Learning the Base Distribution in Implicit Generative Models

Abstract

Popular density estimation methods such as
Generative Adversarial Networks (GANSs), and
Variational Autoencoders (VAE) enforce the
latent representation to follow simple distribu-
tions such as isotropic Gaussian. In this paper,
we claim that learning a complicated distribu-
tion over the latent space of an auto-encoder
enables accurate modeling over complicated
data distributions. We propose a two stage
optimization procedure which approximately
maximizes the implicit density model. We ex-
perimentally verify that our method can gen-
erate realistic samples on two image datasets
(MNIST, CELEB-A) and one audio dataset
(spoken-digit dataset)

1 Introduction

Generative model learning is the task where the goal is to
learn a model to generate artificial samples which follow
the underlying probability density function of a given
dataset. When the dataset comprises of scalars, or of low
dimensional (2-3 dimensions) vectors and follow a uni-
modal distribution, one can use a simple density model
such as multivariate Gaussian, and fit the model on the
data using maximum likelihood. To learn the distribution
of more complicated data such as natural images, or au-
dio simple densities do not have the required expressive
power, because of the aforementioned high dimensional-
ity, multi-modality and structured nature of the data.

There exists several main generative model learning
methods in the machine learning literature. One way of
approaching the problem is to use a linear latent vari-
able model such as mixture models [], a latent factor
model such as probabilistic PCA [], Hidden Markov
model [], or linear dynamical systems []. These mod-

els can successfully capture the multi-modality, or low
rank nature of the datasets, however they rely on linear
and tractable forward mappings, and therefore lack the
expressive power of modern neural network models.

More recently, the mainstream approaches for learn-
ing a generative model for complicated datasets have
been centered around models that combine latent vari-
able modeling with non-linear neural network mappings.
One prominent example of such approaches is Varia-
tional Autoencoders (VAEs) [3]. VAEs consider a latent
variable model where the latent representation is mapped
to the observation space via a complicated neural net-
work. The variational expectation maximization algo-
rithm in [3] maximize a variational lower bound on the
maximum likelihood objective. The prior distribution is
typically chosen as a simple distribution such that the
KL-divergence term in the lower bound is tractable. In
this paper we argue that using a simple prior distribution
is detrimental to the overall quality of the learned gener-
ative model.

Another very popular method that also uses a restricted
latent representation is Generative Adversarial Networks
(GANS) [2]. The main conceptual differences of GANs
from typical latent variable models (including VAEs)
is that GANs are an implicit generative model learning
methodology [4], where the model distribution is defined
without specifying an output density. More importantly,
unlike LVMs GANs do not maximize the standard max-
imum likelihood objective. Instead, GANs approximate
the underlying dataset density via an additional discrim-
inator network. Although an appealing idea, GANs are
incredibly hard to train (as evidenced by the sheer num-
ber of GAN training papers in the last few years), and
suffer from the predictable mode collapse problem (We
delve more into this in the main text).

In this paper, we propose an implicit generative model
learning method which maximizes the maximum like-
lihood training objective. Unlike GANs, the method

does not rely on auxiliary networks such as discrimina-
tor or critic networks. For training, we propose a simple
two stage training method, which maximizes a maximum
likelihood training objective, and therefore does not suf-
fer from the mode collapse problem that GANs are well
known for.

2 Generative Model Learning

The purpose of this section is to set the notation and the
required concepts before we formally introduce our al-
gorithm. As we discussed in the introduction, the goal
in generative model learning is to approximate the un-
derlying data density pgu.(z) with the density that our
model implies, which we denote by puoger(x]6), where
0 denotes the model parameters. The maximum likeli-
hood training minimizes the Kullback-Leibler (KL) di-
vergence between the data density and model density:

Hgn KL(pdata (l‘) ||pm0del (.Z' ‘ 9))

pdata(x)
- log LX) g
/pdata(‘r) Og pmnde](:r‘e) X

X — /pdata(w) Ingmodel(xle)dx

o — Zlogpmodel(xn‘e) 1)

where we recognize Equation (1) as the negative of the
maximum likelihood objective. Note that x € R” de-
notes the variable we use to denote the observation space,
and we use the subscripted version z,, to denote the data
item with index n.

