duet the most common errors
were octave errors (peaks at a ratio of 0.5 and 2). As we introduced
additional sources we see that the performance of the pitch tracking
gradually degrades.

A short section of the pitch tracks in a flute part of the duet
recording is shown in top plot of figure 6. In it one can see that
the most common error is the flipping octaves, as well as mistakes
in transient sections. The octave problem can be easily minimized
by performing median filtering in the pitch tracking. Doing so we
obtain the results in the middle plot of the same figure, wherethe
octave errors are minimized but the transient errors are nowmore
prominent. Additionally, if we are interested in note transcription
and not exact pitch tracking, we can consolidate the weightsof
training spectra that correspond to the same note, obtain a per-note
weight and use these weights to decide which note is being active at
any time. The result of that is shown in the bottom plot of figure 6,
where we see that the fine frequency detail is gone and the pitches
are quantized to semitones. Obviously these are simple approaches,
more sophisticated tools such as Kalman filters can be easilyem-
ployed to minimize many of the temporal inconsistencies, but that
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Figure 5: Histogram of the ratio between the true and estimated
pitches for increasingly denser mixtures.
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Figure 6: A small section of the flute part in the duet mixture. The
top plot shows the raw output, the middle plot show the results after
applying a median filter to the output pitch track, and the bottom
plot finds the note which includes the most active training spectra.

study is outside the scope of this paper.
The mean and standard deviation of the estimation er-

ror as well as the run time2 for mixtures ranging from a
solo to a quintet are shown in the following table. The er-
ror statistics are shown for both pitch estimation in terms of
Hz values, and for note estimation performed as described above.

Mix µ σ Time

Solo -4.41 Hz 41.57 Hz 20 sec
0.13 semitones 1.46 semitones

Duet -18.51 Hz 89.51 Hz 37 sec
-0.08 semitones 1.56 semitones

Trio -32.65 Hz 109.96 Hz 49 sec
-0.15 semitones 1.57 semitones

Quartet -28.69 Hz 91.65 Hz 60 sec
-0.61 semitones 2.58 semitones

Quintet -42.79 Hz 112.69 Hz 114 sec
-0.87 semitones 3.32 semitones

2MATLAB code measured on a 2.98GHz 6-core Xeon

5. CONCLUSIONS

In this paper we presented a learning-based approach to pitch track-
ing of mixtures of signals. We showed that it is plausible to effi-
ciently use large pitch-tagged training recordings in order to learn
how to recognize pitch in mixtures. The primary advantages of this
approach is a very compact computational core which is not con-
strained by model assumptions. As long as the training data is ap-
propriately tagged this approach will work regardless of the pecu-
liarities in the present sources (e.g. quasi-pitched and inharmonic
sources). This allows us to perform detection of perceived pitch
as opposed to the more traditional measurement of absolute mea-
sured pitch. If the training data is properly tagged this approach can
provide additional information besides pitch, such as tonequality,
vowel character, playing style, etc.

What we present here is a simple beginning of a pitch track-
ing system. The efficiency of this model and its graceful behavior
with mixtures leads us to believe that it holds promise for further
extension towards a polyphonic transcription system. Especially
with proper use of higher-level priors that one can either impose
as a user, or preferably learn from recordings, a lot of the errors
that we observe (octave and transient issues) can be minimized to
a good degree. Open questions such as the impact of the quality
of the training data are still relatively unexplored, and wereserve
exploring these effects in future work.
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[4] de Cheveigné, A. and H. Kawahara. YIN, a fundamental fre-
quency estimator for speech and music. The Journal of the
Acoustical Society of America, 111:1917, 2002

[5] Boersma, P. Accurate short-term analysis of the fundamental
frequency and the harmonics-to-noise ratio of a sampled sound,
in Proc. of the Institute of Phonetic Sciences, University of Am-
sterdam, 1993, vol. 17, pp. 97 110.

[6] Makur, A. and Mitra, S.K. Warped discrete-Fourier transform:
Theory and applications, in IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, vol. 48:9,
Sep 2001.

[7] Bay, M., A.F. Ehmann, and J.S. Downie. Evaluation of
multiple-F0 estimation and tracking systems, in Proc. of IS-
MIR, 2009.


