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ABSTRACT

Multiple-target tracking with a microphone array is often addressed
via the Bayesian filtering framework. For compact arrays, each
source is represented by its direction-of-arrival (DOA), which
evolves on the unit sphere. The unique topology of this space
leads to analytical intractabilities that are often resolved via costly
particle-based methods.

In this paper, we derive a novel, deterministic inference algo-
rithm called the von Mises-Fisher Filter (vMFF) for a dynamical sys-
tem model defined on the sphere, and extend it to the multi-source
scenario in the Factorial vMFF (FvMFF). We apply sensor fusion
and probabilistic data association techniques to handle clutter and
data association ambiguities in the observation set. We show that the
vMFF combines the computational efficiency of a Kalman filter with
the tracking accuracy of a particle filter to perform well across all
noise levels. Finally, we apply the FvMFF to track multiple speakers
in a reverberant environment.

Index Terms— von Mises-Fisher, speaker tracking, bayesian
filtering

1. INTRODUCTION

Tracking one or more sound sources in a reverberant environment
is a challenging task that finds applications in many areas [1]. It
is often useful for source separation and speech enhancement al-
gorithms that require on-line directionality information. Tracking
algorithms are often based on the Kalman Filter (KF) [2] or the non-
linear/non-Gaussian variants of it such as the extended KF [3], the
unscented KF [4], and the particle filter [5]. For small arrays with
inter-element distances of 1-5 cm, it is more meaningful to track the
direction-of-arrival (DOA) of each source rather than its 3D posi-
tion. This is a quantity that lies on the surface of the unit circle or
sphere, depending on the array configuration. Thus, it is beneficial
to develop methods that are tailored to the unique statistics of such
spaces [6, 7, 8, 9, 10].

We address the problem of tracking the DOAs of multiple
sources with a compact, 4-microphone array in a noisy, reverberant
environment. We will approach the problem from a generative model
perspective in which uncertainty in the DOA is expressed with the
von Mises-Fisher (vMF) [11] distribution. Mixtures of vMFs were
studied in [7, 12, 13] for clustering high-dimensional directional
datasets. A vMF-based particle filter was proposed for tracking
white matter fibers in [14] and was adapted for tracking speakers
in [15]. However, we would like to avoid using a particle-based rep-
resentation because it (1) can be computationally demanding and (2)
complicates the inference procedure in the case of multiple sources
and measurements.

We introduce a spherical dynamical system (SDS) model based
on that of [14] that describes the evolution of a source DOA over

time. Uncertainty in the source position and the observation is mod-
eled with the vMF distribution and uncertainty in the source’s rota-
tion velocity is modeled with a Normal distribution. We derive an ef-
ficient, particle-free inference procedure for the SDS called the vMF
Filter (vMFF). This is extended to the setting where K sources and
M � K observations (many of which may be clutter) are present.
This is the case when using interchannel time delay (ITD) [16] fea-
tures extracted from the recorded signals. Sensor fusion [17] and
probabilistic data association (PDA) [18, 19] techniques are applied
to derive a Factorial vMFF (FvMFF) for tracking multiple sources in
the presence of multiple observations.

2. BACKGROUND

2.1. von Mises-Fisher Distribution

The unit sphere is the manifold containing all unit vectors:

S2 =
{
x : x ∈ R3, ‖x‖2 = 1

}
. (1)

Several probability distributions exist for modeling random
vectors on S2 such as the Bingham [20], Fisher-Bingham (aka
Kent) [21], and von Mises-Fisher (vMF) [11] distributions. We will
use the vMF for its simplicity and analytical tractability in deriving
the vMFF. It is parameterized by mean µ and concentration κ and
has density function:

p (x ; µ, κ) =
κ

4π sinh (κ)
eκx
>µ . (2)

The vMF is derived by conditioning a Gaussian random variable
N
(
µ, σ2I

)
, ‖µ‖2 = 1 on the unit sphere. The transformation is

such that κ = 1/σ2, and so κ behaves like an inverse variance. We
can visualize the vMF on S2 as shown in Fig. 1. We will use it to
model DOA information.