It is usually not possible to get an easy to compute
(tractable) likelihood function pmoeder(z|f) unless we
work with very simple models. In LVMs, Jensen’s in-
equality is used to compute a lower bound to the maxi-
mum likelihood objective:

logpmodel(l"a) = log/pforward(l'|h79)p(h)dha

~ log / £ f"‘w‘““d((f(':)’) o1y,

> Eq(n)[10g prorwara (2|1, 0)] — KL(q(h)[[p(R)), (2)

where Equation (2) is known as the variational lower
bound, or ELBO [], h € R¥ denotes the latent variable,
and g(h) denotes the variational distribution over the la-
tent variable. In linear LVMs with tree structured latent
variables (e.g. mixture models, HMMSs), we can use the
posterior p(h|6) as the variational distribution, because
the posterior makes this bound tight.

In the general situation where the forward map-
ping is defined via a non-linear mapping, such that

pforward(mlh7 0) = pout(; fo(h)), where fo(h) : R¥ —
RE is the nonlinear deterministic mapping, and pou(.)
is the employed noise model, computing the posterior
distribution is not analytically possible. VAEs therefore
use a neural network mapping for the variational distri-
bution such that g(h) = N'(z; ug(z), 03 (z)I), where
N (.) denotes the Normal distribution and the neural net-
work mappings jis(x), 03 (z) : R — R¥ parametrize
the variational distribution.

Although the likelihood computation in VAEs is in-
tractable and require the variational EM algorithm de-
scribed above, we argue in this paper that the main failure
mode of VAEs is caused by the simplistic prior choices
for p(h). We demonstrate this in the experiments section.

Another popular way to learn generative models is via
GANs. GANSs are implicit generative models, therefore
they do not employ an output distribution po,.. Namely,
the data generation mechanism is defined as follows:

h~p°(h), = = fa(h), 3)

where we call p°(h) the base distribution, which is
typically chosen as a simplistic distribution such as an
isotropic Gaussian distribution, and fy(h) is a determin-
istic forward mapping similar to what we have denoted
for VAEs above. GANs therefore do not employ an out-
put distribution pey(.), but rather define pmoge(2|0) via
a deterministic transformation of the base distribution

p°(h).

In this paper, we also argue that one of the reasons why
GANs might underperform is because of the simplistic
base distribution choice. In addition to this, GANs also
complicate the learning process (model parameter opti-
mization) by introducing a discriminator network. GANs
in their original formulation [2], approximate the ratio
between the data density and the model density [4]:

L£(8,6) = log De(n) + Y _log1 — De(7)

—>Zlog

Ddata (mn)
Pmodel (zn ‘0> + pdata(zn)

pmodel(x/ ' |0)
+ lo T
%: & pmodel(xgl/ |0) + pdata(x;ﬂ)

“4)

where x,, denotes the training instances, and xz/, denotes
samples generated from the model. The convergence to
the second line (which can be recognized as the Monte
Carlo estimate for the Jensen-Shannon divergence) can
be easily seen by maximizing the objective £(, £) with
respect to the discriminator parameters £ [2]. One other
big conceptual problem with GANSs is that when we min-
imize this divergence with respect to 6, it is well known

Jensen-Shannon divergence collapses down to a subset
of the modes of the data distribution pga, ().

There exists several other variants of GANs where in-
stead of using the Jensen-Shannon divergence [all the
fdivergence stuff], one can consider Wasserstein distance
[1], optimal transport objectives [], or other tricks to
make the optimization easier [schwing paper], or allevi-
ate the mode collapse problem [gan training trick paper].
But there has not been enough focus on achieving a more
expressive distribution via learning the base distribution.

3 Learning in Implicit Generative Models

As we mentioned before GANs are only one option for
learning implicit generative models. According to [?],
there are three other broad categories which are ratio
matching [], divergence matching [] and moment match-
ing []. The first two methods are basically variations on
the GAN score function, and do not consider the effect of
base distribution. Moment matching is a simple method
where the observable moments of the model density are
matched with the moments computed from data. In our
experience this method’s performance highly depends on
the quality of the choice of the moments. In this pa-
per, we propose a novel maximum likelihood based im-
plicit generative model learning method, which focuses
on learning expressive base distributions.

