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Abstract—We present a deflation method for Nonnegative Matrix
Factorization (NMF) that aims to discover latent components one by
one in order of importance. To do so we perform a series of individual
decompositions, each of which stands for a deflation step. In each
deflation we obtain a dominant component and a nonnegative residual,
and then the residual is further used as an input to the next deflation
in case we want to extract more components. With the help of the
proposed additional inequality constraint on the residual during the
optimization, the accumulated latent components at any given deflation
step can approximate the input to some degree, whereas NMF with an
inaccurate rank assumption often fail to do so. The proposed method is
beneficial if we need efficiency in deciding the model complexity from
unknown data. We derive multiplicative update rules similar to those of
regular NMF to perform the optimization. Experiments on online speech
enhancement show that the proposed deflation method has advantages
over NMF: namely a scalable model structure, reusable parameters across
decompositions, and resistance to permutation ambiguity.

Index Terms—Blind source separation, Speech enhancement

I. INTRODUCTION

Nonnegative Matrix Factorization [1], [2] has been widely used
for audio analysis, because its parts-based representation matches
the additive nature of audio mixtures, e.g. a speech signal with
cross-talks, music with simultaneous playing of instruments, etc.
A tricky part of NMF learning is that the user has to specify an
appropriate number of latent variables. On the contrary to the other
linear decomposition models with straightforward deflation methods,
such as the power iteration for Principal Component Analysis (PCA),
NMF therefore suffers from a series of problems: poor reusability
that requires training from scratch whenever we add or remove latent
variables and a permutation ambiguity of the estimated components.

In this paper we present a deflation method for NMF that also
preserves the original parameter nonnegativity and parts-based rep-
resentation. Our goal is to achieve an incremental way of adding
latent variables on top of the previously learned model, in order
to better refine it. This approach is computationally cheaper than
starting over the entire NMF run with a different guess about the
model complexity. Additionally, it learns components in order of
importance as they get discovered. While the desired properties are
achieved by employing an additional inequality constraint as in [3],
we also introduce an explicit use of a residual matrix to streamline the
optimization, which is eventually more similar to that of the standard
NMF algorithm. As a result, multiplicative update rules are proposed
to learn the optimal basis at each deflation that best describes the
dominant component. Meanwhile, a nonnegative residual is also
learned, which is then sent as an input to the next decomposition.

We propose to use this deflation NMF method for an online semi-
supervised speech enhancement task where the proposed method
plays a big role in estimating ranks of the various kinds of unknown
noise, the job the ordinary NMF is not suitable for.

II. NONNEGATIVE MATRIX FACTORIZATION

A. NMF as a Constrained Optimization Problem

NMF takes a nonnegative matrix V ∈ RM×N+ as an input, where
R+ stands for nonnegative real values. Then, it finds factor matrices
W ∈ RM×K+ and H ∈ RK×N+ , whose product minimizes an error
function, D(V ||WH), between the input and the reconstruction. It
is common to use β-divergence as a generalized error function,

Dβ(x||y) =


xβ+(β−1)yβ−βxyβ−1

β(β−1)
, β ∈ R\{0, 1}

x(log x− log y) + (y − x), β = 1
x
y
− log x

y
− 1, β = 0,

(1)

since it covers Frobenius norm, unnormalized KL-divergence, and
Itakura-Saito divergence when β = 2, 1, and 0, respectively, as
special cases [4]. NMF with β-divergence is defined as follows:

argmin
W,H

Dβ(V ||WH), s.t. W ≥ 0, H ≥ 0, (2)

where the inequality holds element-wise. The NMF algorithm solves
this constrained optimization by representing the gradient descent
method via a set of multiplicative update rules. For the nonnegative
initial parameters W and H , the update rules are:

W←W�
{
(WH).(β−2)�V

}
H>

(WH).(β−1)H>
, H←H� W>

{
(WH).(β−2)�V

}
W>(WH).(β−1) ,

(3)

where � represents the Hadamard product and division and expo-
nentiation are carried in the element-wise manner, too.

B. Properties of NMF

NMF and its extension have been popular for music transcription
[5]. In Figure 1 we see results from NMF runs on a signal with three
notes (C5-G5-C6) when β = 2. The input matrix (a) is a magnitude
spectrogram of the signal after applying Short-Time Fourier Trans-
form (STFT). After learning three NMF components we see in (b) that
the spectral patterns of the three notes are represented as columns of
the matrix W , whereas H tells us the temporal activations. However,
these results are permuted, i.e. the most significant note (the third
one) is captured by the second component. Furthermore, we see in
(c) and (d) that NMF runs with a suboptimal number of components
fail to analyze the notes accurately.

