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ABSTRACT

Monaural source separation is important for many real
world applications. It is challenging since only single chan-
nel information is available. In this paper, we explore us-
ing deep recurrent neural networks for singing voice sep-
aration from monaural recordings in a supervised setting.
Deep recurrent neural networks with different temporal con-
nections are explored. We propose jointly optimizing the
networks for multiple source signals by including the sepa-
ration step as a nonlinear operation in the last layer. Differ-
ent discriminative training objectives are further explored
to enhance the source to interference ratio. Our proposed
system achieves the state-of-the-art performance, 2.30~2.48
dB GNSDR gain and 4.32~5.42 dB GSIR gain compared
to previous models, on the MIR-1K dataset.

1. INTRODUCTION

Monaural source separation is important for several real-
world applications. For example, the accuracy of auto-
matic speech recognition (ASR) can be improved by sep-
arating noise from speech signals [10]. The accuracy of
chord recognition and pitch estimation can be improved by
separating singing voice from music [7]. However, current
state-of-the-art results are still far behind human capabil-
ity. The problem of monaural source separation is even
more challenging since only single channel information is
available.

In this paper, we focus on singing voice separation from
monaural recordings. Recently, several approaches have
been proposed to utilize the assumption of the low rank
and sparsity of the music and speech signals, respectively
[7,13,16,17]. However, this strong assumption may not
always be true. For example, the drum sounds may lie in
the sparse subspace instead of being low rank. In addition,
all these models can be viewed as linear transformations in
the spectral domain.
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Figure 1. Proposed framework.

With the recent development of deep learning, with-
out imposing additional constraints, we can further extend
the model expressibility by using multiple nonlinear layers
and learn the optimal hidden representations from data. In
this paper, we explore the use of deep recurrent neural net-
works for singing voice separation from monaural record-
ings in a supervised setting. We explore different deep re-
current neural network architectures along with the joint
optimization of the network and a soft masking function.
Moreover, different training objectives are explored to op-
timize the networks. The proposed framework is shown in
Figure 1.

The organization of this paper is as follows: Section 2
discusses the relation to previous work. Section 3 intro-
duces the proposed methods, including the deep recurrent
neural networks, joint optimization of deep learning mod-
els and a soft time-frequency masking function, and differ-
ent training objectives. Section 4 presents the experimental
setting and results using the MIR-1K dateset. We conclude
the paper in Section 5.

2. RELATION TO PREVIOUS WORK

Several previous approaches utilize the constraints of low
rank and sparsity of the music and speech signals, respec-
tively, for singing voice separation tasks [7, 13, 16, 17].
Such strong assumption for the signals might not always
be true. Furthermore, in the separation stage, these models
can be viewed as a single-layer linear network, predicting
the clean spectra via a linear transform. To further improve
the expressibility of these linear models, in this paper, we
use deep learning models to learn the representations from
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Figure 2. Deep Recurrent Neural Networks (DRNNs) architectures: Arrows represent connection matrices. Black, white,
and grey circles represent input frames, hidden states, and output frames, respectively. (Left): standard recurrent neural
networks; (Middle): L intermediate layer DRNN with recurrent connection at the [-th layer. (Right): L intermediate layer
DRNN with recurrent connections at all levels (called stacked RNN).

data, without enforcing low rank and sparsity constraints.

By exploring deep architectures, deep learning approaches

are able to discover the hidden structures and features at
different levels of abstraction from data [5]. Deep learn-
ing methods have been applied to a variety of applications
and yielded many state of the art results [2,4, 8]. Recently,
deep learning techniques have been applied to related tasks
such as speech enhancement and ideal binary mask estima-
tion [1,9-11, 15].

In the ideal binary mask estimation task, Narayanan and
Wang [11] and Wang and Wang [15] proposed a two-stage
framework using deep neural networks. In the first stage,
the authors use d neural networks to predict each output
dimension separately, where d is the target feature dimen-
sion; in the second stage, a classifier (one layer perceptron
or an SVM) is used for refining the prediction given the
output from the first stage. However, the proposed frame-
work is not scalable when the output dimension is high.
For example, if we want to use spectra as targets, we would
have 513 dimensions for a 1024-point FFT. It is less de-
sirable to train such large number of neural networks. In
addition, there are many redundancies between the neural
networks in neighboring frequencies. In our approach, we
propose a general framework that can jointly predict all
feature dimensions at the same time using one neural net-
work. Furthermore, since the outputs of the prediction are
often smoothed out by time-frequency masking functions,
we explore jointly training the masking function with the
networks.