We know from probability theory that in an implicit gen-
erative model, the output probability density is related to
the base distribution via the cumulative density function:

0
mode! 0; - = 0 h dh, 5
Prosa(210,0) = 5 /{w:fe(h)<vc}p¢() ®

where note that the base distribution is parametrized by
¢. The integral in Equation (5) is not tractable in general,
however if we have an invertible mapping fy(h), we can
obtain an analytical expression for the density function
of the model using the following formula:

pmodel(xwv (b) = pg(fe_l(a:)) ‘det Jg(l‘)‘) (6)

where Jy(z) := af"a;(x). It is possible to construct ex-
actly invertible mappings using typical neural network
mappings such as matrix multiplications and convolu-
tions. In this paper we explore the cases where the map-
ping fg(x) is invertible in section 22. We also look at the
cases where fp(h) is approximately invertible, and pro-
pose an algorithm which approximately maximizes the

maximum likelihood objective.

3.1 Maximum Likelihood for Implicit Generative
Models

If we work with invertible forward mappings, the opti-
mization problem for maximum likelihood in an implicit
generative model is the following:

H&%}X Z log Pmodel (xn |97 ¢)7

_ 0/ p—1
—nﬁxznjlogp(p(fo (zn)) +logdet |Jg(xn)], (7)

where the goal can be interpreted as maximizing the like-
lihood of the mappings f, ' () in the base distribution
space. The determinant of the Jacobian term ensures that
the distribution properly normalized. If we think about
this objective from a sampling perspective, in order to
the generate plausible samples, the maximum likelihood
objective tries to match the samples from base distribu-
tion with the observations mapped to the base distribu-
tion space f, ' ().

Note that in GANSs, only the forward mapping parame-
ters is optimized, and the base distribution is fixed to be
simple unimodal distribution. Optimizing both the for-
ward mapping and a multi-modal base distribution con-
stitutes the main idea in our paper. We argue that map-
ping a multimodal dataset onto a unimodal base distri-
bution is harder to achieve than fitting a multimodal dis-
tribution on f, !(z). We demonstrate this in Figure 1.
Using an invertible linear mapping fy(h) = Wh, where
h € R2, and W € R2*2, we show that on a two di-
mensional mixture of Gaussians example that, if we do
maximum likelihood on the objective in Equation (8), we
fail to map the observations to the samples drawn from
a fixed isotropic base distribution. However, as shown
in Figure (b) if we set the base distribution as a flexible
distribution such as mixture of Gaussians, and learn its
parameters ¢, we are able to learn a much more accu-
rate distribution. We also show that if we train the same
mapping using the standard GAN formulation, we get the
mode collapse behavior, where only one of the Gaussians
is captured in the learned distribution.

We acknowledge that in the cases where the forward
mapping has the same dimensionality in the domain and
range spaces (such as the example in Figure 1), learn-
ing an implicit generative model by maximizing Equa-
tion (8) is pointless, because we could have very well
just fitted a mixture model on the data. For this reason,
in the next section we propose the two stage learning al-
gorithm which learns an expressive base distribution on
a low dimensional space.

2
% ® observed data
X generated data
20 o o 4
@ %
15 X%
x X xR 2
10 % ¢
x*xx 2%
o ¥, % 0
s x % x .
H X x
x 5 .
0 R x % E
%)k x x 2
; e <
X X x % 4
10 % ¥
% X
15 H R)
S X Draws from the base distribution @

~175-150 -125 -100 =75 -50 -25 00 25 -4 -2 o H 4

(a) Using a simple and fixed base distribution

® observed data
_2{ X generated data

o L0
X Draws from the base distribution | @

-175 -150 -125 -100 =75 -50 -25 00 25 -4 -2] H a

(b) Learning the base distribution

oo e
x raws from the base distribution .

~17.5 150 -125 100 ~75 -50 -25 00 25

~600 -500 400 -300 -200 -100 O 100

(c) What GAN learns

Figure 1: We demonstrate the differences between our proposed method and two methods that use a simple base
distributions on a two dimensional mixture of two Gaussians. (Maximizing (8) and GAN with a fixed isotropic
Gaussian as base distribution). In figure (a) we maximize the implicit model likelihood defined in (8) with respect to
forward mapping parameters 6. In figure (b) we fit a mixture of Gaussians for the same forward mapping as figure (a).
In figure (c) we see what GAN learns for the same dataset. In Each figure, left plot shows the generated data overlaid
on the observed dataset, and left plot show the samples from the base distribution overlaid on the observations mapped

to the observation space (f, ' (z)).

