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Abstract—Source localization and enhancement are often
treated separately in the array processing literature. One can ap-
ply Steered Response Power (SRP) localization to determine the
sources’ Directions-Of-Arrival (DOA) followed by beamforming
and Wiener post-filtering to isolate the sources from each other
and ambient interference. We show that when there is significant
overlap between directional sources of interest in the Time-
Frequency (TF) plane, traditional SRP localization breaks down.
This may occur, for example, when the array is located near a
reflector, significant early reflections are present, or the sources
are harmonized. We propose a joint solution to the localization
and enhancement problems via a probabilistic interpretation of
the SRP function. We formulate optimization procedures for (1)
a mixture of single-source SRP distributions (MoSRP) and (2) a
multi-source SRP distribution (MultSRP). Unlike in traditional
localization, the latter approach explicitly models source overlap
in the TF plane. Results shows that the MultSRP model is capable
of localizing sources with significant overlap in the TF domain
and that either of the proposed methods out-performs standard
SRP localization for multiple speakers.

Index Terms—steered response power, source localization,
beamforming, blind source separation

I. INTRODUCTION

The array processing literature contains methods [1], [2]
for enhancing directional signals in the presence of interferers
and noise. Beamforming [3] aims to optimize a spatial filter
that isolates a target signal’s energy. The simplest example is
the Delay-and-Sum (DS) beamformer, which is optimal for a
single source in diffuse, additive, white Gaussian noise. This
is a data-independent method since the true noise character-
istics don’t enter into the design of the filter. For general
Gaussian noise, the optimal solution is the Minimum-Variance
Distortionless Response (MVDR) beamformer. Finally, when
several targets and/or interferers are present simultaneously,
the Linearly-Constrained Minimum-Variance (LCMV) beam-
former [4] provides a means of implementing both distortion-
less and null constraints. The former protect the target signal
while the latter block undesired signals. This assumes that
each source’s Direction-Of-Arrival (DOA) is known. So, in
practice, beamforming is preceded by a localization step.

Beamforming is a linear processor and so has limited
source separation capabilities. Combining a beamformer with

Manuscript received ... ..., 2015.
J. Traa is a PhD student in the ECE department at the University of Illinois

at Urbana-Champaign (UIUC) (traa2@illinois.edu).
D. Wingate and N. Stein are researchers at Lyric Labs, Analog Devices

(David.Wingate@analog.com, Noah.Stein@analog.com).
P. Smaragdis holds a joint faculty position in ECE and CS at UIUC and

works with Adobe Systems, Inc. (paris@illinois.edu)

Wiener post-filtering [5] has been shown to provide adap-
tive noise reduction for non-stationary signals. However, the
source DOAs are still assumed to be known. Some blind
beamforming methods ignore the array structure and source
DOAs altogether. The Joint Approximate Diagonalization of
Eigen-matrices (JADE) algorithm was applied to recover the
mixing matrix that describes the channel between sources and
sensors [6].

There are many methods for localizing (and tracking) di-
rectional sources [7], [8], [9], [10], [11]. Steered Response
Power (SRP) localization [12] involves computing the output
power of a beamformer steered towards each DOA of interest
and locating one or more peaks in the resulting SRP function.
A similar approach computes a Generalized Cross-Correlation
(GCC) [13] function over time delays. Spectral weighting such
as the Phase Transform (PHAT) were explored in [13] for
enhancing the SPR and GCC functions. The authors in [12],
[14] used the GCC-PHAT approach to efficiently localize
speech sources on a hemisphere. A third method centers
around the eigenanalysis of the channel correlation matrix. The
Multiple Signal Classification (MUSIC) algorithm [15] iden-
tifies signal and noise subspaces to form a “pseudo-spectrum”
that contains peaks at the source DOAs. This requires a scan
over DOA space. The root-MUSIC algorithm [16] avoids this
by reducing the localization problem to one of root-finding.
A related method, ESPRIT [17], involves a similar analysis,
but takes advantage of arrays with a special structure. Several
authors have extended these eigen-analysis methods to handle
wideband sources [18].

Several authors have described the relationship between
the GCC and SRP functions and a probabilistic model of
the observed signals [12], [19], [20]. Similarly, SRP local-
ization has been described as a Maximum-Likelihood (ML)
problem [21], [22]. In [23], the authors model the observed
frequency-domain data vectors as zero-mean Gaussian random
variables and use an EM algorithm to learn the covariance
parameters of the sources and apply multichannel Wiener
filtering to perform source separation. The authors in [24]
formulate a DOA-dependent covariance matrix to localize a
single source in noisy conditions.

