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ABSTRACT

We propose an unsupervised method for simultaneously localizing
and separating speech signals by factorizing a non-negative matrix
of Steered Response Power (SRP) measurements. We use a prob-
abilistic interpretation of the SRP function to compute a wideband
SRP matrix. Non-negative Matrix Factorization (NMF) is used to
decompose it into three terms that describe (1) the source distribu-
tions over spatial directions, (2) the overall source activations, and
(3) the source activations over the time-frequency (TF) plane. The
first term indicates the sources’ Directions-of-Arrival (DOA) and
the latter two terms provide TF weights for separating the sources.
Experiments show that this joint approach out-performs a sequential
SRP localization + beamforming method.

Index Terms— steered response power, source localization,
beamforming, nonnegative matrix factorization

1. INTRODUCTION

This paper focuses on the localization and separation of speakers
recorded with a compact microphone array. Beamforming [1] is of-
ten applied to enhance directional signals in the presence of interfer-
ers and noise. This involves minimizing the output power of a lin-
ear filter subject to distortionless and/or null constraints that protect
the target signal and block undesired signals. Well-known exam-
ples are the Minimum-Variance Distortionless Response (MVDR)
and Linearly-Constrained Minimum-Variance (LCMV) beamform-
ers [2]. These both assume that estimates of the sources’ Directions-
Of-Arrival (DOA) are available.

Steered Response Power (SRP) localization attempts to identify
the DOAs by computing the output power of a beamformer over all
DOAs and locating peaks in the resulting SRP function. A related
method searches for peaks in the Generalized Cross-Correlation
(GCC) function [3]. The authors in [4] used this approach to lo-
calize speech sources with a microphone array.

The authors in [4] described the relationship between the GCC
and SRP functions and how they relate to a probabilistic model for
the observed signal. The authors in [5] and [6] describe the relation-
ship between SRP-based localization using an MVDR beamformer
and a maximum-likelihood formulation. In [7], the authors model
the source DFT coefficients as zero-mean Gaussian random vari-
ables. They use an EM algorithm to learn the sources’ covariance
parameters and apply multichannel Wiener filtering to separate the
sources. A supervised Bayesian approach was proposed in [8] to
jointly solve the localization and separation problems.

Nonnegative Matrix Factorization [9] is a popular algorithm for
decomposing a spectrogram into a set of spectral templates and their
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activations in time. This approach was applied in [10] to transcribe
polyphonic piano music. In [11], the authors used NMF to de-
compose a matrix of GCC functions in order to estimate non-linear
phase difference patterns in a speech mixture.

This paper combines techniques from beamforming, SRP local-
ization, and NMF to simultaneously localize and separate multiple
speakers in an unsupervised setting. We call this approach Direc-
tional NMF (D-NMF). We compute a non-negative, wideband SRP
matrix from the observed data and factorize it into three terms that
describe the spatial locations of the sources and their activations
across the Time-Frequency (TF) plane. The latter information is
used to form soft TF masks and separate the sources. TF mask-
ing [12] is motivated by the disjointness of speech in the TF do-
main [13]. We show that the proposed method outperforms a tradi-
tional sequential approach.

2. ARRAY PROCESSING

We now establish the necessary theoretical background for the pro-
posed method.

2.1. Data model

Consider a noisy, convolutive model of an audio signal recorded at
M microphones:

T [t] = am [t * s [t] + o [t] (1

where &, [t] is the recorded sample at the m™ channel, a,,, [t] is the
room impulse response (RIR) from the source to the m™ channel,
nm [t] is a Gaussian noise process, and * denotes convolution. We
apply the Short-Time Fourier Transform (STFT) to de-couple the
signal components across frequency. At frequency f € [1, F] and
time frame ¢ € [1, T, we have:

Xfr=ay Sfrtnge , Ny NN(O,O’?I) R 2)

where x ¢, € CM is an observed data vector, a; € C™ is a mixing
vector, sy; € C is the source coefficient, and ny; € CM con-
tains the noise coefficients. The source and noise coefficients are
assumed to be statistically independent.