Maas et al. proposed using a deep RNN for robust auto-
matic speech recognition tasks [10]. Given a noisy signal
x, the authors apply a DRNN to learn the clean speech y.
In the source separation scenario, we found that modeling
one target source in the denoising framework is subopti-
mal compared to the framework that models all sources. In
addition, we can use the information and constraints from
different prediction outputs to further perform masking and
discriminative training.

3. PROPOSED METHODS
3.1 Deep Recurrent Neural Networks

To capture the contextual information among audio sig-
nals, one way is to concatenate neighboring features to-
gether as input features to the deep neural network. How-
ever, the number of parameters increases rapidly according
to the input dimension. Hence, the size of the concatenat-
ing window is limited. A recurrent neural network (RNN)
can be considered as a DNN with indefinitely many lay-
ers, which introduce the memory from previous time steps.
The potential weakness for RNNs is that RNNs lack hier-
archical processing of the input at the current time step. To
further provide the hierarchical information through multi-
ple time scales, deep recurrent neural networks (DRNNs)
are explored [3, 12]. DRNNs can be explored in different
schemes as shown in Figure 2. The left of Figure 2 is a
standard RNN, folded out in time. The middle of Figure
2 is an L intermediate layer DRNN with temporal connec-
tion at the [-th layer. The right of Figure 2 is an L interme-
diate layer DRNN with full temporal connections (called
stacked RNN (sRNN) in [12]).

Formally, we can define different schemes of DRNNs as
follows. Suppose there is an L intermediate layer DRNN
with the recurrent connection at the [-th layer, the {-th hid-
den activation at time ¢ is defined as:

hf: = fh(Xt7 hifl)

= ¢ (Ulhiq + Wiy (WFI (... (Wlxt)))) )
(D

and the output, y;, can be defined as:
Yyt = fo(hft)
=Who, 1 (WEH (g (WD), (@

where x; is the input to the network at time ¢, ¢; is an
element-wise nonlinear function, W' is the weight matrix



for the I-th layer, and U’ is the weight matrix for the re-
current connection at the [-th layer. The output layer is a
linear layer.

The stacked RNNs have multiple levels of transition
functions, defined as:

hi = fh(hi_lv hf&—l)
= ¢ (U'h]_, + W'h;™1), 3)

where h! is the hidden state of the I-th layer at time ¢. U’
and W' are the weight matrices for the hidden activation at
time ¢t — 1 and the lower level activation hffl, respectively.
When [ = 1, the hidden activation is computed using h) =
Xt.

Function ¢;(+) is a nonlinear function, and we empir-
ically found that using the rectified linear unit f(x) =
max(0,x) [2] performs better compared to using a sig-
moid or tanh function. For a DNN, the temporal weight
matrix U is a zero matrix.

3.2 Model Architecture

At time ¢, the training input, x;, of the network is the con-
catenation of features from a mixture within a window. We
use magnitude spectra as features in this paper. The out-
put targets, y1, and y2,, and output predictions, ¥1, and
V2, of the network are the magnitude spectra of different
sources.

Since our goal is to separate one of the sources from a
mixture, instead of learning one of the sources as the tar-
get, we adapt the framework from [9] to model all different
sources simultaneously. Figure 3 shows an example of the
architecture.

Moreover, we find it useful to further smooth the source
separation results with a time-frequency masking technique,
for example, binary time-frequency masking or soft time-
frequency masking [7,9]. The time-frequency masking
function enforces the constraint that the sum of the pre-
diction results is equal to the original mixture.

Given the input features, x;, from the mixture, we ob-
tain the output predictions ¥1, and ¥2, through the net-
work. The soft time-frequency mask m; is defined as fol-

o 91,06
Y1,
my(f) = = S : “
191, () + [32.(F)]
where f € {1,..., F'} represents different frequencies.