3.2 The Two Stage Algorithm

In practice, we typically would like to have base distri-
bution defined on a space which has lower dimensional-
ity than the observation space. If this is the case, then
it is impossible to have an exactly invertible mapping
fo(h). Tt is however possible to have an approximately
invertible forward mapping. This idea gives the hint
for a very simple two stage maximum likelihood algo-
rithm: We first fit an auto-encoder such that the error
> 1 fo (£ (zn)) — x| is minimized. Once the we are
done with optimizing the autoencoder, we simply fit a
base distribution on the embeddings f;'*(x). The formal
algorithm is specified in Algorithm 1.

To see that this is a maximum likelihood algorithm, let
us reconsider the likelihood function of the implicit gen-
erative model with the autoencoder:

= masx 3 log (£ () + log det | Jp ()

)

®

where we easily see that the base distribution parameters
are independent of the Jacobian term. Assuming that that

Algorithm 1 The two stage implicit generative model
learning algorithm

-Train the auto-encoder parameters 6, i such that:
rgglz 1o (/" (xn)) —]l
’ n

-Fit the base distribution on the latent space such that:

max > log p(£5"(2n))
n

the autoencoder learns a mapping close to the identity,
we conclude that maximizing with respect to the base
distribution parameters maximizes the model likelihood.

Note that since the optimization for the forward mapping
parameters 6, and the base distribution is decoupled, it
is easy to fit a multi-modal distribution for the base dis-
tribution on the embeddings f°"(z). One natural choice
is to use a mixture distribution. We demonstrate this on
handwritten zero and one digits from the MNIST dataset

[]in Figure 2. We choose the dimensionality of the latent
space K = 2 to be able to visualize the base distribution
space. We a three component Gaussian mixture model
for this example.

3.3 Learning Generative Models for Sequential
Data

The framework we propose also offers the flexibility to
learn distributions over sequences by simply learning a
sequential distribution such as HMM on the latent repre-
sentations. The likelihood of a sequence is expressed as
follows:

T
Prmoder(w1:7 100,) = [[PR (o) | £ (w10 -1))
t=1

x |det Jg(x)],

where a sequence is denoted as xp.7 =
{z1,29,... 27} and thus f&“c(xlzgp_l) =
(@), f3r(@2), o ¢ (ar—1) }- According
to this density model, the observations 1.7 are mapped
to latent space independent from each other. This sug-
gests that we can closely follow the two stage algorithm
defined in Algorithm 1: Same as before we first fit the
autoencoder, and obtain the latent representations. In
the second stage, instead of fitting an exchangeable
model such as a mixture model, we fit a base distribution
which models the temporal structure of the latent space.
Potential options for such a distribution include Hidden
Markov Models (HMMs), and RNNs, or convolutional
models.

3.4 Related Papers

I might use your help Sanmi here.

4 Experiments

4.1 Images

We learn generative models on the MNIST (hand writ-
ten digits) and CELEB-A (celebrity faces). We compare
our algorithm with VAE, standard GAN and Wasserstein
GAN. As the main quality metric, we compare likeli-
hoods computed on a test set using kernel density esti-
mator (KDE).

For the MNIST dataset, we use an invertible perceptron
in our approach to demonstrate that we can also use our
approach to compute model likelihoods on the test set
using the implicit generative model density function in
Equation (6). (Note that in general our framework al-
lows non-invertible mappings: We use a general convo-

lutional autoencoder for the CELEB-A dataset) The in-
vertible perceptron we use for the MNIST dataset is de-
fined as follows:

hi = tanh;,, (Linear[K, 600](h)),
x =0iny (Linear[600, 784](hq)) ,

where h € RX denotes the latent representation, and
Linear[L, Lo](h) = Wh+ b, W € RE2xI1 p € RL2
represents a linear layer (we follow the pytorch API con-
vention to denote the input and output dimensionalities).
The invertible non-linearity functions are denoted with
tanh™"(.), and o'™(.), which respectively stand for in-
vertible tangent-hyperbolic and invertible sigmoid func-
tions. We basically use the original non linearity in the
invertible regime, and a linear function in the saturation
regimes. Namely, for hyperbolic tangent we have the fol-
lowing function:

cd—b t<-1+c¢
tanhin(t) = < tanh(t) |¢ <1—¢€, 9)
ct+b t>1—¢

We use ¢ = 0.01, and choose the bias term b, and the
threshold ¢ so that the function is continuous and smooth
(has a continuous first derivative). Similarly, the invert-
ible sigmoid function is defined as follows:

ct—b t<e
oimi(t) = < a(t) 0<t<1l—¢, (10)
ct+b t>1—c¢

Note that it is straightforward to derive the inverse func-
tions once the parameters of the non-linearities are set.
Therefore the inverse network is defined as follows:

hy =0, :(Linear ' [784, 600](x)),
h = tanh; ! (Linear™'[600, K](h,)),

vt

where Linear™*[Ly, L](z) := (W TW)='W T (z — b).
Note that the parameters W, b are shared for a given for-
ward and inverse Linear layers. To obtain the correction
term due to the rectangular transformation, we consider
Equation 5 which defined the implicit model pdf via CDF
of the transformed density. We basically need to compute
the volume change due to the transformation. (For square
transformations this turns out to be the determinant of the
Jacobian) We note that the volume change due to the rect-
angular linear transformation in a linear layer is given by

det(WTW) []. Therefore to the correction term in-
volves dividing the original pdf with this volume change
(we note that our transformation is approximately invert-
ible due to the first step of our algorithm, and therefore
we apply the inverse function theorem).

Reconstructions

Figure 2: Demonstration of the two stage algorithm on a toy dataset with handwritten 0’s and 1’s. The purpose of
this figure is to give a sense on how the proposed algorithm work. (Top row) Samples from the training set, and
corresponding reconstructions. (Bottom row) Two dimensional embeddings of the training samples are shown with
blue dots. We overlay sampled images. The solid color ellipses show the covariance components of the learned

Gaussian mixture model for the base distribution.

To do objective comparisons between models we com-
pute Kernel density estimates (KDE) on the test set: We
sample 1000 points from the trained models, and repre-
sent the learned density as the sum of Kernel functions
centered at these samples. We then compute the average
score for all the test set. We use Gaussian Kernels, with
bandwidth 0.01. Namely, the KDE scores we compute
for the models are defined as follows:

1 Niest Nsamples
KDE score = ———— E N (!t gsamele 0.17).
Nlesthamples

n=1 m=1

Notice that for small kernel bandwidth, the above ob-
jective is tantamount to computing the nearest neighbor
distance for all test instances. To get high scores from
this estimator,the observed samples need to capture the
diversity of the test instances. Also note that this estima-
tor is computing an estimate for K L(Piest||Pmoder), SO this
metric penalizes mode collapse.

In the left panel of Figure 3, we compare the KDE
scores for our two-stage algorithm, GAN, Wasserstein
GAN and VAE on the MNIST dataset. We use the stan-
dard training-test split defined in the pytorch data utilities
(60000 training instances and 6000 test instances). We
try 7 different latent dimensionality K for all algorithms
ranging from 20 to 140 with increments of 20. In our
algorithm, we use a GMM with 30 full-covariance com-
ponents for all K values. We see that performance drops

with increasing K, however we manage to stay better
than VAEs and GANs. The performance drop is expected
to happen with increasing K, because the density estima-
tion problem in the latent space gets more difficult with
increasing latent dimensionality. We would like to note
that it possible to use a more complicated base distribu-
tion and compensate.

In the right panel of Figure 3, we compare the model like-
lihood computed with the implicit likelihood equation in
(6) with the base distribution likelihood (the complete
likelihood minus the Jacobian term). The purpose of this
is to examine if there is a correlation between these quan-
tities. As we pointed out before, our algorithm does not
require an exactly invertible mapping, and as can be seen
from the figure the base distribution likelihood is some-
what correlated with the overall model likelihood, and
therefore can potentially be used as a proxy for the com-
plete likelihood for mappings for which we don’t know
how to compute the Jacobian term.

