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ABSTRACT
We introduce a novel approach for pitch tracking of multiple

sources in mixture signals. Unlike traditional approactwepitch
tracking, which explicitly attempt to detect periodicgjethis ap-
proach is using a learning framework by making use of preshiou
pitch-tagged recordings as training data to teach spefpitah as-
sociations. We show how the mixture case of this task is aesear
subspace search problem which is efficiently solved by toams
ing it to an overcomplete sparse coding formulation. We demo
strate the use of this algorithm with real mixtures rangimgr solo
up to a quintet recordings.

Index Terms— Polyphonic pitch tracking

1. INTRODUCTION

Pitch tracking is a problem that has always been centralarath
dio sciences. Traditionally, this problem is approachedresof a
physical measurement, the goal of which is to measure how man
times a second a waveform repeats. Formulated this way,th bo
the single and multiple source case, one can imagine a wafah
tions to perform this task ranging from simple time-domaioss-
correlation to more complex systems that examine a relégahire
space, such as the Fourier transform, constant-Q transfaswell
as more sophisticated approaches [1].

A criticism of that approach is that humans do not seem to-oper
ate by making exact periodicity measurements, but rathdeara
to recognize notes as we get increasingly experienced witian
In this paper we will try to replicate this model of pitch peption.
We will show that we can efficiently learn to perform pitchdkang
of polyphonic signals given training that is designed t@ktea map
of sounds to multiple pitches (or notes). We will keep thipraach
in the context of large training data, and in the process werevi
move the need for a complex model and use a very simple lgarnin
core instead.

In the remaining sections of this chapter we will first define t
basic framework and work our way from a simple toy example to a
real woodwind quintet recording.

2. PITCH-TRACKING BY EXAMPLE

Let us consider a naive way of performing pitch tracking by ex
ample. Assume that we have two already pitch-tagged reugsdi
zi(t),7 = {1, 2}, in this example recordings of a piano and a flute.
We take the magnitude spectrograms of each of these regsrdin
which we represent with time-stamped magnitude spectiabre
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Figure 1. The pitched-tracked spectra of two sources are shown in
the top figures. Their respective pitch values are showndnntid-

dle two figures, and two recordings with unknown pitch arensho

in the bottom two.

tracker. These are shown in the center plots of figure 1. Leisus
sume that having knowledge of the above data we are now fessen
with two more recordingg;(¢) of the same instruments for which
we computef,, (t) as described above. Instead of using the pitch
tracker again we can use an alternative approach by leveydige
available data. For each spectrdin(¢) we find its most similar
spectrum out of,;, (¢) and use its pitch label to describg (¢), i.e.:

7 = argminD [fy, (¢)||fz, (7)] (@)
Py.(t) = pay(7), )
whereD[-||-] is a user-defined similarity metric between two spec-

tra, andpy, () is our estimate of the pitch df,, (¢). This is essen-
tially a nearest-neighbor search from the training daterafthich
we associate the tag of the nearest neighbor to the querypdeiia
The only assumption that we make is that the correct pitch tag
for y;(t) are a subset of the training data pitch tags(¢). If that
assumption does not hold then there isn’'t enough informatbo
properly tag new pitch values.

Running this process on the data in figure 1 we obtain theteesul

f., (t). Because we are only concerned to estimate pitch, loudnessshown in figure 2. For the functioB[-||-] we used the Kullback-

is an irrelevant factor so we take the additional step of rabian
ing these vectors so that they sum to 1. For the recordingarat, h
these vectors are shown at the top plots of figure 1. Additipmae
obtain a pitch labep., () for eachf,, (¢) by using a regular pitch

Leibler divergence since it provides an appropriate distdike
measure for normalized non-negative data [2]. As a simpla-me
sure of performance we estimate the mean and standardidaviat
of the difference between the true pitch valpes(t), which we can
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) ) ) ) Figure 3: An example nearest subspace search.
Figure 2: Results of nearest neighbor-based pitch tracking.