III. THE DEFLATION METHOD FOR NMF

With an additional inequality constraint on the original NMF
objective function, we can achieve the desired deflation ability. We
use the superscript (i) to indicate variables involved in the i-th
deflation. The goal is to reconstruct the i-th input, V (i), with i-th
parameter vectors w(i) ∈ RM×1

+ and h(i) ∈ R1×N
+ . For instance,
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Fig. 1. NMF runs on 3 musical notes. (a) The input spectrogram (b) NMF results with three assumed components (c) two components (d) only one component

V (1) is simply the input matrix whereas V (2) = V (1)−w(1)h(1), and
so on. In i-th deflation, we solve the following opimization problem:

argmin
w(i),h(i)

|V (i) − w(i)h(i)|2F

s.t. w(i) ≥ 0, h(i) ≥ 0, V (i) ≥ w(i)h(i), (4)

where the additional inequality constraint V (i) ≥ w(i)h(i) prevents
the reconstruction w(i)h(i) from exceeding the input. Therefore, it is
different from running NMF with only one component as in Figure 1
(d), because the NMF reconstruction breaks this constraint with spu-
rious harmonics. Nonnegative Matrix Underapproximation (NMU),
which is defined with the Frobenius norm as its error function, solves
the optimization problem by using Lagrange multipliers for the new
inequality constraint [3]. Its update rules are divided into two parts:
updates for original parameters, w(i) and h(i), using Hierarchical
Alternating Least Squares (HALS) [6], and a gradient descent for
the Lagrange multipliers. In the following section we generalize this
problem with β-divergence and propose a more compact optimization
by employing a residual matrix as an unknown parameter, which in
turn works like the Lagrange multipliers in the HALS updates, but
with its own nonnegativity constraint.

A. The Deflation Update Rules with Nonnegative Residuals

With another parameter R(i) for the residuals, R(i) = V (i) −
w(i)h(i), now the optimization is defined as follows:

argmin
w(i),h(i),R(i)

Dβ(V (i)||w(i)h(i) +R(i)) +
1

2
λ |R(i)|2F

s. t. w(i) ≥ 0, h(i) ≥ 0, R(i) ≥ 0, (5)

where the additional inequality constraint is absolved into the residual
R(i). To avoid trivial solutions, where R(i) = V (i), we also need a
regularization term 1

2
λ|R(i)|2F with λ as a control parameter. The

new constraint with the residual matrix is easier to be incorporated
into the multiplicative update rules with β-divergence if we gather the
negative and the positive terms of the derivatives into the numerator
and the denominator of the multiplier, respectively:

w(i) ← w(i) �
{
(w(i)h(i)+R(i)).(β−2)�V (i)

}
h(i)>{

(w(i)h(i)+R(i)).(β−1)
}
h(i)>

, (6)

h(i) ← h(i) � w(i)>
{
(w(i)h(i)+R(i)).(β−2)�V (i)

}
w(i)>

{
(w(i)h(i)+R(i)).(β−1)

} , (7)

R(i) ← R(i) �
{
(w(i)h(i)+R(i)).(β−2)�V (i)

}{
(w(i)h(i)+R(i)).(β−1)

}
+λR(i)

. (8)

The nonnegative residual R(i) plays a big role in the deflation
method. First, its nonnegativity constraint prevents the rank-1 recon-
struction from exceeding the input, and then it serves as the input to
the next deflation. Nothing stops the multiplicative update rules from
evolving into more sophisticated optimization techniques, once the
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V (1) w(1)h(1)

R(1)

(a) The first decomposition of the original input V (1) to extract
the longest note. The residual R(1) is served as the input in the
next round as is.
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V (2)  R(1) w(2)h(2)

R(2)

(b) The second decomposition of the deflated input V (2) to
extract the second longest note. R(2) is used for the next input,
too.