2.2. Rotations on the unit sphere

Rotations on the unit sphere can be described with quaternions [20]
or, equivalently, an angle-axis representation. We will model the
velocity of a source directly on S2 with a Gaussian random variable
r ∈ R3 such that ‖r‖2 defines the amount of rotation in radians and
r/‖r‖2 ∈ S2 defines the axis of rotation. One can rotate a vector by
ν radians about an axis a ∈ S2 by pre-multiplying it with:

R(a, ν)=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

sin(ν)+ (I−aa>)cos(ν) + aa>. (3)

For a rotation vector r, we write R (r) as a shorthand for
R (r/‖r‖2, ‖r‖2). With this representation, we can track the
source’s rotation r via the Kalman filter.
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Fig. 1. Contours of the von Mises-Fisher distribution on the unit
sphere for three values of the concentration parameter κ.

3. SPHERICAL DYNAMICAL SYSTEM (SDS)

We define a generative model for the SDS in analogy with the stan-
dard linear dynamical system (LDS). It can be written as:

xt|xt−1, rt−1 ∼ vMF (R (rt−1) xt−1, κx) , (4)
rt|rt−1 ∼ N (Art−1,Σr) , (5)

yt|xt ∼ vMF (xt, κy) , (6)

where xt ∈ S2, rt ∈ R3, and yt ∈ S2 denote the source position,
source rotation, and observation. Equations (4)-(5) describe the evo-
lution of a speaker’s position and rotation directly on the unit sphere.

We denote the complete state vector as st =
[
x>t r>t

]>
.

One approach to handling the statistics of the SDS uses a
particle-based representation [14, 15]. To avoid computational
burden, we will make approximations in the Bayesian filtering equa-
tions to derive a simple and efficient tracking algorithm called the
von Mises-Fisher Filter (vMFF).1 We extend this to the multi-source,
multi-observation case, yielding the Factorial vMFF (FvMFF).

4. APPROXIMATE INFERENCE FOR THE SPHERICAL
DYNAMICAL SYSTEM

We derive a deterministic inference algorithm for the SDS by ap-
proximating the corresponding Bayesian filtering equations. We will
assume that the filtered state distribution at time t− 1 factors as:

p (st−1|y1:t−1) = p (xt−1|y1:t−1) p (rt−1|y1:t−1)

= vMF
(
xt−1 ; µ̂t−1, κ̂t−1

)
N
(
rt−1 ; γ̂t−1, Σ̂t−1

)
. (7)

1The approximations mirror those used in [22] to derive a tracking algo-
rithm on the unit circle that uses von Mises (vM) [11] distributions.

This mirrors the statistical representation of the state in the SDS
(see (4)-(5)). To propagate it to the next time step t, we must solve
the Bayesian filtering equations:

p (st|y1:t−1) =

∫
S2×R3

p (st|st−1) p (st−1|y1:t−1) d st−1 , (8)

p (st|y1:t) ∝ p (yt|st) p (st|y1:t−1) . (9)

4.1. Predict Step

We can write (8) as:

p (st|y1:t−1) = p (xt|y1:t−1) p (rt|y1:t−1) , (10)

where:

p (xt|y1:t−1) =

∫
S2
p (xt|st−1) p (xt−1|y1:t−1) dxt−1 , (11)

p (rt|y1:t−1) =

∫
R3

p (rt|rt−1) p (rt−1|y1:t−1) d rt−1 . (12)

The first term (11) represents a rotation followed by vMF sam-
pling (see (4)). Although the rotation is performed deterministically
conditioned on st−1, there is still statistical coupling between the
position xt and rotation rt−1.2 We found empirically that when
Σr = σ2

rI, the noise due to the rotation is well-approximated as
vMF-distributed with concentration 1/σ2

r . So, we write (11) as:

p (xt|y1:t−1) ≈
∫
S2
p̄ (xt|x̃t−1) p (x̃t−1|y1:t−1) d x̃t−1 , (13)

where x̃t−1 = R
(
γ̂t−1

)
xt−1 and p̄ (xt|x̃t−1) denotes the convo-

lution of the position and rotation noise vMFs. We recognize (13)
as the convolution of two vMF distributions and approximate it by
convolving two wrapped Normal distributions that are matched to
the vMFs [11, 23]. This amounts to computing:

κ′ = A−1 (A (κ1)A (κ2)) , (14)

where:

A (κ) =
1

tanh (κ)
− 1

κ
. (15)

We can do this easily by finding the root of:

A
(
κ′
)
−A (κ1)A (κ2) = 0 , (16)

with Newton’s method, initialized at κ′ = 1
2
min (κ1, κ2). This con-

verges to within machine precision in at most 10 iterations. A close
look at (13)-(14) reveals that we can approximate the convolutions
due to both position and rotation noise by finding the root of:

A
(
κ̂−t
)
−A (κ̂t−1)A (κ̂x)A

(
1/σ2

r

)
= 0 , (17)

initialized at κ̂−t = 1
3
min

(
κ̂t−1, κ̂x, 1/σ

2
r

)
.

The second term (12) can be evaluated in closed form as in the
Kalman filter. Thus, we have that the predicted density is:

p (st|y1:t−1) ≈ vMF
(
xt ; µ̂−t , κ̂

−
t

)
N
(
rt ; γ̂−t , Σ̂

−
t

)
, (18)

where:

2This is analogous to the coupling between position and velocity compo-
nents in the LDS.



µ̂−t = R
(
γ̂t−1

)
µ̂t−1 , (19)

κ̂−t = A−1 (A (κ̂t−1)A (κ̂x)A
(
1/σ2

r

))
, (20)

γ̂−t = Aγ̂t−1 , (21)

Σ̂
−
t = AΣ̂t−1A

> + Σr . (22)

4.2. Correct Step

We next update the predicted density (18) by taking the observa-
tion yt into account. This is an application of Bayes’ rule. We can
write (9) as:

p (st|y1:t) = p (xt|y1:t) p (rt|y1:t) , (23)

where:

p (xt|y1:t) ∝ p (yt|xt) p (xt|y1:t−1) , (24)
p (rt|y1:t) ∝ p (yt|rt) p (rt|y1:t−1) . (25)

The first term (24) takes the form of a vMF distribution. The sec-
ond term (25) is problematic in that the emission density p (yt|rt) is
not defined in the SDS (only a source position measurement is avail-
able).3 We will handle this by generating an auxiliary observation yr

t

in r-space (from yt) and applying the regular Kalman filter update
scheme. We choose yr

t to be the rotation vector required to move
from the previous position estimate µ̂t−1 to the observation yt:

yr
t = cos−1 (µ̂t−1 · yt

) µ̂t−1 × yt

‖µ̂t−1 × yt‖2
, (26)

where · and × denote dot and cross products, respectively. The first
term provides the amount of rotation and the second term provides
the axis of rotation as described in Section 2.2.

Altogether, we approximate the filtered density at time t as:

p (st|y1:t) ≈ vMF (xt ; µ̂t, κ̂t)N
(
rt ; γ̂t, Σ̂t

)
, (27)

where:

µ̂t =
κ̂−t µ̂

−
t + κyyt

‖κ̂−t µ̂
−
t + κyyt‖2

, (28)

κ̂t = ‖κ̂−t µ̂−t + κyyt‖2 , (29)

γ̂t = γ̂−t −Kt

(
yr
t − γ̂−t

)
, (30)

Σ̂t = (I−Kt) Σ̂
−
t , (31)

and the Kalman gain is Kt = Σ̂
−
t

(
Σ̂
−
t + Σyr

)−1

. The noise
covariance Σyr controls how sensitive the rotation vector update is
to the auxiliary observation.

The overall filtering procedure, called the von Mises-Fisher Fil-
ter, recursively computes (18) and (27) over time and is summarized
in Algorithm 1.