o ) o the data sizes we intent to use for our purposes render eese th
obtain using the same pitch tracker we used to tag the tgata, approaches intractable, making the nearest subspacé seaim-

and the estimated pitch valugg, (¢). In this case these values were  practical approach for anything but trivial pitch trackipgblems.
u = 0.02 Hz ando = 1.1 Hz respectively. The pitch estimates

that were off by more than a semitone are highlighted by esrah For the sake of demonstration we analyzed the mixture of
figure 2. All such cases take place in transitionary sectieinsre (¢)44,(¢) from the data in figure 1. Even though this time we an-
exact estimation of pitch is usually inaccurate. As a medsim- alyzed a mixture, the results were almost identical to tlaeckeon
parison, if we compare two well known pitch trackers, Pragahd the isolated source recordings therefore we have a corredein
Yin [4], operating on these segments we observe a mean amd sta |beit one with a slow computational solution. As compared t
dard deviation of their estimates as= 0.1 Hz ando = 1.2 Hz, the previous results the mean and standard deviation ofitfee-d
which leads to conjecture that this is a viable pitch tragkitodel. ence between the true and estimated values were0.1 Hz and
o = 2.2 Hz. Just as before there are very few spectra that have been
3. MULTIPLE SOURCES wrongly pitch tagged, and they all lie in transitional sea where

pitch can be ambiguous.
Let us know see how we can attack this problem if we observe
a mixture of the two untagged recordings. Unlike the presiou 32 An Efficient Algorithm
case, we will now have to deal with a more complex polyphonic

pitch tracking problem. In the following two sections we k- At this point we know that we have a potentially powerful apgmh
scribe a straightforward search-based solution and a nfficeest ~ to perform pitch tracking with mixtures, we do not howevevéian
Optimization_based approach that results in practicdbpmnce. efficient method to Complete this task. In this section wé ugé an

efficient algorithm that can approximate the correct sofuto the

nearest subspace problem. We will use the approach showh in [
We will attempt to explain each input spectrum as a superpo-

Assume that we observe the mixtwé&) = y1(t) + y2(t). We sition of one spectrum from each of the two training sets. iAdd

will also assume that. (t) = afy, (¢) + Bfy, (¢), where the scalars  tionally we want to consider the case where one of the instnim

«, 8 weigh the relative amplitude for each source. Although this is not active, so explaining an input using only one spectftom

3.1. Nearest Subspace Search

equality is not strictly correct, it is a widely accepted eppmation one of the sources is also desirable. Since we ruled outrsesnh-
for various audio mixture problems. Given this setup, we mow niques because of a high computational complexity, we wititer-
generalize the previous process to: pret this process as a sparse coding problem. Both of thegireg
statements can be interpreted in the context of sparsitywalyi to
{r,72} = argminD [f.(?)||afe, (11) + Bfay (72)]  (3) approximate the input spectrum as a sparse combinationeemmn

. ™ source training data, and in addition we want to use thesessu
Py (t) = pai(7i) 4) sparsely. These two statements combine naturally andosellm a

hsimpler problem where we try to explain each input point gease
combination of all the training data combined. If only oneise
is active then a sparse solution will use only one spectruasym-
ably one from the correct source, if two sources are actiga Hn
appropriate sparse solution is to use one spectrum fromsmache.
More concretely, the training data of all the sources are con
catenated to form a single set of training spectral vectors=
£z, (1,...),fz5(1,...),---]. We then assume that the input will
be approximated as a linear superposition of that data, i.e.

This kind of problem is known as the nearest subspace searc
and is substantially more complex than a nearest neighlzocise
The objective in this problem is to explain each input as ayheid
sum of two training data points, one from each source. A brute
force approach to this problem is to construct all the pdsdibes
that connect any pair between the spectrf.jnand inf,, and find
which line passes the closest to the query point. A simples-ll
tration of that is shown in figure 3, where the infdutis best ex-
plained by only one specific pair of the training dfta andf,.

