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ABSTRACT speech, or in the case of [5] musical audio. However, these

algorithms typically exploit continuity in spectral sttuces

;N'th the r%cent _attent!on to e}ud;o processmghm thebtllme and are implicitly aided by the fact that the targeted record
requency domain we increasingly encounter the problem of, o« . ,ally contain signals from either a single source (th

missing data. In this paper we present an approach thatSiIIOV\’/oice), or repetitions of constant-state fixed spectra. -Gen

for imputing missing values in the time-frequency domain O.f ral audio or music recordings however include a variety of

audio signals. The presented approach is able to deal wi unds, many of which are concurrently active at any time,

rea:;world polyph(]zmc S|g|nals b_y performing meutﬁtlonﬁc-av and each of which has its own typical patterns, and are hence
in the presence of complex mixtures. We show that this apg, ,ch harder to model.

proach outperforms generic imputation approaches, and we The algorithm proposed in this paper characterizes time-

present a variety of situations that highlight its utility. frequency representations as histograms of draws from a mix
ture model as proposed inl [6]. Being a mixture, the model is
1. INTRODUCTION implicitly capable of representing multiple concurrenesp
tral patterns. The process of imputing missing values then
In this paper we address the problem of estimating missing rdoecomes one of learning from incomplete data. Experimen-
gions of time-frequency representations of audio sigrigie.  tal evaluations show that the imputed spectral constrostio
problem of missing data in the time-frequency domain occur@btained with our algorithm result in distinctly betteryas
in several scenarios. The problem is common in speech préhesized signals than those obtained from other common im-
cessing algorithms that employ computational auditorpece putation methods.
analysis or related methods to mask out time-frequency com-
ponents for recognition, denoising or signal separafip&]1 2. MISSING DATA IN THE TIME-FREQUENCY
An increasing number of audio processing tools allow inter- DOMAIN
active spectral editing of audio signals, which can oftesulte
in the excision of time-frequency regions of sound. In yetBefore we proceed, we briefly describe the time-frequency
other scenarios, such as in signals that have passed thaoughepresentations used to characterize the signal, andrprese
telephone or have encountered other linear or non-linear fisome examples with missing data. We will assume that the
tering operations, excision of time-frequency regionshaf t time-frequency representations are derived through ghoet
signal can occur naturally. Fourier transformation (STFT) of the sign&l [7]. The short-
In a majority of these scenarios the goal is to resynthesizéme Fourier transform converts an audio signal into a se-
the audio from the incomplete time-frequency characterizagquence of vectors, each of which represents the Fourier spec
tions. To do so, the “missing” regions of the time-frequencytrum of a short (typically 20-60ms wide) segmentfoame
representations must first be “filled in” somehow, in order toof the signal. The STFT of a signal can be inverted to the
effect the transform from the time-frequency represeoitetv  original time-domain signal by an inverse short-time Feuri
a time-domain signal. In certain cases the missing values caransform. Being complex, the STFT of the signal has both
be set to zero and the resulting reconstructions do notrsuffa magnitude and a phase. However most sound processing
heavily from perceptible artifacts. In most cases however algorithms for denoising, recognition, synthesis andieglit
moderate to severe distortion is easily noticeable. Thsitodi  operate primarily on the magnitude since it is known to rep-
tion can render speech recordings unintelligible, or sdyer resent most of the perceptual information in the signal — the
reduce the quality of a music recording thereby distractingphase contributes mainly to the perceived quality of the sig
the listener. nal rather than its intelligibility. Recovery of full or paal
Although existing generic imputation algorithms [3] can missing phase information can be done with good results us-
be used to infer the values of the missing data they are ofng the technique in[]8]. Since the phase reconstruction is
ten ill-suited for use with audio signals and result in alglib highly dependent on the magnitude values we will primarily
distortions. Other algorithms such as thoselri |1, 4] are sui examine the reconstruction of the magnitudes of the missing
able for imputation of missing time-frequency componentsi time-frequency terms in this paper.