Time-frequency (TF) masking [25] is known to outperform
linear filtering (e.g. beamforming) methods for enhancing
wideband sources. This approach was originally motivated
by the disjointness of speech over the TF plane [26]. The
trade-off is the introduction of musical noise artifacts in the
enhanced/separated signals. Despite this, much work has been
done on source localization and separation using TF fea-
tures [27], [28]. In [29], the authors localize the sources with
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Fig. 1: Proposed iterative approach. A probabilistic SRP
model is combined with time-frequency masking to perform
blind source localization and separation in the presence of
non-directional interference. Observed data X collected with
microphones is used to optimize source DOAs ⇥ using
channel correlation information R, Wiener mask weights �,
and possibly source-specific TF weights w.

visual cues and separate them by applying data-independent
beamforming followed by TF masking. And in [30], a TF
masking approach is proposed for tracking acoustic sources
with a Rao-Blackwellized particle filter.

In this paper, we interpret the SRP function as a likelihood
and propose two methods for maximizing it as a function of the
source DOAs. One uses a mixture of single-source SRPs and
the other uses an SRP that explicitly models the presence of
multiple sources. We show that the latter is robust to situations
where the sources have a significant amount of overlap in the
TF plane. This occurs when, for example, early reflections are
present [31] (e.g. the array is located near a reflective surface)
or the sources are harmonized as when instrumentalists play
in unison. We apply TF masking [25], [27] to isolate TF
bins that correspond to the directional signals of interest. In
this way, the localization, separation, and Wiener post-filtering
steps are merged into one. The flow diagram for the proposed
approach is shown in Fig. 1. This work is motivated in part
by unified approaches that have been shown to out-perform
sequential approaches for automatic speech recognition [32].
Indeed, we show that the proposed method outperforms a
standard sequential localization approach.

The contributions of this paper are:
• A discussion of the probabilistic interpretation of the

Steered Response Power (SRP) function.
• An SRP model that explicitly considers the presence of

multiple simultaneous sources.
• A joint, iterative method for source localization and

enhancement/separation applied to a mixture of SRPs
model and the proposed multi-source model.

• Experiments demonstrating the benefits of the proposed
approach for source localization and separation.

II. DATA MODEL

Consider the convolutive time-domain model of a single
source recorded under noisy conditions at M channels:

xm [t] = am [t] ⇤ s [t] + nm [t] , (1)

where xm [t] is the recorded sample at the m

th channel,
am [t] is the Room Impulse Response (RIR) between the
source and m

th channel, nm [t] is a Gaussian noise process,
and ⇤ denotes convolution. We apply the Short-Time Fourier
Transform (STFT) to the mixed, noisy signal xm to de-couple
the signal components across frequency and time. Thus, at
time frame t 2 [1, T ] and frequency f 2 [1, F ], we have:

xft = af sft + nft , (2)

where xft 2 CM is an observed data vector, af 2 CM is
the mixing vector, sft 2 C is the source coefficient, and
nft 2 CM contains the noise coefficients. For simplicity, we
assume that nft ⇠ N

⇣

0,�

2
fI

⌘

and that the source and noise
coefficients are statistically independent.

For a point source in an anechoic environment, we write
af explicitly in terms of the source DOA as the unit steering
vector:

af (�) =

1p
M

exp

✓

j

2⇡lf

c

m

>�

◆

, (3)

where � 2 R3 is the source’s unit DOA vector, m 2 R3⇥M

is the matrix of M sensor positions, lf is the center frequency
of the f

th band, and c is the speed of sound.
When K > 1 sources are present, we can write:

xft = Af (�) sft + nft , (4)

where � = {�1:K} denotes the set of source DOAs, sft 2 CK

is a vector of source coefficients, and we have defined the
steering matrix:

Af (�) =

⇥

af (�1) · · · af (�K)

⇤

2 CM⇥K
. (5)

III. CLASSICAL ARRAY PROCESSING

In this section, we describe how the propagation models
in (2) and (4) are used for narrowband beamforming and lo-
calization. We can easily extend this to the broadband case by
assuming that all frequency bands are mutually independent.

A. Beamforming
Linear spatial filters are often used for enhancing directional

signals. They can be described by a weight vector wf 2 CM

that is used to estimate a source coefficient sft via bsft =

w

H
f xft. The optimal wf minimizes the expected output power

of the filter:

P = E

⇥

|bsft|2
⇤

= w

H
f Rf wf , (6)

without distorting the desired signal at DOA �:

b

wf = argmin

wf

w

H
f Rf wf , (7)

s.t. a

H
f (�)wf = 1 . (8)

where we have defined the channel correlation matrix:

Rf = E

⇥

xft x
H
ft

⇤

. (9)

The solution is the well-known MVDR beamformer:
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b

w

MVDR
f =

R

�1
f af (�)

a

H
f (�)R

�1
f af (�)

. (10)

If we assume (in the derivation) that Rf = I, this reduces
to the data-independent Delay-and-Sum (DS) beamformer:

b

w

DS
f = af (�) , (11)

with corresponding empirical output power:

PDS = a

H
f (�)

b

Rf af (�) , (12)

where:

b

Rf =

1

T

T
X

t=1

xft x
H
ft , (13)

is an empirical approximation of (9). The DS beamformer
can be pre-computed, while the MVDR beamformer provides
better noise suppression when Rf 6= I. They are generalized
to the multi-source case via the multiply-constrained optimiza-
tion problem:

b

wf = argmin

wf

w

H
f Rf wf , (14)

s.t. A

H
f (�)wf = u , (15)

where u 2 CK contains the desired gains for all DOAs. The
solution is sometimes refered to as the Linearly-Constrained
Minimum-Variance (LCMV) beamformer [4]:

b

w

LCMV
f = R

�1
f Af (�)

h

A

H
f (�)R

�1
f Af (�)

i�1
u . (16)

B. Steered Response Power (SRP) Localization
Beamformers can be used if the source DOA(s) � are

known. SRP localization [12] aims to identify � by searching
for peaks in the output power of a single-source beamformer at
hypothesized DOAs ✓. We can see this for the DS beamformer
and one source by writing (12) as:

PDS (✓) =

1

T

T
X

t=1

|aH
f (✓)xft|2 (17)

=

1

T

T
X

t=1

|aH
f (✓)af (�) |2 |sft|2 + C(f, T ) (18)

 1

T

T
X

t=1

|sft|2 + C(f, T ) , (19)

where C(f, T )

T!1����! �

2
f is due to the additive noise term and

equality holds when ✓ = �. The Phase Transform (PHAT) [13]
involves setting all the magnitudes of the components of xft

to 1 and helps to emphasize the peaks in PDS (✓).
When multiple sources are present, one might search for

multiple peaks in the SRP [12]. There are three issues with
this approach. First, this scan over DOA space may be
infeasible when computation power is limited or we desire
a high spatial resolution. Efficient strategies for searching
for peaks in the SRP function have been proposed to work

around this issue [33], [34]. Second, we expect the peaks
to be poorly localized at low frequencies and for closely-
spaced microphones because the steering vectors are hard to
distinguish under those conditions. And third, if the source
coefficients are simultaneously large in magnitude, the SRP
function is distorted by cross-terms.

A more effective approach scans over all DOA sets �

using an LCMV beamformer and locates the peak output
power. However, this leads to a combinatorial problem. If we
discretize the DOA search space into D look directions, we
must scan over D

K
�’s. We remedy this by modeling the

multi-source SRP function as a continuous likelihood function
parametrized by � and maximizing it with gradient ascent.

IV. PROBABILISTIC SRP MODEL

We present a probabilistic model [12] for the observed data
vectors xft and relate this to the SRP function described in
Section III-B. A more detailed account of this probabilistic
formulation can be found in Appendix A.

A. SRP Likelihood

The propagation model in (4) corresponds to a Gaussian
likelihood for the observed data vectors:

log Lft (⇥) = log N
�

xft ; µft , �
2
f I

�

. (20)

The mean µft encodes the expected value of xft:

µft = E [xft] = Af (⇥) E [sft|xft] , (21)

for a hypothesized DOA set ⇥. We approximate the expecta-
tion with a least-squares estimate:

b

sft =

⇥

A

H
f (⇥)Af (⇥)

⇤�1
A

H
f (⇥) xft , (22)

which we recognize as the output of a data-independent
LCMV beamformer (i.e. Rf / I). Thus, we have:

bµft = Af (⇥)

b

sft = Bf (⇥) xft , (23)

where:

Bf (⇥) = Af (⇥)

⇥

A

H
f (⇥)Af (⇥)

⇤�1
A

H
f (⇥) , (24)

is a projection matrix. Now we can write (20) as a zero-mean
Gaussian likelihood:

log Lft (⇥) / � 1

2�

2
f

x

H
ft Pf (⇥)xft , (25)

in terms of a precision matrix:

Pf (⇥) = I�Bf (⇥) . (26)

Aggregating over all t and expanding, we have:

log Lf (⇥) / � 1

2�

2
f

T
X

t=1

kxftk22 � x

H
ft Bf (⇥) xft , (27)

which, in the one-source case, simplifies to:
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log Lf (✓) / � 1

2�

2
f

T
X

t=1

kxftk22 � |aH
f (✓) xft|2 . (28)

This is equivalent to the SRP function defined in (17) as
far as identifying the true DOA is concerned. As in [12],
we can view beamforming-based localization as a maximum-
likelihood problem.

B. Effect of Cross-Talk

To show the effect of cross-talk on the SRP functions, we
generated a mixed data vector from two directional sources
of comparable magnitude. We then computed the single-
and multi-source likelihoods as well as a product of single-
source likelihoods on the unit semicircle as shown in Fig. 2.
Interference between the data vectors results in a spurious peak
in the single-source likelihoods about halfway between the
true DOAs. In contrast, the DOAs are correctly identified in
the two-source likelihood up to a labeling permutation.