For N sources this search would involve constructing\a— 1)- £.(t) ~ F - wit), (5)
dimensional subspace and measuring how close it is to the que
point. As is clearly evident, the computational complexfythis where the weight vectow (¢) represents how much each training

approach can quickly get very demanding once we have a faw tho data point is used to approximate the current input. In oren-
sand spectra or more than a couple of sources in our trairdteg d  sure sparsity we impose a regularizing term that maximizegz+
There are efficient algorithms to resolve this problem [8lvaver norm ofw(t). Because both the training data and the input spectra
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are normalized to sum to 1, this implies that the weight vest(x)

will also be normalized to 1. Due to the fact that all of itsreénts
will be between 0 and 1, maximizing tkie-norm of that vector will
result in growing as few as possible weights to be close todlL an
keeping most near 0, thus achieving sparsity. The overablpm

is therefore to minimize:

DIE.(O)|[F - w(t)] —Az:wi(lﬁ)2 (6)

where is a scalar that indicates how strong we want the sparsity

prior to be. For the case wheltd:||-] is set to be the KL-divergence,
this problem can be solved by initializing(t) with random values
and iterating through the following steps until convergenc

1. Gettemporary estimate of weights:

wi(t 2em
= W()temp + )\sz

Z w(t)temp

3. Normalize to ensure proper scaling:

£.(t)

W(t)temp = W(t) ® (F . m

2. Impose sparsity:

W(t) sparse

W(t) sparse
Zi W (t)spar'se

where® denotes element-wise multiplication, and the divisiorg an
exponentiations are also element-wise. Throughout ounlaiions
A was set to values between 0.1 and 0.3 we trained for 20 ibesati

Once we obtain all thev(¢) we find the training vectors with
the largest weight values (one from each source), and ugeaiie
sociated pitch labels to explain the mixture. In the casere/bae
source is inactive we will notice that the weights of itstiag spec-
tra are uniformly close to zero in which case we assume tleaeth
is no pitched contribution from that source. For polyphasoarces
(e.g. the piano) we will notice that multiple weights will bignifi-
cantly larger than the rest, and these weights will corredpo the
multiple pitches that are present in the input.

The outcome of running this algorithm on the mixtyret) +
y2(t) from the data in figure 1 is shown in figure 4. We can see that
the results are qualitatively very similar to what we havéaoted
thus far. The mean and standard deviation of the differeateden
the true and estimated pitch values are- 0.003 Hz ando = 2.05
Hz. The pitch estimates that are more than a semitone offrare o
again taking place in transition points. For all practicaignses we
estimated the pitch values of this segment with satisfgcaocu-
racy. In terms of performance it todk45 sec to pitch tracky; (t)
in order to obtain the true value®,12 sec to obtain their pitch with
the nearest neighbor search on the separated recordihgssec
to do the exhaustive nearest subset search on the mixtute, Gt
sec to estimate the pitch labels from the mixture with theppsed
method".

W(t)new =

3.3. The Details

In this section we will supply some extra information thaswéth-
held until now for the sake of clarity. For the spectral vestoe use
the warped DFT transform [6] and stretch the spacing of the lo

1All times were measured using unoptimized MATLAB code on a
1.86GHz Core 2 Duo CPU.
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Figure 4: Estimated and true pitch values for when applying the
proposed approach on a mixture of two sounds.

frequencies while compressing the high ones, akin to a antst

Q transform, in order to assist accurate comparisons betwee
input and the training data. The result of this is slightlytéeper-
formance, although not dramatically so as compared to tipgra
on regular magnitude spectrograms. For all cases the saatple
was 22,050Hz and we used a 1024pt DFT with a hop size of 256pt,
and a Hann window for the STFT analysis.