Once a time-frequency mask m; is computed, it is ap-
plied to the magnitude spectra z; of the mixture signals to
obtain the estimated separation spectra 81, and 83,, which
correspond to sources 1 and 2, as follows:

81,(f) = my(f)z:(f) 5)
§2t (f) = (1 - mt(f)) Zt(f))
where f € {1,..., F'} represents different frequencies.

The time-frequency masking function can be viewed as
a layer in the neural network as well. Instead of training the
network and applying the time-frequency masking to the
results separately, we can jointly train the deep learning
models with the time-frequency masking functions. We
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Figure 3. Proposed neural network architecture.

add an extra layer to the original output of the neural net-
work as follows:

|ylt|

Vi, = 0 O 2

' ‘ylt |,\+ |y2t ‘ (6)
V2, = SENE A - Oz

' ‘S’lt| + |y21,‘ ’

where the operator ® is the element-wise multiplication
(Hadamard product). In this way, we can integrate the
constraints to the network and optimize the network with
the masking function jointly. Note that although this extra
layer is a deterministic layer, the network weights are op-
timized for the error metric between and among y1,, ¥2,
and y1,, y2,, using back-propagation. To further smooth
the predictions, we can apply masking functions to y;, and
¥2,, as in Egs. (4) and (5), to get the estimated separation
spectra S;, and Sp,. The time domain signals are recon-
structed based on the inverse short time Fourier transform
(ISTFT) of the estimated magnitude spectra along with the
original mixture phase spectra.

3.3 Training Objectives

Given the output predictions ¥, and ¥, (or y1, and y2,)
of the original sources y1, and y2,, we explore optimizing
neural network parameters by minimizing the squared er-
ror and the generalized Kullback-Leibler (KL) divergence
criteria, as follows:

Juse =191, =yl + 192, —y2l3 D
and
Jxr = D(y1,l[¥1,) + D(y2.[192,), ®)
where the measure D (A||B) is defined as:
D(A|IB) =) ( A;lo A4 4B )
- 7 g BZ 7 7 .
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D(-||-) reduces to the KL divergence when ) -, A; = >, B; =

1, so that A and B can be regarded as probability distribu-
tions.

Furthermore, minimizing Eqs. (7) and (8) is for increas-
ing the similarity between the predictions and the targets.
Since one of the goals in source separation problems is to
have high signal to interference ratio (SIR), we explore dis-
criminative objective functions that not only increase the
similarity between the prediction and its target, but also
decrease the similarity between the prediction and the tar-
gets of other sources, as follows:

191, —y1. 3-791.—y2. | 3+92. —y2. | 3—7F2, —¥y1.
(10)
and

D(y1,[91,)—7D(y1.[l¥2,)+D(y2,|[F2,)—7D(y2, ¥4,

Y
where y is a constant chosen by the performance on the
development set.

4. EXPERIMENTS
4.1 Setting

Our system is evaluated using the MIR-1K dataset [6].! A
thousand song clips are encoded with a sample rate of 16
KHz, with durations from 4 to 13 seconds. The clips were
extracted from 110 Chinese karaoke songs performed by
both male and female amateurs. There are manual annota-
tions of the pitch contours, lyrics, indices and types for un-
voiced frames, and the indices of the vocal and non-vocal
frames. Note that each clip contains the singing voice
and the background music in different channels. Only the
singing voice and background music are used in our exper-
iments.

Following the evaluation framework in [13, 17], we use
175 clips sung by one male and one female singer (‘ab-
jones’ and ‘amy’) as the training and development set.
The remaining 825 clips of 17 singers are used for testing.
For each clip, we mixed the singing voice and the back-
ground music with equal energy (i.e. 0 dB SNR). The goal
is to separate the singing voice from the background music.