5. MULTI-SOURCE TRACKING IN CLUTTER

When multiple sources and observations are present, we must decide
how to group observations with sources. We will use a probabilistic
data association (PDA) strategy [15, 18] as it provides a simple way

3This complication does not arise in a Kalman filter because the coupling
between the position and velocity components is captured in off-diagonal
blocks of a state covariance Σs.

Algorithm 1 von Mises-Fisher Filter
Predict

Position (vMF)
µ̂−t = R

(
γ̂t−1

)
µ̂t−1

κ̂−t = A−1
(
A (κ̂t−1)A (κ̂x)A

(
1/σ2

r

))
Rotation (Normal)

γ̂−t = Aγ̂t−1

Σ̂
−
t = AΣ̂t−1A

> + Σr

Correct
Position (vMF)

µ̂t =
κ̂−t µ̂−t +κyyt

‖κ̂−t µ̂−t +κyyt‖2
κ̂t = ‖κ̂−t µ̂

−
t + κyyt‖2

Rotation (Normal)
yr
t = cos−1

(
µ̂t−1 · yt

) µ̂t−1×yt
‖µ̂t−1×yt‖2

Kt = Σ̂
−
t

(
Σ̂
−
t + Σyr

)−1

γ̂t = γ̂−t −Kt

(
yr
t − γ̂−t

)
Σ̂t = (I−Kt) Σ̂

−
t

to extend the vMFF to the multi-source case. The underlying states
st,j of the sources are assumed to evolve independently over time.
Thus, the generative model is factorial in nature.

To apply PDA to this setting, we re-work the emission model (6)
so that M observations are drawn i.i.d. from a mixture of K + 1
distributions. The firstK are vMFs (one for each source) and the last
is a uniform vMF that accounts for outliers. Thus, the observation
set yt,1, . . . ,yt,M is drawn according to:

yt,m|xt,1:K ∼
β

K

K∑
j=1

vMF (xt,j , κy) + (1− β) vMF (u, 0) , (32)

where β is the proportion of inliers and u is any vector in S2. We
can associate observations to source vMFs with the posterior proba-
bilities:

ηt,jm =
β
K

vMF
(
yt,m ; µ̂−t,j , κy

)
β
K

K∑
j=1

vMF
(
yt,m ; µ̂−t,j , κy

)
+ (1− β) vMF (yt,m ; u, 0)

.

(33)

We incorporate these weights in the filter by computing the pa-
rameters in (27) for each target using composite observations:

ȳt,j =

M∑
m=1

ηt,jm yt,m , yr
t,j =

M∑
m=1

ηt,jm yr
t,m

M∑
m=1

ηt,jm

. (34)

When there is only one source and no outliers (β = 1), these ex-
pressions reduce to more familiar ones for posterior inference with
M measurements [24]. When multiple sources are present, PDA
splits the “weight” of the observations among the K source tracks.
And when β < 1, outliers are “soaked up” by the uniform vMF, pre-
venting the target vMFs from diverging. The predict step updates are
performed as in the one-source case and independently for each tar-
get. This yields an inference algorithm very similar to the vMFF that
we call the Factorial vMFF (FvMFF), summarized in Algorithm 2.



Algorithm 2 Factorial von Mises-Fisher Filter
Predict

Position (vMF)
µ̂−t,j = R

(
γ̂t−1,j

)
µ̂t−1,j

κ̂−t,j = A−1
(
A (κ̂t−1,j)A (κ̂x)A

(
1/σ2

r

))
Rotation (Normal)

γ̂−t,j = Aγ̂t−1,j

Σ̂
−
t = AΣ̂t−1A

> + Σr

Data Association
ηt,jm =

β
K

vMF(yt,m ; µ̂−t,j ,κy)
β
K

K∑
j=1

vMF(yt,m ; µ̂−t,j ,κy)+(1−β)vMF(yt,m ; u,0)

Correct
Position (vMF)

