
ABSTRACT

In this paper we present an extension to recent approaches to Blind
Source Separation. Bell and Sejnowski (1996) proposed a robust
algorithm for separating instantaneous mixtures. Extensions were
proposed by Torkkola (1996) and Lee et al. (1997) for separating
convolved mixtures but the computational overhead and the con-
vergence behavior of these algorithms were not ideal. A frequency
domain extension is presented which improves the stability and the
performance of these algorithms.

1. Introduction

Blind Source Separation is the problem of recovering independent
sources given only mixes of these. This is a problem that occurs in a
variety of disciplines ranging from telecommunications applica-
tions to artificial intelligence. Given the high profile of this problem
it has received a generous amount of attention. Most implementa-
tions so far have been slow, demanding (in terms of accuracy) or
not always successful, but thanks to recent advances in neural net-
work research robust and efficient algorithms are starting to appear.

1.1. Instantaneous Mixture Separation

Bell and Sejnowski (1996) were the first to propose a robust algo-
rithm for separating instantaneous mixtures which was later refined
by Amari et al. (1996). Given N independent sources in the form of

a vector ,  where t  denotes time, we

assume a mixing process defined as (see also Figure 1a):

(1)

where  is an unknown matrix referred to as the mixing
matrix. The vector x will be a linear mix of the original sources s.
This process is an idealized approximation of recording N sound
sources in an anechoic room with N microphones1. The goal is to 

Figure 1: A 2 by 2 instantaneous mixing/unmixing process

recover the s vectors, given only the x vectors. The way to do this is
to invert the mixing process by implementing an unmixing equation
which is (Figure 1b):

(2)

and find a  so that .

Finding this matrix W is a challenging task since we are not pro-
vided with any information about the A  matrix nor the s vectors
(hence the term blind separation). Theoretically the inverse of the
mixing matrix can be estimated but with the columns permuted and
scaled arbitrarily. This is not a problem for audio applications since
the outputs can be scaled by post-processing and the output indexes
are not of any major significance.

The approach suggested by Bell and Sejnowski (1996) is to imple-
ment the unmixing equation (2), and optimize with respect to the
unmixing matrix, so as to minimize the statistical independence
between the outputs . It was shown that for

Gaussian inputs this can happen by passing the outputs of the sys-
tem through a sigmoid and maximizing the expected value of

, where J is the Jacobian of this transformation. Derivation
yields the following update rule for the unmixing matrix:

(3)

where . Alternative ways to derive similar learn-
ing rules are to use the Kullback-Leibler distance between the out-
puts (Amari (1996)) or maximum likelihood estimation (McKay
(1996)).

1. In this case we make the assumptions that sound transfers through 
media instantaneously and that all microphones are identical.
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This update rule has also been refined by Amari (1996) who pro-
posed a modification that performs natural gradient descent1. This
algorithm exhibits very good performance since it is able to invert
mixing matrices with a condition number in excess of 4000 (which
corresponds to an amplitude difference in the inputs of roughly 72
dB). It has also been successfully used to separate up to 10 mixed
sounds.

1.2. Convolved Mixture Separation

The assumptions that were set in order to solve the instantaneous
mixture problem are not realistic at all. In real recordings sounds
are delayed before they reach the microphones, they are convolved
with room responses, and they are altered by the microphone char-
acteristics. The model developed above is not adequate to separate
sounds mixed this way.

Robust solutions to this problem were introduced by Torkkola
(1996), who assumed the mixing process to be:

(4)

where N is the number of the sources si and aij are the K length mix-
ing filters (which describe the delays and the microphone and room
responses).

This problem is invertible by the equation:

(5)

where hij are the unmixing filters we need to estimate and M > K is

their length2. The derivation used here is the similar to Bell and
Sejnowski (1996) (see Torkkola (1996)), and provides the follow-
ing update rules for the 2 by 2 case:

(6)

(7)

(8)

(9)

(10)

where   and

.

Figure 2: A 2 by 2 convolved mixing/unmixing process.

Unfortunately this algorithm exhibits very strong local minima
which interfere with the adaptation. Due to the cost function there is
optimization credit for decorrelating contiguous time samples from
the same output as well as samples from different outputs. Since the
length of the separating filters is most likely larger than the number
of sources, the algorithm is quickly stuck at a position where the
outputs are whitened and hardly separated.

Due to this property of this approach Torkkola (1996) proposed
another unmixing procedure, defined as:

(11)

which is shown for the 2 by 2 case in the following figure:

Figure 3: An alternate unmixing procedure

Optimizing with respect to the unmixing filters we get the following
update rules for the 2 by 2 case:

(12)

(13)

1. This problem has a Riemannian structure and Bell proposed a 
Euclidean update rule. By ‘warping’ the rule to the cost surface it is 
possible to get better performance.

2. This is actually an approximation of the solution since we are using FIR 
filters to invert FIR filtering. The solution can be also derived using IIR 
unmixing filters but the performance will not differ much for real world 
mixing and the instability of IIR filters is better avoided.
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(14)

This algorithm doesn’t have as strong local minima and is reported
to perform better. It is also possible to use IIR filters for unmixing
for both of the above algorithms.

However there is still a problem of efficiency, since for N sources
we require N convolutions. Given that the deconvolving filters need
to have a considerable length for real world problems we are posed
with a very expensive algorithm.