 

 

 

 

0.6 1.2 1.7

7752

5168

2584

0   

Fr
eq

ue
nc

y 
(H

z)

Time (second)
0.6 1.2 1.7

7752

5168

2584

0   
 

 
0.6 1.2 1.7

7752

5168

2584

0   

Fr
eq

ue
nc

y 
(H

z)
Time (second)

0.6 1.2 1.7

7752

5168

2584

0   

≈ + 

V (3)  R(2)

R(3)

w(3)h(3)

(c) The third decomposition of the twice deflated input V (3) to
extract the shortest note.

Fig. 2. The deflation NMF results on the three notes.

residual remains nonnegative throughout the process. However, the
approximation error at every deflation tends to be propagated to the
next deflation. As a result, the entire approximation gets relatively
worse than the oracle NMF result with the correct rank assumption
when the true rank of the input becomes larger. However, we believe
that the advantages of the proposed method, i.e. ordered components,
reusability of parameters, and the ability of estimating model com-
plexity, can compensate for the downside in some applications.

B. Properties of the deflation NMF

Figure 2 demonstrates the advantage of the deflation NMF on the
same signal used in Figure 1. In (a) it first learns the longest note
(C6) as the most important component in terms of the signal energy.
In the second run in (b), we learn the second longest note, G5. In
(c) the shortest note C5 is finally extracted.

C. A Comparison of the Convergence Behaviors

Figure 3 is the proportion of the absolute error to the sum of the
input at every iteration. It can be calculated with

∑
f,t |V−WH|f,t∑

f,t Vf,t

in the NMF case and
∑
f,t |V−

∑
i w

(i)h(i)|f,t∑
f,t Vf,t

in the deflation case,
repsectively. At every run (or at every deflation) with a fixed number
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Fig. 3. Error curves of NMF and deflation NMF when adding components:
thick pink lines for NMF and thin blue lines for the deflation method. The
discontinuities represent either the addition of a new component (deflation)
or starting over with a new number of components (NMF).

of components the algorithms stop if five error values in a row are in
the range of 0.01%. The bigger loop of the systems, which decides the
number of components, stops when the error reaches below 10%. In
the three notes case, both NMF and the deflation NMF could achieve
this amount of error with three components.

As the figure shows, we can see that the first deflated component of
the proposed method explains more than 50% of the input, whereas
NMF with only one component explains about 15%. This correlates
with the NMF reconstruction of only one component in Figure 1
(d) being so poor. By trials with more components, namely two
and three, NMF can provide smaller errors. However, all the three
trials start from high error values as NMF randomly re-initializes its
parameters without any hint from the previous runs. On the other
hand, the deflation method starts from the residual of the previous
run, so that it can continue to reduce the error by adding more
components. It is true that NMF with correct number of components,
three in our case, converges after only 44 iterations, whereas the
deflation method consumes 84 iterations. However, if we take the
previous wrong guesses of NMF into account the total number of
NMF iterations increases up to 127. Likewise, the proposed deflation
method can converge faster when NMF has to find the unknown
model complexity by trial and error.

D. Computational Complexity

The standard and deflation update rules of NMF have complexity
of O(MKN) and O(MN) per an iteration, respectively. If we
assume that they converge at the same number of iterations I and
we know the optimal rank K, both algorithms have complexity of
O(MKNI), since we do the deflation K times. However, if we have
to try different ranks from 1 to K for the NMF runs, the complexity
of NMF grows to O(K2MNI), which is worse than the unaffected
complexity of the deflation method.

E. A Compromised Version: Group Deflation

We also present a compromised version of the deflation method
to mitigate propagation of reconstruction errors down to the next
deflation. Suppose the input matrix can be ideally decomposed into
K latent components, such as V =

∑K
i=1 Y

(i) =
∑K
i=1 w

(i)h(i),
where Y (i) stands for i-th ideal latent component with rank-1. It is
possible that there exists an reconstruction error between Y (i) and
w(i)h(i), which is not guaranteed to be addressed in the succeeding
(i+1)-th decomposition. Therefore, it is usual that the deflation error
is propagated as we keep adding more components.

To resolve this issue we relax the algorithm so that it allows a
group of components to be added simultaneously rather than only
one at a time. Although we lost ordering among the components in
the same group, we can reduce the number of deflation from K to G,

where G is the number of groups deflated. This can be useful when
a roughly good guess of the number of components is still important.