We can also investigate the effect of cross-talk mathemati-
cally. Consider the case of K = 2 sources. We can write the
main term of the multi-source likelihood as:

pMultSRP (xft) = x

H
ftBxft

=

kAH
xftk22 � 2 Re

n

�

a

H
2 a1

� �

a

H
1 xft

�

⇣

x

H
fta2

⌘o

1� |aH
2 a1|2

. (29)

If we were to model the data with a sum of one-source
models, we would have:

pMoSRP (xft) =

2
X

k=1

x

H
ftaka

H
k xft = kAH

xftk22 . (30)

We can see that additional terms are present in the multi-
source model that can change the location of the peak in the
SRP function. This is observed to occur when the sources co-
activate in the time-frequency plane. As an example, consider
the case of two sources with equal loudness and opposite
angles on the unit circle, i.e. xft = A1 = a (✓)+a (�✓). The
multi-source model would exhibit a peak at the true DOA pair.
Meanwhile, the single-source model would exhibit a peak at
a DOA ✓0 6= ±✓ such that |aH

�

✓0�
xft|2 is maximized. A

similar case is shown in Fig. 2.

V. MAXIMUM-LIKELIHOOD LOCALIZATION

We seek a maximum-likelihood estimate of the source
DOAs. We will do this by gradient ascent on the SRP
likelihood (27):

⇥

i  ⇥

i�1
+ ⌘i ⌦

0

@

F
X

f=1

@ logLf (⇥)

@ ⇥

�

�

�

⇥

i�1

1

A

, (31)

where ⌦ (�) performs column-wise normalization and ⌘i =

⌘0 (Imax � i) /Imax is a decaying step size.
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Fig. 2: SRP likelihoods for a toy data mixture of two sources
with DOAs at 0.56 and 2.26 radians on the unit circle.
Squares and dashed lines indicate their maxima. (Top) Single-
source likelihood. (Middle) Product of single-source likeli-
hoods. (Bottom) Multi-source likelihood.

A. One-Source Model

In the one-source case, the gradient can be written as:

@ logLf (✓)

@ ✓
=

1

�

2
f

2⇡lf

c

m Im
⇥

a

⇤
f (✓)� (Rfaf (✓))

⇤

, (32)

where � denotes element-wise multiplication and ⇤ denotes
complex conjugation. When multiple sources are present, we
model the presence of the sources at each time t with hidden
variables zft that capture which source is active. We iterate
between estimating the zft’s and the DOAs in a Generalized
EM1 (GEM) algorithm [36] corresponding to the complete
data log likelihood:

1GEM is a variant of EM [35] that only requires the M step to increase
the lower bound rather than explicitly maximize it.
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Algorithm 1 Robust MoSRP Localization
Preprocessing

Compute STFT matrices X

(k) 2 CF⇥T

Apply PHAT weighting: ˜

X � X ./ |X|
Initialize DOAs: ✓(k)  � ✓(k)

0

Optimization
for i = 0 : Imax � 1 do

Compute steering matrices: Af =

1p
M
e

j
2⇡lf

c m

>
⇥

Compute projectors: Bf = Af

h

A

H
f Af

i�1
A

H
f

if Wiener mask then
Estimate TF weights: b�ft =

kBfxftk2
2

kxftk2
2

else
No weighting: b�ft = 1

end if
Compute posteriors: log w

(k)
ft /

|a(k)
f

H
x̃ft|2

2�2
f

Estimate correlation matrices:
b

R

(k)
f =

T
P

t=1
b�ft w

(k)
ft ˜

xft˜x
H
ft

Compute gradients: g

(k)
=

F
P

f=1
lf · · ·

m Im
h

a

(k)
f

⇤
�
⇣

b

R

(k)
f a

(k)
f

⌘i

Normalize gradients: g

(k)  � g

(k)
/ kg(k)k2

Compute step size: ⌘i = ⌘0 (Imax � i) /Imax

Update DOA vectors: ✓(k)  � ✓(k)
+ ⌘i g

(k)

Project DOAs to hemisphere: ✓(k)  � ✓(k)
/k✓(k)k2

end for

log p (X,Z |⇥) /
F
X

f=1

T
X

t=1

K
X

k=1

1

2�

2
f

[zft = k] |aH
f (✓k)xft|2 .