ȳt,j =
M∑
m=1

ηt,jm yt,m

µ̂t,j =
κ̂−t,j µ̂

−
t,j+κyȳt,j

‖κ̂−t,j µ̂
−
t,j+κyȳt,j‖2

κ̂t,j = ‖κ̂−t,jµ̂
−
t,j + κyȳt,j‖2

Rotation (Normal)
yr
t,m = cos−1

(
µ̂t−1,j · yt,m

) µ̂t−1,j×yt,m
‖µ̂t−1,j×yt,m‖2

Kt = Σ̂
−
t

(
Σ̂
−
t + Σyr

)−1

yr
t,j =

M∑
m=1

ηt,jm yr
t,m

M∑
m=1

ηt,jm

γ̂t,j = γ̂−t,j −Kt

(
yr
t,j − γ̂−t,j

)
Σ̂t = (I−Kt) Σ̂

−
t

6. EXPERIMENTS

6.1. Synthetic Experiments

We compared the vMFF with (1) a Kalman Filter (KF) for tracking
a constant-velocity LDS in R3 and (2) a particle filter based on vMF
sampling (vMFPF) [14]. The vMFPF uses the state transition density
as the proposal and multinomial resampling at every step. We used
50 particles and included a rotation vector component in the vMFPF.
For each of 100 trials, we sampled a sequence of length 200 from the
SDS (A = I, σ2

r = 0.02, β = 1, K = 1) using the vMF sampling
scheme described in [25]. The auxiliary observation covariance in
the vMFF was set by inspection to Σyr = I. We evaluated the
tracking error using average geodesic distance on the sphere:

E =
1

T

T∑
t=1

cos−1
(
x>t µ̂t

)
. (35)

Results from these trials are show in Fig. 2. The KF ignores
the topology of the sphere, tracking a 3D location rather than a 2D
DOA vector. This leads to a decrease in tracking accuracy. The
vMFPF does take the topology of S2 into account, but requires many
samples to accurately represent the state. Fig. 3 shows how its per-
formance depends on the number Np of particles. For large Np,
it achieves a lower error than the vMFF. This is expected since the
vMFPF estimate is asymptotically optimal for the SDS asNp →∞,
while the deterministic approximations of the vMFF are limited in
accuracy. However, the vMFPF comes with a dramatic increase in
computation. In our MATLAB implementations, the average com-
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Fig. 2. Accuracy results of synthetic trials with data generated from
the spherical dynamical system.

putation times per iteration were 0.064, 6.485, and 0.305 ms for the
KF, vMFPF (Np = 50), and vMFF. To match the performance of the
vMFF, the vMFPF must run 60 times more slowly with Np ≈ 150.
We conclude that the vMFF performs well across all concentration
values and strikes a compromise between the efficiency of the KF
and the statistical grounding of the vMFPF.

6.2. Feature Extraction for Speaker Tracking

In order to apply the proposed tracking algorithms to the speaker-
tracking problem, we must generate observations on S2 from the
incoming audio streams. This is commonly done via the Generalized
Cross-Correlation (GCC) [26] function. In [27], the authors used the
GCC with an additional PHAse Transform (PHAT) to localize sound
sources on a hemisphere with an array of microphones spaced 15 cm
apart. However, for compact arrays, Interchannel Time Delay (ITD)
features [28, 29] are more effective.

In our speaker-tracking experiments, we extracted 3-dimensional
ITD features on a frame-by-frame basis from a 4-channel recording.
An N -point DFT was computed for each microphone. ITDs relative
to the first channel were then computed for each set of corresponding
DFT coefficients, resulting in N/2 features per frame. Formally, let
X

(i)
f,t be the f th DFT coefficient at frame t for the ith channel. The

f th feature vector at frame t is:

δf,t =
N

2πf

(
∠X(1)

f,t − ∠X
(2:4)
f,t

)
. (36)

The ITD vectors {δf,t} , f = 1, . . . , N/2 can be mapped to the
hemisphere of DOAs above the array using the well-known least-
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Fig. 3. Impact of the number of particles used in the vMFPF on
tracking error and computation time (κx = 200, κy = 30). The
horizontal axes are on a logarithmic scale.