In Figure ??, we show the random nearest neighbor sam-
ples for randomly selected test instances for all four algo-
rithms in the top panel. We see that IML method is able
to capture the diversity of the test instances well. On top
of that we see much more definition in the generated im-
ages thanks to the multi-modal base distribution that we
are using. As we earlier illustrated in Figure ??, using
a simplistic base distribution causes a mismatch between

the mappings to the latent space and the draws from the
base distribution. Due to the simplistic distributions used
in VAEs, and GANs we see that these approaches tend to
generate more samples which do not resemble handwrit-
ten digits. We also observe that quality of the samples
(and nearest neighbor samples) are correlated with the
KDE metric.

In Figure 4, we do the same nearest neighbor sample
measurement on the CELEB-A dataset. We have set
the latent dimensionality as 100 for all algorithms. We
cropped the images using a face detector, and resized
them to size 64 x 64 in RGB space. We used 146209
such images for training, and 10000 images for test. We
see that the proposed IML algorithm has more accurate
nearest neighbor samples. We see that although the VAE
is able to generate less distorted samples than DC-GAN,
it’s generated images contain more distortion than IML,
potentially because of the simplistic latent representa-
tion.

For all algorithms we used the Adam optimizer [?]. As
mentioned before, in the MNIST experiment, for IML we
used the invertible network we introduced in this section.
For GANs and VAE we used a standard one hidden layer
perceptron with exact same sizes. Namely, the decoders
maps K dimensions into 600, and 600 dimensions then
gets mapped into 784 dimensions (MNIST images are of
size 28 x 28). We use the mirror image encoder for the
VAE, that is we map 784 dimensions to 600, and that
gets mapped into K dimensional vectors for the mean
and variance of the posterior. For the CELEB-A dataset,
we used a 5 layer convolutional encoders and decoders.
(We used the basic DC-GAN generator architecture for
all algorithms)

KDE likelihood wrt. K Overall model and base dist. likelihoods

~¥— Impl. model logl
—&— Impl. gmm log!

KDE likelihood
Log. Likelihood

/ e
» < VAE kdes
—&— Impl. kdes
~»— GAN kdes
4 —B- W-GAN kdes

o @ e s 10 o 1o % @ &% w0 B0 10
K (latent space dimensionality) K (latent space dimensionality)

Figure 3: KDE likelihood with respect to the dimension-
ality of the latent space K on the MNIST dataset.

4.2 Audio

To show that our algorithm can be used to learn a gener-
ative model for sequential data, we experiment with gen-
erating speech and music. In all datasets, we work with
audio with 8kHz sampling rate. We dissect the audio into

Table 1: KDE scores on test set for MNIST and CELEB-
A datasets using 4 different algorithms

Algorithm MNIST CELEB-A
IML 143 -8183
VAE 132 -10941
GAN -5 -11879
WGAN 51

100ms long chunks, where consecutive chunks overlap
by 50ms, and each window is multiplied by a Hann win-
dow. The autoencoder learns 80 dimensional latent rep-
resentations for each chunk which is 800 samples long.
We use three layer convolutional networks both in the en-
coder and decoder, where we use filters of 200 samples.

We fit an HMM to the extracted latent representations.
We use 300 HMM states. The random samples are ob-
tained by sampling from the fitted HMMs, and passing
the sampled latent representation through the decoder.
To reconstruct the generated chunks as an audio wave-
form, we follow the overlap-add procedure []: We over-
lap the each generated by chunk by 50 percent and add.

As a speech experiment, we learn a generative model
over digit utterances. We work with the free spoken digit
dataset [?]. In Figure 6, we show the spectrograms of
generated digit utterances along with spectrograms of the
training digit utterances. Note that the generated digit
utterances are generated in sequences (We generate one
long sequence which contains multiple digits). We con-
sider the cases where the training data only contains one
digit type, and the case where the training data contains
all digits. In the figure we show three case for the one-
digit training task and the last figure shows the case in
which we train the model jointly for all digits. We see
that we are able to learn a generative model over one
digit with a some variety.

As the music experiment, we train a model on a 2 minute
long violin piece. We show the spectrogram of the first
10 seconds of the piece and our generated sequence in
Figure 2?.