(33)

where [�] is the indicator function. The EM lower bound can
be written as:

Q /
F
X

f=1

K
X

k=1

1

2�

2
f

a

H
f (✓k)

b

R

(k)
f af (✓k) , (34)

where:

b

R

(k)
f =

T
P

t=1
w

(k)
ft xft x

H
ft

T
P

t=1
w

(k)
ft

, (35)

are source-specific correlation matrices defined in terms of the
posterior probabilities of the zft’s:

logw

(k)
ft = log p (zft = k |xft) /

�

�

a

H
f (✓k) xft

�

�

2

2�

2
f

. (36)

In the E step, we compute soft TF weights and correlation
matrices with (35)-(36), and in the M step, we optimize each

Algorithm 2 Robust MultSRP Localization
Preprocessing

Compute STFT matrices X

(k) 2 CF⇥T

Apply PHAT weighting: ˜

X � X ./ |X|

Estimate correlation matrices: bRf =

1
N

T
P

t=1
˜

xft˜x
H
ft

Initialize DOAs: ⇥ � ⇥0

Optimization
for i = 0 : Imax � 1 do

Compute steering matrices: Af =

1p
M
e

j
2⇡lf

c m

>
⇥

Compute projectors: Bf = Af

h

A

H
f Af

i�1
A

H
f

if Wiener mask then
Estimate TF weights: b�ft =

kBfxftk2
2

kxftk2
2

Estimate correlation matrices:
b

Rf =

T
P

t=1
b�ft˜xft˜x

H
ft

end if
Compute gradient: G =

F
P

f=1
lf · · ·

m Im


A

⇤
f �

✓

(I�Bf )

b

RfAf

h

A

H
f Af

i�1
◆�

Normalize source gradients: g

(k)  � g

(k)
/ kg(k)k2

Compute step size: ⌘i = ⌘0 (Imax � i) /Imax

Update DOA matrix: ⇥ � ⇥ + ⌘i G

Project DOAs to hemisphere: ✓(k)  � ✓(k)
/k✓(k)k2

end for

source’s DOA with (31)-(32). Thus, the EM procedure alter-
nates between estimating localization (DOA) and separation
(TF mask) parameters to fit a Mixture of SRP functions
(MoSRP). For simplicity, we assume that all the mixing
weights are equal and use a constant variance of �

2
f = 10

�2

when calculating posterior probabilities.

B. Multiple-Source Model
The gradient for multiple sources is (see Appendix B):

@ logLf (⇥)

@ ⇥

=

1

�

2
f

2⇡lf

c

· · ·

m Im
h

A

⇤
f �

⇣

PfRfAf

⇥

A

H
f Af

⇤�1
⌘i

, (37)

Gradient ascent with this model avoids the complexity of the
EM algorithm while explicitly accounting for cross-talk. An
efficient implementation for K = 2 sources is derived by
expanding (37) in terms of the source-specific steering vectors
(see Appendix C).

C. Robustness to Non-Directional Interference
When non-directional interference eft is present, we have:

xft = Af (�) sft + nft + eft = bft + cft , (38)

where bft = Af (�) sft and cft = nft + eft. The Wiener
mask [25] gives the MMSE-optimal weighting to recover bft:
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�

opt
ft =

kbftk22
kbftk22 + kcftk22

. (39)

Thus, a robust estimate of the correlation matrices is:

b

Rf =

T
P

t=1
�

opt
ft xft x

H
ft

T
P

t=1
�

opt
ft

. (40)

In practice, we approximate the weights using:

b

bft = Bf (⇥)xft , (41)

b

cft = xft � bbft , (42)

which gives:

b�ft =

kbbftk22
kbbftk22 + kbcftk22

=

kbbftk22
kxftk22

. (43)

Interleaving this step with DOA optimization improves
localization accuracy in the presence of ambient noise. For
a mixture of one-source models, we estimate the correlation
matrices as in (35) by multiplying the posteriors with the
Wiener filter weights. Since the gradients are accumulated
over all frequency bands, we weight the contributions from
each band by the sum of all the corresponding TF weights.
Due to the form of the gradient, this is equivalent to omitting
the denominator in (40).

The overall iterative scheme is shown in Fig. 1. Pseudocode
for the Mixture of SRPs (MoSRP) and Multi-source SRP
(MultSRP) localizers are given in Algorithms 1 and 2.

VI. SOURCE SEPARATION

Once the gradient ascent procedure has converged, any
number of methods can be used to enhance/separate the
directional signals, if necessary. For example, we can isolate
each source by estimating time-frequency (TF) masks and
applying them to X. The mask weights are calculated as:

logw

(k)
ft /

1

2⌫

2
| bs (k)

ft |2 , (44)

using estimates of the source coefficients provided by K data-
independent LCMV beamformers, each designed to isolate
a single source while blocking out the others. This can be
implemented as:

b

sft =

⇥

A

H
f Af

⇤�1
A

H
f xft . (45)

The variance ⌫ 2 (0,1) controls the hardness of the mask
such that as ⌫ ! 0, the mask becomes binary, assigning each
TF bin entirely to a single source. In our experiments, we used
⌫ = 0.1.