To quantitatively evaluate source separation results, we
use Source to Interference Ratio (SIR), Source to Arti-
facts Ratio (SAR), and Source to Distortion Ratio (SDR)
by BSS-EVAL 3.0 metrics [14]. The Normalized SDR
(NSDR) is defined as:

NSDR(v,v,x) = SDR(v,v) — SDR(x, v), 12)
where V is the resynthesized singing voice, v is the orig-
inal clean singing voice, and x is the mixture. NSDR is
for estimating the improvement of the SDR between the
preprocessed mixture x and the separated singing voice
v. We report the overall performance via Global NSDR

Uhttps://sites.google.com/site/unvoicedsoundseparation/mir-1k
2 Four clips, abjones_5_08, abjones_5_09, amy_9_08, amy_9_09, are
used as the development set for adjusting hyper-parameters.
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(GNSDR), Global SIR (GSIR), and Global SAR (GSAR),
which are the weighted means of the NSDRs, SIRs, SARs,
respectively, over all test clips weighted by their length.
Higher values of SDR, SAR, and SIR represent better sep-
aration quality. The suppression of the interfering source is
reflected in SIR. The artifacts introduced by the separation
process are reflected in SAR. The overall performance is
reflected in SDR.

For training the network, in order to increase the va-
riety of training samples, we circularly shift (in the time
domain) the singing voice signals and mix them with the
background music.

In the experiments, we use magnitude spectra as input
features to the neural network. The spectral representation
is extracted using a 1024-point short time Fourier trans-
form (STFT) with 50% overlap. Empirically, we found
that using log-mel filterbank features or log power spec-
trum provide worse performance.

For our proposed neural networks, we optimize our mod-
els by back-propagating the gradients with respect to the
training objectives. The limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm is used to train the
models from random initialization. We set the maximum
epoch to 400 and select the best model according to the
development set. The sound examples and more details of
this work are available online. 3

4.2 Experimental Results

In this section, we compare different deep learning models
from several aspects, including the effect of different in-
put context sizes, the effect of different circular shift steps,
the effect of different output formats, the effect of different
deep recurrent neural network structures, and the effect of
the discriminative training objectives.

For simplicity, unless mentioned explicitly, we report
the results using 3 hidden layers of 1000 hidden units neu-
ral networks with the mean squared error criterion, joint
masking training, and 10K samples as the circular shift
step size using features with a context window size of 3
frames. We denote the DRNN-k as the DRNN with the re-
current connection at the k-th hidden layer. We select the
models based on the GNSDR results on the development
set.

First, we explore the case of using single frame features,
and the cases of concatenating neighboring 1 and 2 frames
as features (context window sizes 1, 3, and 5, respectively).
Table 1 reports the results using DNNs with context win-
dow sizes 1,3, and 5. We can observe that concatenating
neighboring 1 frame provides better results compared with
the other cases. Hence, we fix the context window size to
be 3 in the following experiments.

Table 2 shows the difference between different circular
shift step sizes for deep neural networks. We explore the
cases without circular shift and the circular shift with a step
size of {50K, 25K, 10K} samples. We can observe that
the separation performance improves when the number of
training samples increases (i.e. the step size of circular

3 https://sites.google.com/site/deeplearningsourceseparation/



Model (context window size) | GNSDR | GSIR | GSAR
DNN (1) 6.63 10.81 | 9.77
DNN (3) 6.93 10.99 | 10.15
DNN (5) 6.84 10.80 | 10.18

Table 1. Results with input features concatenated from
different context window sizes.

_ Model | GNSDR | GSIR | GSAR
(circular shift step size)
DNN (no shift) 6.30 9.97 9.99
DNN (50,000) 6.62 10.46 | 10.07
DNN (25,000) 6.86 11.01 | 10.00
DNN (10,000) 6.93 10.99 | 10.15

Table 2. Results with different circular shift step sizes.

Model (nu.m.. of output GNSDR | GSIR | GSAR
sources, joint mask)
DNN (1, no) 5.64 8.87 9.73
DNN (2, no) 6.44 9.08 | 11.26
DNN (2, yes) 6.93 10.99 | 10.15

Table 3. Deep neural network output layer comparison
using single source as a target and using two sources as
targets (with and without joint mask training). In the “joint
mask” training, the network training objective is computed
after time-frequency masking.

shift decreases). Since the improvement is relatively small
when we further increase the number of training samples,
we fix the circular shift size to be 10K samples.

Table 3 presents the results with different output layer
formats. We compare using single source as a target (row
1) and using two sources as targets in the output layer (row
2 and row 3). We observe that modeling two sources simul-
taneously provides better performance. Comparing row 2
and row 3 in Table 3, we observe that using the joint mask
training further improves the results.