F. Relationships with the Other Methods

Among the series of Nonnegative Matrix Partial Co-Factorization
(NMPCF) algorithms [7]–[9], the unsupervised one in [8] is relevant
to the deflation method, where NMPCF extracts common basis
vectors from column-blocks of a matrix. It assumes that repeating
patterns can be captured by the common basis vectors whereas
non-shared bases hold less-repeating ones during its simultaneous
decomposition on the multiple column-blocks. The model reduces to
the proposed deflation method if we shrink the size of the column-
blocks into only one column. Then, a single basis vector w(i) captures
the common component across all the input vectors, whereas another
basis per a column vector holds the residual component, whose
concatenation builds the residual matrix R(i). This is an analogous
intuition about the proposed deflation method: if something keeps
repeating in most of the input vectors, it tends to be captured by the
most significant basis vector.

The proposed model can be also seen as a non-probabilistic alter-
native to nonparametric Bayesian methods, such as the hierarchical
Dirichlet process [10], which attempts to provide the same benefits.
For those who are familiar with NMF however, the proposed method
is easier to utilize when it comes to different choices of β rather than
1, which only corresponds to the multinomial topic models.

IV. NUMERICAL EXPERIMENTS

Online speech enhancement is a task where a few frames are
available for processing as a buffer. This problem usually assumes
that either the type of noise or the identity of the speaker is unknown.
Furthermore, since the optimal rank of the noise can differ by
their types and at different time points, a proper model complexity
estimation is necessary. Also, if this system should run in real-time,
we are not supposed to spend a lot of time to investigate the optimal
noise model.

An online speech enhancement system with a semi-supervised
separation technique was proposed in [11]. It uses an ordinary topic
model that corresponds to NMF with KL-divergence, assuming that
an exact noise dictionary is always available for an unseen noisy
signal. Since it does not know about the speaker identity, the model
allocates some basis vectors for the speech part and learns them from
the test signal whereas the noise dictionary is fixed. We start from the
same idea, but assume that we only know about the speech source,
not noise. Although acquiring a clean training signal for a particular
speaker is also difficult or expensive, we have some ways to get
around this limitation, such as the universal speech model [12]. In
this paper, we learned the speaker-specific dictionary Ws (40 bases)
in advance from a female speaker in the TIMIT corpus, leaving out
a sentence for testing. As for the noise signals, we use 10 different
noise signals proposed in [11], whose labels are presented in Fig.
4. Each noise signal is added to the test speech with 0dB Signal-to-
Noise Ratio (SNR).

Algorithm 1 summarizes the online separation procedure using the
deflation NMF method. We set NB = 60, β = 1, Gmax = 8, λ = 2,
and η = 0.01, each of which is for the buffer size, KL-divergence, the
maximum number of deflations, the regularization parameter, and the
stopping criterion for deflations, respectively. For a given time frame
t, a buffer B is defined with the most recent NB mixture spectra
(line 4). After initializing the parameters, e.g. with random numbers
(line 5), we perform a semi-supervised separation from line 6 to 12,
coupled with the deflation method. In other words, we update the



Algorithm 1 Online speech enhancement by using deflation NMF
1: Input: Mixture spectra Xt and a speech dictionary Ws

2: Define paramters: NB , β,Gmax, λ, η
3: for t = NB to T do
4: B ← Xt−NB+1:t, g ← 1

5: Initialize parameters: Hs, H
(g)
n ,W

(g)
n , R(g)

6: repeat
7: W ← [Ws,W

(g)
n ], H ← [Hs;H

(g)
n ]

8: Hs ← Hs � W>s {(WH).(β−2)�B}
W>s {(WH).(β−1)}

9: H
(g)
n ← H

(g)
n � W

(g)
n
>
{(WH+R(g)).(β−2)�B}

W
(g)
n
>
{(WH+R(g)).(β−1)}

10: W
(g)
n ←W

(g)
n � {(WH+R(g)).(β−2)�B}H(g)

n
>

{(WH+R(g)).(β−1)}H(g)
n
>

11: R(g) ← R(g) � {(WH+R(g)).(β−2)�B}
{(WH+R(g)).(β−1)}+λR(g)

12: until Convergence
13: repeat
14: B ← R(g), g ← g + 1
15: Initialize parameters: H(g)

n ,W
(g)
n , R(g)