VII. EXPERIMENTS

A. Speaker Localization in Noisy Conditions
We ran speaker localization experiments in a room simulator

of size 5⇥5⇥5 meters with an 8-channel, 10⇥10 centimeter
square array placed in the center of the room. The microphones

Fig. 3: Localization errors for white Gaussian noise and an
ideal initialization. All gradient methods perform well with
the multi-source models performing slightly better.

were equally spaced around the perimeter of the square
(including the corners). Between 2 and 4 sources were placed
on the unit hemisphere above the array at random, ensuring
sufficient separation: 8 j 6= k cos

�1
⇣

�>
j �k

⌘

� 2⇡
K+2 . For

each speaker, we concatenated random sentences from the
TSP database [37] to form a 10-second-long source signal.
Reverberation with a T60 time of 260 milliseconds was simu-
lated with the image method [38]. Varying amounts of either
of two types of ambient noise were added instantaneously
to the reverberant mixtures: (1) white Gaussian noise and
(2) crowd noises from the BBC Sounds Effects Library. In
each simulation with crowd noise, one single-channel noise
signal was replicated across the channels and each replicate
was randomly circularly shifted in time to ensure spatial
incoherence. All STFTs were computed with window and hop
sizes of 1024 and 256 using a Hann window.

We compared three methods: mixture of one-source SRPs
(MoSRP), multi-source SRP (MultSRP), and traditional SRP
localization (“Sequential”). The first two were tested with and
without the Wiener filtering stage described in Section V-C. In
the figures, algorithms using Wiener filtering are labeled with
“(W)”. In addition, we ran the MultSRP method initialized
with (i.e. with a warm start from) either the MoSRP method
or the sequential method (MultSRP (ws1) and MultSRP (ws2),
respectively). The sequential method was implemented with a
grid of 709 DOAs uniformly spread over the hemisphere.

We found that the initialization method is important for
the SRP models. To evaluate this, we ran experiments both
with and without an ideal initialization. The ideal initialization
involves placing the initial DOA vector estimates at the true
source DOAs. Our practical initialization method is based on
fitting wrapped lines to Inter-channel Phase Difference (IPD)
features with the Random Sample Consensus (RANSAC)
algorithm [39]. A similar procedure was used in [23].

Localization errors averaged over 100 trials are shown in
Figs. 3-6. The error is averaged over the sources and captures
angular deviation from the true DOAs:

e = min

P

1

K

K
X

k=1

cos

�1
⇣

�>
k
b✓P(k)

⌘

(46)

where P is a permutation mapping. Minimizing over permu-
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Fig. 4: Localization errors for crowd noise and an ideal
initialization. All gradient methods perform well with the
multi-source models performing slightly better.

Fig. 5: Localization errors for white Gaussian noise and a
practical initialization. The MultSRP model performs best
when initialized with the MoSRP result.

tations deals with the source labeling ambiguity.
We see that with an ideal initialization and either noise type,

the MultSRP algorithms consistently out-perform the others.
This is probably due its robustness to noise once the correct
DOAs are identified. We can understand this by observing
that the projection matrices Bf behave like a series of LCMV
beamformers steered towards the sources (see Algorithm 2). In
contrast, the MoSRP method effectively steers delay-and-sum
beamformers towards the sources, making it more sensitive to
noise and cross-talk.

When the practical initialization is used, the results differ
significantly. For white Gaussian noise, the MultSRP algorithm
with Wiener filtering and a warm start from MoSRP gives the
best performance. Wiener filtering generally appears to help
both SRP methods, especially in the low-SNR regime. The
most accurate from among the SRP methods almost always
out-performs traditional SRP localization with the exception
being in the case of crowd noise. This, of course, is mostly
an issue of initialization in the SRP methods. Once initialized
with the result of the sequential method, MultSRP with a warm
start performs significantly better.

Run times averaged over 50 trials using the practical ini-
tialization are shown in Fig. 7. The MultSRP method is by
far the most efficient. This is mainly due to its simplicity
and the fact that computations account for all the sources at
once. The MoSRP method varies linearly with the number of

Fig. 6: Localization errors for crowd noise and a practical
initialization. The MultSRP model with a warm start performs
best in all cases.

Fig. 7: Average run times for noisy, 10-second speech mix-
tures. All experiments were conducted on an iMac with 16
GB of RAM and a 3.4 GHz processor.

sources because it computes source-specific gradients. We note
that these algorithms can be parallelized over sources (where
applicable) and frequencies. We also note that the efficient
form of the 2-source MultSRP gradient (see Appendix C)
reduces its computation time by about a factor of 1.5.

Figure 8 shows the source separation results corresponding
to the experiments of Figure 5. Separation performance was
measured via the Signal-to-Interference Ratio (SIR) metric
with the BSS Eval toolbox [40]. These results qualitatively
mirror the localization results. We would expect this to be
the case since we are better able to isolate the energy cor-
responding to each speaker with more accurate estimates of
their DOAs.