squares method described in [30]. It cannot be applied directly since
the microphones in our array are coplanar. However, we can adapt
the approach by estimating the azimuth and zenith angles in se-
quence. Without loss of generality, assume that the microphones
are located in the x-y plane of a Cartesian coordinate system. Given
an ITD vector δ, we first solve for the azimuth θ via:

L =
(
m11

> −
[
m2 m3 m4

])>
, (37)

v = L−1 δ , (38)
θ = atan2 (v2, v1) , (39)

where mi ∈ R2×1 is the location of the ith microphone. We then
solve for the zenith φ by considering its effect on the x-y component
of the wavefront velocity. Thus, we have that:

φ = sin−1

(
δ∗

δ̄∗

)
, (40)

where δ∗ is any component of δ and δ̄∗ is the same component of the
ITD vector we expect to see for a source with azimuth θ and zenith
φ = π

2
. Converting to Cartesian coordinates gives the measurement:

y =
[
cos (θ) sin (φ) sin (θ) sin (φ) cos (φ)

]>
. (41)

In our experiments, we pooled the measurements from a block
of 3 frames to use as the observation set. For added robustness, we
associated with each observation a weight equal to the magnitude
of the corresponding DFT coefficient. To incorporate the weights
into Algorithm 2, we multiply them with the posterior probabilities
in (33). This ensures that only significant features are considered.

6.3. Speaker Tracking Experiments

We applied the FvMFF to the task of tracking multiple speakers in
a simulated reverberant environment. A 4-microphone array posi-
tioned in a 2 × 2-centimeter square was placed in the middle of a
room of size 5× 5× 5 meters with a T60 reverberation time of 100
milliseconds. 2- to 3-second sentences from the TSP corpus [31],
down-sampled to 16 kHz, were played as the speakers moved around

 

 

 True  vMFF 1  vMFF 2

Fig. 4. Example of 2-speaker tracking with the FvMFF on the DOA
hemisphere above a 4-channel microphone array. The hemisphere
has been flattened such that radial distance from the center of the
figure corresponds to zenith angle.

the array to create a reverberant 0-dB mixture. ITD features were ex-
tracted from this recording as described in Section 6.2 with a DFT
window size of N = 1024 and the FvMFF was run on the resulting
measurement sequence. Fig. 4 shows an example.

We found empirically that, although the outlier rejection method
described in Section 5 behaves well for data generated from a multi-
source SDS, a more aggressive approach is necessary for speech
data. Thus, we included a gating procedure after the data associa-
tion step in Algorithm 2 that, for each vMF, zeros-out the posteriors
for measurements too far from its mean. This helps the observation
set look more like what the FvMFF is expecting.

7. CONCLUSIONS

In this paper, we described the problem of tracking one or more
speakers with a compact microphone array. The speaker locations
are specified by their directions-of-arrival (DOA), which lie on the
surface of the unit sphere, S2. The Kalman filter is only directly
applicable for tracking the source DOAs if we ignore the unique
topology of the sphere. To avoid this, we introduced a spherical dy-
namical system (SDS) model that describes the evolution of a DOA
vector directly on S2 that included a rotation vector representation
of the source’s velocity along the surface of the sphere. We then ap-
plied a series of deterministic approximations to the corresponding
Bayesian filtering equations to derive a simple inference algorithm
for the SDS: the von Mises-Fisher Filter (vMFF). This was extended
to the multi-source case via sensor fusion and probabilistic data as-
sociation techniques in the Factorial vMFF (FvMFF).

Through synthetic trials, we showed that the vMFF, which main-
tains the mean and concentration of a von Mises-Fisher distribution
over time, is significantly more efficient than a particle filter applied
to the SDS. We also showed that the vMFF is generally more accu-
rate than both the particle filter and a 3D Kalman filter. Finally, we



demonstrated that the FvMFF can track multiple speakers in noisy,
reverberant conditions using DOA measurements extracted from in-
terchannel time delay (ITD) features.
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