If the signal propagates from a point source in the far field of the
array in an anechoic environment, we can express the mixing vector
ay in terms of the source’s Direction-Of-Arrival (DOA) vector ¢ €
R?,||@||2 = 1. We define the unit steering vector:

ar (4) = o (20 m 76 ) )
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where m € R®*** denotes the matrix of M microphone posi-
tions, w is the speed of sound, and [f is the center frequency of
the f" band. The far field assumption implies that the largest inter-
microphone spacing is small relative to the distances between the
array and the sources.

When multiple (K) signals are active simultaneously, we can
still apply the one-source model given that the signals are approx-
imately pair-wise disjoint in the TF plane [13]. Formally, the dis-
jointness condition:

ViR AR (s 1S~ 0 )
for source indices k, k' € [1, K] says that at most one source has
appreciable energy in any TF bin. Although reverberation and other
real-world factors reduce the validity of this assumption, it has nev-
ertheless served as the foundation for many effective separation al-
gorithms such as DUET [14]. In the rest of this paper, we will
assume that (4) holds for speech signals.

2.2. Beamforming

Linear, frequency-domain filtering algorithms are often used for en-
hancing/separating directional signals [15]. Consider a linear filter
described by a weight vector wy € CM that aims to reconstruct a
source coefficient s ¢ via Spr = w}{ X r¢. We can define the optimal
w as that which minimizes the expected output power:

P=E[[5ul’] =w{ Rywy , §)
of the filter without affecting the signal at DOA ¢:
Wy = argmin WfHRf wys o, (6)
wf
st. af (p)wy =1, )

for a channel correlation matrix Ry = E [xs x7;]. The solution
is the MVDR beamformer:

SMVDR _ Rilaf (¢)
! al (¢) R} ay (¢)

If Ry = I, this reduces to the data-independent Delay-and-
Sum (DS) beamformer:

®

w7 =as () . ©)

While the MVDR beamformer provides better noise suppres-
sion when Ry oc I, the DS beamformer is more efficient and
avoids matrix inversions. These can be generalized for multiple
targets and/or interferers via a multiply-constrained optimiza-
tion problem, the solution to which is the Linearly-Constrained
Minimum-Variance (LCMV) beamformer.

2.3. Steered Response Power (SRP) localization

The beamformers described in the previous section can estimate the
source coefficients if the true source DOA(s) ® are known. A sim-
ple way to estimate a source’s DOA is to look for peaks in the output
power of the DS or MVDR beamformers. This approach is referred
to as Steered Response Power (SRP) localization [16].

Consider the DS output power for a single data vector and look
direction @ in the presence of one source with DOA ¢. We use (2)
to write:
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1 <& 1 <&
P(0) = Zla?(G)XﬂIQST lspe* +C,  (10)
t=1 t=1

el

where €' L2 afc is due to the additive noise term and equality
is achieved only if @ = ¢. This suggests that we can identify ¢ by
scanning over all feasible 6’s and choosing the one with the largest
value of P (0@). The Phase Transform (PHAT) [3] is often used
to enhance the SRP function by setting all the magnitudes of the
components of xy; to 1. This isolates the data’s phase information
that is crucial to differentiating DOAs.

2.4. Probabilistic SRP Model

The single-source propagation model described in (2) corresponds
to a Gaussian likelihood for a data vector:

L5 (0) =N (xs¢; gy, o71) (11)
The mean p 4, encodes the expected value of xf¢:
ppe =Elxp] =as (0)Elss] (12)

for a hypothesized DOA 6. Since the source coefficients are un-
available (we are trying to recover them), we replace the expecta-
tion in (12) with the least-squares estimate of sy; computed from
the equation x ¢, = ay (0) sy to write:

iy, =ay(0)3; =as(0)a) (0) xs . (13)
Substituting (13) into (11) and expanding, we can write:
1 2 H 2
log 51 (6) x ~53 (Ileslld = [af (6) xsul?) - (14)

This is equivalent to the SRP function defined in (10) in terms
of identifying the true DOA. As in [4], we have seen that the local-
ization task can be cast as a maximum-likelihood (ML) problem.

3. DIRECTIONAL NMF

In this section, we describe how the SRP matrix is calculated and
how NMF can be used to factorize it.

3.1. SRP Matrix

We evaluate the likelihood L (@) for each data vector x¢; (after
PHAT weighting [3]) over a set of D DOAs of interest. In this
paper, we sample DOAs over the unit hemisphere. This results in
FT SRP vectors Ly; € R”. Concatenating these vectors, we form
the D x F'T SRP matrix L.