5 Discussion

The algorithm we propose in this paper is very simple
and effective. It is also principled in the sense that it per-
forms maximum likelihood. We would like to empha-
size that, compared the GANs the performance is much
less sensitive to the network design choices and training
parameters such as the learning rate. In author’s expe-
rience, GANSs are extremely sensitive to training param-

B L
ropes
o o= o @ g
Ga Om Oy Ty ey
FrrTmer
W) e
SHr9 ;=
o e e T Y
o0 (V) O N
Syl
e Ba e TS
' Na Ny R
SO0y L e
[N LN
D) T B Yy
W aWw
A o A @
L R
M 3 (7) 9
(8 Y Ch LB
W ooy Gy -
caraey
Mo mem

z z
m = W Mw

GAN.\

M

VAE

GAN

A0 DS 0N o ey
MW oSl)™ O 8
MOTrUNINO Y
M T dwOM NS
AT OGN O G $
—~ T T NMeBWOMNOL D
—Tr T e Ol o) e T
L F M N0 - R
— T TwDY e)—-m >
ST VO3 NNy
SIS I ™D M
—MONNTY =M

NQ 4~ D=t DM
QOISO -~
NP IrIM T Ohyd
FOYARASCRSTIETM
Q= mpghinYNnOHON
FersWmeTY N e~
QYT N LGy
ATV ROMETWNE S
NIO|-"JPom Moo~
Coawvs>anurzWNQL)
R RS ake NS SR R -
*HOMNTTIOAMT 2

e A awa W P i R Y B
e B SIS A T I A L TR
Do omand
CTHRSBTF ST Y
L A SR Al TR T ik A
=y o B e g WD (T o
B A S B s e S T
LRSI A SN SN S R
SmP ooy or gty 3y
L TECNE Y ¢ W N O R N 1
Ll e R e O o
o e T D o e

(top) Generated nearest neighbor samples (nearest to test instances

Figure 4: Samples from the MNIST dataset.

which are shown on the top row) for 4 different algorithms. (bottom-left) Random images generated with a VAE,

(bottom-right) Generated Samples with our approach, samples from the same cluster are grouped together.

»Q 9.7.993,:

o
..nl A
ot

®© PP %
¥l _? zv.
B i

e?uwa D@

g

Pz 911 O

.

Figure 5: Samples from the CELEB-A dataset. (top) Generated nearest neighbor samples (nearest to test instances

which are shown above) for 2 different algorithms. (bottom-left) Random images generated with GAN, (bottom-

right) Generated Samples with our approach, samples from the same cluster are grouped together.

Original Data

2048
1024
I 512
256
128

64

0

Gerfeated Déta

0 15 3 4.5 6 7.5 9

Original Data

2048
1024

. 512
T 256
128

64

o3

Gerfeated Déta

0 15 3 4.5 6 7.5 9

Original Data

Original Data

erfefated Déta

Figure 6: We illustrate the spectrograms for generated digits. (top left) Zero digits (top right) Generated sequence for
digit 1 (bottom left) Generated sequence for digit 6, bottom right Generated sequence for all digits.

Original Data

2048
1024
512

T 256
128

64

o3

GerfePated Ddta 7.5

2048
1024
512
256
128
64
0

T|me

z

Hz

eters such as the learning rate. We have observed that
decoupling the training of the base distribution from the
neural network mapping makes the training much easier:
In our approach it suffices to pick a small enough learn-
ing rate so that the encoder converges, and successfully
embeds the data in a lower dimensional space.

In our experience, VAE’s seem to be easier to train (much
less susceptible to hyperparameter choices). However,

as we have seen in the results and figures, the simplistic
choice for the base distribution results in distorted out-
puts. In our experiments we have used relatively more
standard models to model the latent distribution, but it is
possible to use complex methods such as Dirichlet Pro-
cess Mixture models to obtain complicated base distribu-
tions.

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. Wasserstein GAN. CoRR, abs/1701.07875,
2017.

[2] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative
adversarial nets. In NIPS, 2014.

[3] Diederik P. Kingma and Max Welling. Auto-
encoding variational bayes. CoRR, abs/1312.6114,
2013.

[4] S.Mohamed and B. Lakshminarayanan. Learning in
Implicit Generative Models. ArXiv e-prints, October
2016.