B. Early Reflections

Figure 9 shows the result of a synthetic experiment with
early reflections. An 8-channel, square array of side-length 20

centimeters was positioned 10 centimeters from the middle of
a wall in a 3-dimensional room of size 5⇥5⇥5 meters. The im-
age method [38] was applied to simulate reverberation for two
speakers using random sentences from the TSP database [37].
In order to capture the effect of the early reflections, we set
the number of estimated sources to K = 4 (twice the true
number). We can observe that the mixture of SRPs model
(MoSRP) fails to find the source images while the multi-source
SRP model (MultSRP) localizes them correctly. The MoSRP
and MultSRP models achieve localization errors of e = 0.71
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Fig. 8: Source separation results for 10-second speech mixtures
in white Gaussian noise. The MultSRP method (with a warm
start) increasingly performs better than the others for more
sources, especially for a low SNR.
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Fig. 9: Localization results with early reflections off of a wall.
In this figure, the 3-dimensional room is viewed from above.

and e = 0.18 averaged over 10 trials with a similar setup (the
source positions were perturbed relative to the positions shown
in Fig. 9). In this experiment, we used a simple initialization
strategy that places the initial DOA vectors near the top of the
hemisphere (i.e. the center of Fig. 9).

C. Other SRP objective functions
We applied the single- and multi-source optimization ap-

proaches described in Section V to the empirical output power
functions of the MVDR and data-independent and -dependent
LCMV beamformers. However, we found that this does not
perform nearly as well in practice as optimizing the proposed
SRP likelihoods. This may be due to sensitivity to the inversion
of Rf , which must be estimated from data, and to other
real-world factors such as reverberation and overlap in the
TF plane. In addition, the EM algorithm with a mixture of
MVDR objectives is quite slow since KF matrices bR(k)

f must
be calculated and inverted in every iteration.

VIII. CONCLUSIONS

We used a probabilistic interpretation of the Steered Re-
sponse Power (SRP) function to describe two algorithms for

the simultaneous source localization and separation problem.
The first was based on a mixture-of-SRPs (MoSRP) model
and lead to a GEM algorithm for optimizing the sources’
Directions-Of-Arrival (DOA). The second was based on a
multi-source SRP (MultSRP) function that was robust to
source overlap in the Time-Frequency (TF) domain and lead
to a simple gradient ascent scheme. Unlike in traditional
sequential methods, Wiener filtering was tied into the DOA
optimization procedure to make it robust to non-directional
interference. Experiments showed that the proposed unified
approach outperforms a sequential one. We also showed that
the MultSRP model can localize highly coherent sources with
significant overlap in the TF plane, unlike the MoSRP model.

APPENDIX A
DERIVATION OF SRP LIKELIHOOD

We derive a generalized form for the SRP likelihood of
Section IV-A. We assume a Gaussian distribution for each data
vector xft (dependence on f and t are omitted for clarity):

L = �1

2

log

�

�

2⇡⌃

�

�� 1

2

(x� µ)

H
⌃

�1
(x� µ) , (47)

To find estimates bµ and b⌃ specific to x, we consider the
following generative model:

s ⇠ N (µ
s

,⌃

s

) , x|s ⇠ N (As,⌃

n

) . (48)

The general form of the posterior distribution [41] is:

s|x ⇠ N
⇣

µ
s|x,⌃s|x

⌘

, (49)

µ
s|x = ⌃

s|x
�

A

H
⌃

�1
n

x + ⌃

�1
s

µ
s

�

, (50)

⌃

�1
s|x = A

H
⌃

�1
n

A + ⌃

�1
s

. (51)

Assuming a vague prior (i.e. ⌃

s

!1 I), we have:

bµ = E [x] = E [As + n] = Aµ
s|x = Bx , (52)

b

⌃ = E

h

(x� bµ) (x� bµ)

H
i

(53)

= E



⇣

As + n�Aµ
s|x

⌘⇣

As + n�Aµ
s|x

⌘H
�

(54)

= E



⇣

A

⇣

s� µ
s|x

⌘

+ n

⌘⇣

A

⇣

s� µ
s|x

⌘

+ n

⌘H
�

(55)

= A⌃

s|xA
H

+ ⌃

n

(56)
= (B + I)⌃

n

, (57)

where B = A

⇥

A

H
⌃

�1
n

A

⇤�1
A

H
⌃

�1
n

. We substitute bµ and
b

⌃ into (47), evaluate
�

� b

⌃

�

� with Sylvester’s determinant theorem
and b⌃

�1
with the Woodbury identity, and simplify using the

fact that B is idempotent (i.e. B

2
= B). Thus, we have:

L = �1

2

log

�

�

2⇡⌃

n

�

�� K

2

log 2� 1

2

x

H
P

H
⌃

�1
n

Px , (58)

where P = I�B. Finally, if ⌃

n

= �

2
I, we have:

L / � 1

2�

2
x

H
Px . (59)
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APPENDIX B
GRADIENT OF SRP LIKELIHOOD

We derive the gradient of the multiple-source SRP likeli-
hood with matrix calculus [42]. The DOA-dependent contri-
bution to the SRP likelihood (27) from a single observed vector
x is:

L / 1

2�

2
x

H
Bx , (60)

where B = A

⇥

A

H
A

⇤�1
A

H and:

Aiv =

1p
M

e

j
2⇡lf

c

P
u

mui⇥uv

. (61)

Applying the product rule, we identify three terms in the
gradient corresponding to the gradients of:

P(1)
= x

H
Ay , (62)

P(2)
= z

H
⇥

A

H
A

⇤�1
z , (63)

P(3)
= y

H
A

H
x , (64)

where y =

⇥

A

H
A

⇤�1
z and z = A

H
x are treated as

constants. Based on the result:

@ P(1)

@ ⇥uv
= j

2⇡lf

c

X

i

muix
⇤
iAivyv , (65)

we can write:

@ P(1)

@ ⇥

= j

2⇡lf

c

m diag (x

⇤
)A diag (y) , (66)

@ P(3)

@ ⇥

= �j 2⇡lf

c

m diag (x)A

⇤ diag (y

⇤
) . (67)

With some abuse of notation, the second gradient term is:

@ P
@ ⇥

(2)

= z

H

 

@

⇥

A

H
A

⇤�1

@ ⇥

!

z (68)

= �z

H
⇥

A

H
A

⇤�1
✓

@ A

H
A

@ ⇥

◆

⇥

A

H
A

⇤�1
z (69)

= �y

H

"

✓

@ A

@ ⇥

◆H

A + A

H

✓

@ A

@ ⇥

◆

#

y (70)

= �


@ y

H
A

H
q

@ ⇥

+

@ q

H
Ay

@ ⇥

�

(71)

= �j 2⇡lf

c

m

⇥

� diag (q)A

⇤ diag (y

⇤
) · · ·

+ diag (q

⇤
)A diag (y)

⇤

, (72)

where q = Ay is treated as a constant and we have applied the
results in (66)-(67) to (71). The temporary abuse of notation
is tolerable once we observe that the non-zero terms in the
tensor-valued gradient expressions form a matrix.

It follows that:

@ P
@ ⇥

=

3
X

i=1

@ P
@ ⇥

(i)

(73)

=

4⇡lf

c

m

�

� Im [diag (x

⇤
)A diag (y)] · · ·

+ Im [diag (q

⇤
)A diag (y)]

�

(74)

=

4⇡lf

c

m

�

�Im
⇥
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�
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⇤
y

>�⇤
+ Im

⇥
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�
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⇤
y

>�⇤� (75)

=

4⇡lf

c

m

⇣

�Im
h

A�
�

y x

H
�>i

+ Im
h

A�
�

y q

H
�>i⌘

.

(76)

Aggregating over time and consolidating terms, we have:

@ P
@ ⇥

=

4⇡lf

c

m Im
⇥

A

⇤ �
�

PC

H
�⇤

, (77)

where C =

⇥

A

H
A

⇤�1
A

H
R and P = I�B is the projection

matrix defined in (26). The final result for the gradient is:

@ L
@ ⇥

=

1
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2
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@ ⇥

=

1

�

2

2⇡lf

c

m Im
⇥

A

⇤ �
�

PC

H
�⇤

. (78)

APPENDIX C
EFFICIENT COMPUTATION OF GRADIENT AND LIKELIHOOD

FOR 2 SOURCES

The gradient derived in Appendix B can be implemented
more efficiently in the case of K = 2 sources. We start by
explicitly evaluating the matrix inverse:

⇥

A

H
A

⇤�1
=

1

d



1 �a

H
1 a2

�a

H
2 a1 1

�

, (79)

where d = 1� |aH
1 a2|2. Substituting this into (78), expanding,

and re-arranging, we have:

@ L
@ ⇥

=

1

�

2

2⇡lf

c d

m Im
⇥

z11 � v21 z12 � y , z22 � v12 z21 + y

⇤

,

(80)

where:

y =

r12v
2
21 � (r11 + r22) v21 + r21

d

a

⇤
1 � a2 , (81)

qi = Rai , (82)
zij = a

⇤
i � qj , (83)

vij = a

H
i aj , (84)

rij = a

H
i Raj = a

H
i qj . (85)

The likelihood can be computed efficiently as:

L = � 1

2�

2

✓

�kXk2F +

r11 + r22 � 2 Re [v21r12]

d

◆

. (86)
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