Table 4 presents the results of different deep recurrent
neural network architectures (DNN, DRNN with different
recurrent connections, and SRNN) and the results of dif-
ferent objective functions. We can observe that the models
with the generalized KL divergence provide higher GSARs,
but lower GSIRs, compared to the models with the mean
squared error objective. Both objective functions provide
similar GNSDRs. For different network architectures, we
can observe that DRNN with recurrent connection at the
second hidden layer provides the best results. In addition,
all the DRNN models achieve better results compared to
DNN models by utilizing temporal information.

Table 5 presents the results of different deep recurrent
neural network architectures (DNN, DRNN with differ-
ent recurrent connections, and SRNN) with and without
discriminative training. We can observe that discrimina-
tive training improves GSIR, but decreases GSAR. Over-
all, GNSDR is slightly improved.

Model (objective) | GNSDR | GSIR | GSAR
DNN (MSE) 6.93 10.99 | 10.15
DRNN-1 (MSE) 7.11 11.74 | 9.93
DRNN-2 (MSE) 7.27 11.98 | 9.99
DRNN-3 (MSE) 7.14 11.48 | 10.15
SRNN (MSE) 7.09 11.72 | 9.88

DNN (KL) 706 | 11.34 | 10.07
DRNN-1 (KL) 7.09 | 11.48 | 10.05
DRNN-2 (KL) 727 | 11.35| 10.47
DRNN-3 (KL) 7.10 | 11.14 | 10.34

sRNN (KL) 7.16 | 11.50 | 10.11

Table 4. The results of different architectures and different
objective functions. The “MSE” denotes the mean squared
error and the “KL” denotes the generalized KL divergence
criterion.

Model GNSDR | GSIR | GSAR

DNN 6.93 10.99 | 10.15
DRNN-1 7.11 11.74 | 9.93
DRNN-2 7.27 11.98 | 9.99
DRNN-3 7.14 11.48 | 10.15

sRNN 7.09 11.72 | 9.88

DNN + discrim 7.09 12.11 | 9.67
DRNN-1 + discrim 7.21 12.76 | 9.56
DRNN-2 + discrim 7.45 13.08 | 9.68
DRNN-3 + discrim 7.09 11.69 | 10.00

SRNN + discrim 7.15 12.79 | 9.39

Table 5. The comparison for the effect of discriminative
training using different architectures. The “discrim” de-
notes the models with discriminative training.

Finally, we compare our best results with other previous
work under the same setting. Table 6 shows the results
with unsupervised and supervised settings. Our proposed
models achieve 2.30~2.48 dB GNSDR gain, 4.32~5.42
dB GSIR gain with similar GSAR performance, compared
with the RNMF model [13]. An example of the separation
results is shown in Figure 4.

5. CONCLUSION AND FUTURE WORK

In this paper, we explore using deep learning models for
singing voice separation from monaural recordings. Specif-
ically, we explore different deep learning architectures, in-
cluding deep neural networks and deep recurrent neural
networks. We further enhance the results by jointly op-
timizing a soft mask function with the networks and ex-
ploring the discriminative training criteria. Overall, our
proposed models achieve 2.30~2.48 dB GNSDR gain and
4.32~5.42 dB GSIR gain, compared to the previous pro-
posed methods, while maintaining similar GSARs. Our
proposed models can also be applied to many other appli-
cations such as main melody extraction.
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Figure 4. (a) The mixture (singing voice and music accompaniment) magnitude spectrogram (in log scale) for the clip
Ani_1_01 in MIR-1K; (b) (d) The groundtruth spectrograms for the two sources; (c) (e) The separation results from our

proposed model (DRNN-2 + discrim).

Unsupervised
Model GNSDR | GSIR | GSAR
RPCA [7] 3.15 443 | 11.09
RPCAh [16] 3.25 452 | 11.10
RPCAh + FASST [16] 3.84 6.22 | 9.19
Supervised
Model GNSDR | GSIR | GSAR
MLRR [17] 3.85 5.63 | 10.70
RNMF [13] 4.97 7.66 | 10.03
DRNN-2 7.27 11.98 | 9.99
DRNN-2 + discrim 7.45 13.08 | 9.68

Table 6. Comparison between our models and previous
proposed approaches. The “discrim” denotes the models
with discriminative training.
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