16: repeat
17: H

(g)
n ← H

(g)
n � W

(g)
n
>
{(W (g)

n H
(g)
n +R(g)).(β−2)�B}

W
(g)
n
>
{(W (g)

n H
(g)
n +R(g)).(β−1)}

18: W
(g)
n ←W

(g)
n � {(W

(g)
n H

(g)
n +R(g)).(β−2)�B}H(g)

n
>

{(W (g)
n H

(g)
n +R(g)).(β−1)}H(g)

n
>

19: R(g) ← R(g) � {(W (g)
n H

(g)
n +R(g)).(β−2)�B}

{(W (g)
n H

(g)
n +R(g)).(β−1)}+λR(g)

20: until Convergence
21: until |R(g)|F < η|Xt−NB+1:t|F or g ≥ Gmax
22: end for

coupled parameters W and H as if they are the deflation parameters
in (6)-(8), except the fixed bases Ws for speech. Once this first
decomposition is done we decide whether to deflate more by checking
on the norm of the residual matrix R(1) is bigger than the threshold,
η = 0.01, times the norm of the original data. If we decide to proceed,
we learn the new parameters for another group of 5 components
(line 14 to 20) by using the residual R(1) as input. Likewise, at
each new deflation g, we add five additional noise components on
top of the current one. We repeat the deflation until we reach the
maximal number of deflations or the residual becomes smaller than
the threshold (line 13 to 21). For each deflation 10 iterations were
enough to converge. Moreover, if we initialize the parameters with
the one learned for (t−1)-th frame instead of random numbers (line
5 and 15), we can start from good initializations. The system met the
stopping criterion before the maximun number of deflation (8 groups)
most of the time. After separation, we recover the speech part by
multiplying the input with the proportion of the speech reconstruction
out of the mixture reconstruction, Xt−NB+1:t� WsHs

WsHs+
∑
gW

(g)
n H

(g)
n

.

For a comparison, we conduct a similar online semi-supervised
separation as in [11], but with noise components learned from the test
signal by the usual NMF updates. In Algorithm 1, the loop for the
deflation (line 13 to 21) is discarded in this case. Also, the deflation
updates (line 9 to 11) are replaced with ordinary NMF updates as in
(3) with a fixed number of components. We tried 8 different numbers
of components, {5, 10, · · · , 40}, same as in the deflation case. Since
we have to fix the number of noise components with one of those 8
numbers throughout the entire separation, the model cannot adapt to
the temporal dynamics of the noise.

One can think of an adaptive system for the NMF case as well,
where several different ranks are tried for a given frame and the
optimal model complexity at every given time is chosen. However,
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Fig. 4. (a) SDR of the enhancement results for each choice of systems
(number of components in NMF systems or the adaptive deflation technique)
and for each noise. Every bar is an average of 10 repeated experiments with
same settings. (b) Comparison of the deflation method versus the oracle NMF
result (with the optimal number of components), and the average of all NMF
choices. Standard deviation is provided as the error bars.

it is not efficient, because we do not have a criterion which noise
model is the best without calculating the Signal-to-Distortion Ratio
(SDR); running a lot of of different NMF models is a computationally
complex procedure with O(K2LMN); we cannot reuse the learned
model from the previous time frame if the model complexity changes
in the next frame.

Figure 4 (a) shows the separation results. First, NMF runs with
different choices of noise components produce indeed diverse results.
Also, each different type of noise has its own rank that eventually
introduces performance variation to the system. Note that the NMF
results with highest bars for the given noise types are not actually the
optimal models, since there could be a lot of different optima over
time. The proposed deflation NMF model, however, can cope with
the dynamics and could provide better performances than any NMF
settings most of the time.

Figure 4 (b) further emphasizes the merit of the deflation method.
The white bars are the average results of all the choices for NMF
model complexities from 5 to 40. The deflation method is signifi-
cantly better than this ordinary setting except some comparable cases.
If we compare our results with the oracle NMF results with the
globally optimal number of noise components (the maximum of the
NMF results per each noise in Figure 4 (a)), the proposed method is
still better. It is also noticeable that the deflation method enjoys less
performance variation with narrower error bars than the oracle NMF
results.

V. CONCLUSION

This paper presented a deflation strategy for NMF to incrementally
learn the latent components. To this end we proposed an explicit use
of a nonnegative residual, which is also estimated in the multiplicative
manner similarly to the other NMF parameters. Experimental results
on the speech source separation task show that the method works
with expected properties, such as the flexible model structure, reuse
of estimated parameters, and the control over the permutation. As a
future work, we plan to explore the generative models of the proposed
method and their relationships to existing nonparametric Bayesian
models.
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