3.2. Matrix Factorization

We use NMF [9] to decompose the SRP matrix L € RPXFT jnto
the product of three terms: WP with source DOA activations
in the columns, G € R *¥ with source weights on the diagonal,
and H**F7T with source TF activations in the rows. Formally, the
NMEF problem is stated as:

{W, G, H} = argmin KL (L|W G H) (15)
W,G,H
st. W>0, G>0, H>0 , (16)
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Figure 1: SRP distributions (from W.;) for K = 2 two sources
located on the DOA hemisphere. The hemisphere is flattened such
that (azimuth, zenith) points map to (argument, modulus) points.
Larger/darker circles denote areas of higher probability mass. The
grid has D = 147 points.

where K L(—||—) is the Kullback-Liebler divergence. We apply
multiplicative updates like those proposed in [9] to iteratively solve
for the factors:

W Wo ((L@E) HTGT) @ (JHTGT) Can
G« GO (WT (L 2 E) HT) %) (WTJHT) TS
H«HO (GTWT (L o i)) o (GTWTJ) . (19)

where ® and @ denote element-wise multiplication and division, J
is a D x FT matrix of ones, and L = WGH is a reconstruction
of the SRP matrix. To avoid scale ambiguities, we normalize the
columns of W and the rows of H:

G « diag (WH) Gdiag(H1) , (20)
—1

W « W diag (WTl) 7 @1

H« diag(H1) 'H , (22)

where 1 is a K x 1 ones vector.

We can interpret the columns of W' as distributions over DOA
space p (0y) ,k = 1,..., K, and the rows of H as time-frequency
distributions p (f,¢). We can easily induce sparsity on G to au-
tomatically estimate the number of sources (this is left for future
work). Figure 1 shows two SRP distributions found by NMF for a
mixture of two speakers.

3.3. Dictionary Constraints

We can also interpret W as representing activation weights over
a set of SRP function templates. We introduce a dictionary ma-
trix D € RP*® whose columns represent the ideal SRP functions
in (14) over DOAs for each steering angle. The NMF problem be-
comes L ~ DWGH with multiplicative updates very similar to
those in (17)-(19). This formulation constrains the (effective) SRP
basis vectors in DW to be consistent with our data model.

3.4. SRP Matching Across Frequency

In [16], a wideband beamformer is described that has a constant
beam width at all frequencies. Similarly, we would like all the SRP
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Figure 2: SRP functions at various frequencies evaluated over the
DOA grid in Figure 1 for ¢ = [010]" and a 4 x 4 centimeter
square, 8-channel array. (Top) No matching (\y,., ; = D). (Bottom)
Matched SRPs with fr.y = 150 and Ay, , = 10.

functions to be matched. As the frequency f increases, the DS beam
pattern gets increasingly sharp, resulting in a non-uniformity of the
SRP vectors corresponding to a single source. This degrades the
factorization considerably. We can choose the variances JJ% (and
normalization constants) wisely to counter-act this. For simplicity,
we will optimize the precision A\ = 1/ GJ%.

We minimize the squared error between the SRP function at a
frequency f and the SRP function at a reference frequency fref,
averaged over all source DOAs ¢ and directions 6:

:\} = argmin e (Ay) , (23)
A

e(Ay) = / / (L (0.6) — Ly, (0.4)]° d0dg .  (24)

We use SRP values corresponding to a noiseless data model
with |s7|? = 1 so that we can write':

log L (0, ¢) = logcy — % (1 —|af (8)ay (¢) |2) . (25

The optimization can be solved off-line with coordinate descent
using a Newton step for Ay and a least-squares solution for cy. We
initialize at (Af,cy) = (0,1) and use a discretized set of direc-
tions. Given these initial conditions, the problem is locally convex.
The reference precision Ay, , , is used to adjust the sharpness of the
matched SRPs. Without loss of generality, we set cf, ., = 1. SRP
functions with and without matching are shown in Figure 2. This
shows that the matching is especially important at lower frequencies
where important speech information is present.