Figurda shows an example of the magnitude of the STFlime-frequency components have been lost or erased due to
of a speech signal that is a mixture of a spoken utterance arsbme reason. Figuré$ 1b ddd 1c show examples of spectro-
a phone ring. We will refer to matrix-like representationsgrams with missing data. In these examples time-frequency
of the magnitudes of STFTs of a signal, such as the one iregions of the spectrogram have been erased to eliminate the
Figure[la as “magnitude spectrograms”, or simply as “speghone ring from the signal, automatically in one case and by
trograms” in this paper. Spectral magnitudes have the propnanual editing in the other. Missing data may also occur for
erty that when multiple sounds co-occur, the spectral magnother reasons, such as systematic filtering etc. In ordes-to r
tudes of the mixed signal are approximately (but not exgctlyconstruct a time-domain signal from these incomplete spec-
equal to the sum of the spectral magnitudes of the compdrograms the values in the missing regions must be imputed
nent soundk This is apparent in the spectrogram in Figuresomehow. A simple technique is to simply floor these terms
Ma which shows the distinctive spectral patterns of both théo some threshold value; however time-domain signals recon

speech and phone ring. structed from such spectrograms will often contain audible
and often unacceptable artefacts. A more principled ambroa
Mixture spectrogram is required to reconstruct the missing regions in an acbépta

== manner.

3. MODELING THE SPECTROGRAM

Frequency
I

= — = At the outset, we would like to specify the terminology and
L ——e——— =000 notation we will use. We will denote the (magnitude) spec-
Time trogram of any signal aS. The spectrogram consists of a

sequence of (magnitude) spectral vect§fs 0 < ¢t < T,
= each of which in turn consists of a number of frequency com-
ponentsS;(f), 0 < f < F. All of these terms, being magni-

§ - e tudes are non-negative.
g = == 4 In our model we viewS as a scaled version of a histogram
E%ng: S comprising purely integer valued components, such that
— —_— - S = C~'S; however the scaling factaf cancels out of all

equations in our formulation and is thus not required to be
known. In the rest of the paper, we therefore ti®ételf as a
histogram and do not explicitly invoke the scaling factas; b
sides assuming that it is very large so that for 5’@§/f) such

— thatS;(f) = C~*5,(f) the following holds:

— CTIS(f) m TS +1). (D)

4. MODEL DEFINITION

Frequency

Fig. 1. a. Magnitude spectrogram of a mixture of a spokenWe model each spectral vectsy as a scaled histogram of
utterance and a phone ring. The spectrogram C|ear|y ShovggaWS from a mixture multinomial distribution. Per our mbde
the spectral patterns for both signals — the wavy lines and is generated by repeated draws from a distribufiefy),
the clouds of data are derived from the spoken word and thwheref is arandom variable over the frequencies. . ., F'},
phone ring is represented by the three horizontal, paafi¢l and?(f) is a mixture multinomial given by
thin lines. b. An incomplete spectrogram with missing re-
gions. In this example time-frequency components deemed B(f) = Z P (2)P(f]2) 2
not to belong to the main speech signal have been erased by ?
an automatic algorithrre. Another example of anincomplete Herez represents the identity of the multinomial components
spectrogram. Here time-frequency regions dominated by thig the mixture. P(f|z) are the multinomial components or
phone ring have been manually edited out. “bases” that compose the mixture. Note that the component
multinomialsP(f|z) are not specific to any gives} but are
A spectrogram with “missing” data is one where somethe same at all. P(f|z) are thus assumed to be characteristic
rpr— _ to the entire da_ta set c_)f_ whic$i is rep_resentati\_/e. The only
gh in theory this statement holds true for speqiaier when the 5 5 meter that is specific tare the mixture weight®, (z).

component signals are uncorrelated, in practice phaseledions in finite . .
analysis windows make this true for spectral magnitudesecato a power The model essentially characterizes the spectral vectors
that is closer to 1.0 than 2.0. themselves as additive combinations of histograms drawvn fr




each of the multinomial bases. Consequently, it is inhgrent 5.1. The Conditional Distribution of Missing Terms

able to model complex sounds such as music that are addi- i . . e
tively composed by several component sounds. This is i n the first step we obtain the conditional probability distr

) e e Lon
contrast to conventional models used for data imputatign ~ 2ution of the missing terms; (f) given the observed terms