2. Frequency Domain Extension

The algorithms that were introduced in the previous section exhibit
problems which are inherent in the time domain, mainly the statisti-
cal dependence between the unmixing filter taps (which hinders
convergence) and the heavy computation which is required for the
unmixing convolutions. In this section we present a frequency
domain formulation of these algorithms which bypasses these prob-
lems.

2.1. The Algorithm

We can use the Short Time Fourier Transform (STFT) to decom-

pose a time series x to , where  is the t th spectrum that the

STFT gives and  its f th frequency bin.

Looking again at equation (4) we can rewrite it in terms of the
STFT as:

(15)

where  is the Fourier transform of hij,  the Fourier transform

of si and  the Fourier transform of xi.

By closer inspection of equation (15) we notice a resemblance to
equation (1). In fact every frequency bin of the resulting mixtures
xi, is an instantaneous mix of the corresponding bins of the original
sources sj. This refers us back to the original problem with the
added complexity that the input sequences and the mixing matrix
are now complex valued. In order to invert the mixing in the fre-
quency domain we need to apply the instantaneous unmixing algo-
rithm on every frequency bin track we get from the STFT. The
implementation of an unmixing system is depicted in figure 4.

The boxes labeled with W are implementations of the instantaneous
unmixing algorithm presented in section 1.1. The only difference is
that the learning rule is derived for the complex number domain.
The only two adjustments to be made are:

• The  used in the real number domain case 

has to be changed to 
, since in the 

Figure 4: The frequency domain separation algorithm 

complex domain tanh( ⋅) is unbounded thus inhibiting the 
gradient descent (see Smaragdis (1997) for a more detailed 
explanation).

• The matrix transpositions in the learning rule have to be 
substituted with Hermitian transpositions.

Applying these two rules on a modified version of Amari’s natural
gradient rule we derive the following update equation:

(16)

where f is the frequency bin index and .

The frequency domain algorithm has a computational complexity of
, where M  is the length of the unmixing filters,

whereas the time domain approaches are . Given that FIR
filters are used to invert FIR filters, a considerable filter length is
usually required. The time domain algorithms are unable to provide
an efficient algorithm which prohibits their use in a real-time situa-
tion.

In addition to dramatic performance improvements this approach
eliminates the problems of local minima. With the time domain
approaches, an update of a filter tap would influence the taps fol-
lowing it. In this case the filter parameters are lying on an orthogo-
nal space and updates of one parameter have no influence over the
rest. Also due to this decomposition to smaller independent prob-
lems the length of the deconvolving filters does not complicate con-
vergence, since it only raises the number of smaller problems but
not necessarily their complexity.

2.2. Implementations

This algorithm can run in two forms, on-line or off-line. The off-
line version computes the unmixing matrix of every frequency bin
for the entire input and then proceeds to the next bin. In order to
assure that we have the same permutation at every bin we use the
weights of the previous frequency bin as the initial state of the
unmixing matrix of the current bin. The data is zero padded before
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the frequency transformation, so that spectra are interpolated and
we ensure that the unmixing matrices of adjacent bins are numeri-
cally close. In order to assure proper scaling, the unmixing matrix is
scaled to have a determinant of 1. This ensures volume conserva-
tion for every frequency bin and avoids random boosts or cuts in
different frequency bands.

The main limitation of the off-line version is that it can only deal
with static mixtures. Consequently, it is impossible to separate
moving sources or time varying room responses.

The on-line version was implemented to deal with this problem. In
this implementation the unmixing matrices are updated every time a
new spectrum is computed. With this approach we have no way of
controlling the permutation of the unmixing matrices. In general
using low learning rates in adaptation results in uniform permuta-
tion and the algorithm relies on this. The measures used for scaling
in the off-line case are used here too.

The on-line version is efficient enough to run in real time on com-
mon high-end computers at high sampling rates for the 2 by 2 case.
Unlike the off-line version it is capable of separating non-static
mixes and requires an adaptation time of 10 to 100 spectra depend-
ing on the amount of the mixing changes.

2.3. Results

Preliminary results were collected by both the off-line and the on-
line algorithms. Two sources were synthetically mixed with various
filters. The off-line algorithm had an overall good performance.
Separation using sparse filters of small length yielded almost per-
fect results. In addition to this the algorithm was robust enough to
attenuate interference of other sources by up to 6dB for sources
mixed with 100 tap filters of Gaussian noise. Problems were intro-
duced when the mixing filters were non-minimum phase in which
case non-causal unmixing filters were required. Due to the causality
of the design of the algorithm, separation was impossible.

The on-line algorithm, due to the permutation inconsistencies
among frequency bins, has not been as successful, it was however
tested with mixing filters of 20 taps of sparse filters, in which case
the interfering sources were forced to be inaudible.

3. Conclusions

An extension to robust algorithms for blind source separation was
formulated in the frequency domain. By this domain shift, certain
convergence problems inherent in the time domain have been elim-
inated and efficiency was improved dramatically.

This algorithm can also support on-line learning, for cases of
dynamic mixtures and real-time implementations, but certain algo-
rithm characteristics can hinder performance. In the off-line form
this algorithm has proved to be more satisfactory.

Future work will include ways to make the on-line version more
robust and modifications to deal with non-minimum phase mixing
filters.
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