As one might imagine when presented with training data not
all of its spectral vectors will correspond to a pitched ®ect In
order to reduce the size of the problem, training spectrzatteanot
pitched are not considered in our search. An alternativecagp is
to use some unpitched spectra and carry their non-pitclislabe

4. EXPERIMENTS

In this section we will examine the performance of our apphoa
on some more challenging examples. More specifically we will
consider the data from a multichannel woodwind quintet raiog

[7]. Since all tracks are available separately we can eaditgin
pitch values using traditional pitch tracking and use thairider to
evaluate our approach. For training data we used 7m41s df pit
tagged content, and we attempted to pitch track 1m10s of- poly
phonic mixtures of a duet, trio, quartet and quintet. Aftiscdrding
unpitched parts this amounted to about 10,000 trainingtsgde®c-
tors per source, which were used on 6,000 input spectra forper
pitch tracking. Using the proposed approach we obtainecethdts
shown in figure 5. For the case of the duet the most commonserror
were octave errors (peaks at a ratio of 0.5 and 2). As we intred
additional sources we see that the performance of the pécking
gradually degrades.

A short section of the pitch tracks in a flute part of the duet
recording is shown in top plot of figure 6. In it one can see that
the most common error is the flipping octaves, as well as Résta
in transient sections. The octave problem can be easilynmded
by performing median filtering in the pitch tracking. Doing we
obtain the results in the middle plot of the same figure, wiieee
octave errors are minimized but the transient errors are move
prominent. Additionally, if we are interested in note tratigtion
and not exact pitch tracking, we can consolidate the weights
training spectra that correspond to the same note, obtaén-aqie
weight and use these weights to decide which note is beiigeaait
any time. The result of that is shown in the bottom plot of fegar
where we see that the fine frequency detail is gone and thieegitc
are quantized to semitones. Obviously these are simpl@agpipes,
more sophisticated tools such as Kalman filters can be easily
ployed to minimize many of the temporal inconsistencies,that
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Figure 5: Histogram of the ratio between the true and estimated
pitches for increasingly denser mixtures.
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Figure 6: A small section of the flute part in the duet mixture. The
top plot shows the raw output, the middle plot show the resafter
applying a median filter to the output pitch track, and thedrot
plot finds the note which includes the most active trainingcs@.

study is outside the scope of this paper.

The mean and standard deviation of the estimation er-
ror as well as the run tinfefor mixtures ranging from a
solo to a quintet are shown in the following table. The er-
ror statistics are shown for both pitch estimation in ternfis o
Hz values, and for note estimation performed as describedeab

Mix | I | o | Time

Solo -4.41 Hz 41.57 Hz 20 sec
0.13 semitones| 1.46 semitones

Duet -18.51 Hz 89.51 Hz 37 sec
-0.08 semitoneg 1.56 semitones

Trio -32.65 Hz 109.96 Hz 49 sec
-0.15 semitoneg 1.57 semitoneg

Quartet -28.69 Hz 91.65 Hz 60 sec
-0.61 semitoneg 2.58 semitoneg

Quintet -42.79 Hz 112.69 Hz 114 sec
-0.87 semitoneg 3.32 semitones

2MATLAB code measured on a 2.98GHz 6-core Xeon
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5. CONCLUSIONS

In this paper we presented a learning-based approach totpaik-
ing of mixtures of signals. We showed that it is plausible ffi& e
ciently use large pitch-tagged training recordings in otddearn
how to recognize pitch in mixtures. The primary advantadehie
approach is a very compact computational core which is not co
strained by model assumptions. As long as the training daag-
propriately tagged this approach will work regardless &f plecu-
liarities in the present sources (e.g. quasi-pitched ahdrimonic
sources). This allows us to perform detection of perceiviechp
as opposed to the more traditional measurement of absolede m
sured pitch. If the training data is properly tagged thisrepph can
provide additional information besides pitch, such as tguality,
vowel character, playing style, etc.

What we present here is a simple beginning of a pitch track-
ing system. The efficiency of this model and its graceful bara
with mixtures leads us to believe that it holds promise fatHer
extension towards a polyphonic transcription system. E&afig
with proper use of higher-level priors that one can eithepase
as a user, or preferably learn from recordings, a lot of therer
that we observe (octave and transient issues) can be matniz
a good degree. Open questions such as the impact of theygualit
of the training data are still relatively unexplored, and neserve
exploring these effects in future work.
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