We set the reference frequency as high as possible while avoid-

IThis corresponds to PHAT weighting on the data vectors: x <—
ﬁx @ |x|. The same weighting is used to compute the SRP matrix L.
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ing aliasing effects, i.e. frey = |y F], where v = u/(dmaz - fs)
is the maximum number of wavelengths that fit between any pair
of microphones at the sampling frequency fs, u is the speed of
sound, and d,q. iS the maximum inter-sensor distance. We use
the reference precision Ay, , to adjust the sharpness of the peaks.
Sharper SRP functions lead to sparsity in the spatial activations (i.e.
‘W), which typically induces sparsity in the TF activations (i.e. H).
As NMF is a local optimization procedure, excessively sparse SRP
functions may cause convergence issues. However, SRPs that are
not sparse enough result in less precise localization and, therefore,
spatial isolation of the sources. In practice, we tune Ay, , . to achieve
a desired balance between precision and algorithmic robustness.

4. SOURCE LOCALIZATION AND SEPARATION

Once the NMF procedure has converged, we can use the learned
factors to localize and separate the sources. Maximum-likelihood
DOA vectors are estimated from W as:

A(k)
Z Wara : 26)
and soft TF masks are derived from G and H as:
w}’j) < GrrHery, 27N

where Iy, is an indexing function that returns the column index in
H corresponding to the (f, t)‘h data point. We approximate each
source’s STFT matrix as:

S® — wh o X | (28)

and use the overlap-add algorithm to reconstruct the corresponding
time-domain source signals.

5. EXPERIMENTS

We ran experiments with a 4 x 4 centimeter square, 8-channel ar-
ray located in the middle of a 5 X 5 X 5 meter room simulator.
We chose K = 4 source DOAs ¢, uniformly at random on a
hemisphere of radius 1 meter above the array subject to a mini-
mum angular separation, i.e. Vi # j d);rd)j > cos (27 /(K + 2)).
STFTs were computed with window and hop sizes of 1024 and 256.
We used 3-second-long speech sentences from the TSP corpus [17]
(down-sampled to 16 kHz) for the source signals. We corrupted the
recorded audio with white Gaussian noise for an input SNR of 5.4
dB and simulated reverberation with a Teo time of 270 milliseconds
using the image method [18].

We compared four methods: (1) D-NMF with a dictionary, (2)
D-NMF without a dictionary, (3) D-NMF with a dictionary initial-
ized with method (2), and (4) standard SRP localization. All SRPs
were calculated along the grid shown in Figure 1. To form a TF
mask for the last method, we applied X LCMV beamformers to
isolate each source and normalized the resulting output energies in
each TF bin. We ran all NMF algorithms for 50 iterations and eval-
uated the average angular localization error as:

e= mm — ZCO -1 (d)k P(k)) , (29)

where P : {1, K} — {1, K} is a permutation mapping. We evalu-
ated the Signal-to-Interference Ratio (SIR) of the separated signals
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Figure 3: Localization error and source separation results for var-
ious algorithms and reference variances (fref = 192). The pro-
posed method(s) outperform standard SRP localization in all cases
where SRP matching is used.

with the BSSEval toolbox [19], averaged over 100 trials. Other BS-
SEval metrics qualitatively mirrored the SIR results.

Figure 3 shows localization and separation results. Without
SRP matching, D-NMF does quite poorly. After matching, all vari-
ants of D-NMF out-perform standard SRP localization and beam-
forming by a significant margin. Furthermore, we find that a “warm
start” is necessary for D-NMF to take advantage of the SRP dictio-
nary. This is due to the presence of more local optima and a slower
convergence rate when D-NMF is constrained by the dictionary. We
also note that there appears to be an optimal value for the refer-
ence variance chre ;=1 /Af,.;- For our experimental set-up, we

roughly have that 0.05 < EJ% ;<01 with a reference frequency
index of frey = 192. The best results are given by dictionary-
constrained D-NMF initialized with unconstrained D-NMFE.

6. CONCLUSIONS

‘We have presented an unsupervised method for simultaneously lo-
calizing and separating multiple sources that involves factorizing
a non-negative matrix of Steered Response Power (SRP) measure-
ments. We showed that a naive approach is sub-optimal in that the
SRP functions for a fixed source direction vary across frequencies.
A convex optimization procedure that matched the SRP functions
across frequencies was used to remedy this, leading to significantly
better separation and localization. We showed that the proposed ap-
proach out-performs a sequential SRP localization method. We note
that our approach could be extended in various ways to the on-line
setting via on-line dictionary learning techniques [20, 21].
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