[, 2,[4], that model the spectral components as the outcon’? and the prohability distributiod, (f) frpm which S, was
of a single draw from a distribution (although the distribat rawn. LetNy = Zfefé’ Si (f)'_ Ni 'S_ the total value
itself might be a mixture) and cannot model the additive na®f !l observed spectral frequencies at timelLet £, =
ture of the data. Zfe]—‘f P,(f) be the total probability of all observed frequen-
The model of Equatiofil2 is nearly identical to the one-Cies att. The probability distribution of5{", given that the
sided model for Probabilistic Latent Semantic Analysis, in frequencies i}’ are known to have been drawn exacily
troduced by Hoffman[]9], with the distinction that whereastimes cumulatively is easily shown to be given by tegative
the original PLSA model characterizes random variables adultinomial distribution [10]:
documents and words, we refer instead to time and frequen- D(N? + 3 e mm Si(S)) o o
cies. Also, while the one-sided PLSA specifies a probability”(S;") = TN fer(tsm(f) n 1)P(f?[tt IT P
distribution over documents, in our model we do not have a trLlfery ATt feFm

similar probability distribution over the time variable _ (6)
whereF;™ is the set of all frequency componentsSfi. The

expected value of any ter{"( /) whose probability is spec-
ified by Equatiofib is given Iy
We can estimate the parameters of the generative model in P.(f)
Equation® forS using the Expectation Maximization algo- E[S]*(f)] = N? @
rithm [9]. In the expectation step of the EM algorithm at each :
time ¢ we estimate tha posteriori probabilities for the multi- We now describe the actual learning procedures to estimate
nomial bases conditioned on the observation of a frequgncy model parameters and missing spectral components. We iden-
as: tify two situations, stated in order of increasing compigxi

Pslf) = P (2)P(f]2) (3) as (a) where the multinomial bases for the dR(¥|z) are

> Pi(2")P(f|2) knowna priori and only the mixture weight®;(z) are un-

In the maximization step we update the spectral-vectociipe known, and (b) where none of the model parameters are known.
mixture weightsP, (=) and data-set characteristic multinomial We address them in reverse order below to simplify the pre-

4.1. Learningthemodel parameters

basesP(f|z) as: sentation.
Pi(z) = Zf B (21f)S:(f) (4) 5.2. Learningthe M odel Parameter sfrom Incomplete Data
, P(Zf)S
D Let A be the set of all parametef3(z) and P(f|z) of the
P(f]2) = > Pz f)Su(f) (5) model defined by Equatidd 2. We derive a set of likelihood-
oo Pzl f7)Se(f) maximizing rules to estimat& from S° using the Expectation
Maximization algorithm as follows.
5. ESTIMATION WITH INCOMPLETE DATA We denote the set of draws that resulted in the the gener-

ation of S asz. The complete data specification required by
The algorithm of Sectiofi4.1 assumes that the entire spe&M is thus given by(S°,S™,z) = (S, z), whereS™ andz
trograms$ is available to learn model parameters. When theare unseen. The EM algorithm iteratively estimates theesalu
spectrograms are incomplete, several of $héf) terms in  of A that maximizes the expected value of the log likelihood
Equatiori® will be missing or otherwise unknown. Our ob-of the complete data with respect to the unseen variablégs [11
jective in this paper is to estimate the missing componentse. it optimizes:

on the data. Along the way we will also estimate the model Q(A,f\) _ Esmyz‘soyAlogP(Soa S™ z|A)
parameters themselves as necessary. o m
In the rest of the paper we use the following notation: we = Egugo 3B, 5 2logP (S, 8™, z|A) (8)

will denote theobserved regions of any spectrografass, whereA is the current estimate of. Since the draws that

and themissing regions asS,,,. Within any spectral vector .
S; of S, we will represent the set of observed components agompose any spectrus) are independent of those that com-

52 and the missing components &%'. S¢(f) and Si(f) pose any othes;,, EquatioB simplifies to:.
will refe_r to spec.mc frequency components Sf and S;”_ QA A) = Z Esmsg,AEzt\st,AZOQP(StOStma z|A)  (9)
respectively 7y will refer to the set of frequencies for which 7

1 H 1RO
thi Va?'”e.s (.)St are knownj.e. the set of frequenmes _Iﬁt ’ 2To be precise Equatiofid 6 aiHl 7 must actually be specifiedritstef
F¢ will similarly refer to the set of frequencies for which the ¢—1 o, 1: however, given the assumption in Equaiin 1, EquaTion Tewh
values ofS; are missingi.e. the set of frequencies ifi;". is the primary equation of interest remains valid.




wherez; is the set of draws that composé&e Optimizing 6. EXPERIMENTAL EVALUATION

Equatior® with respect td, and invoking Equatioll7 leads
In this section we will evaluate the algorithms of Secfibm5 o

us to the following update rules:
several examples of spectrograms with missing time-freque
Pelf) = Pi(2)P(fz) (10) regions, showing both their convergence and effectiveaess
‘ YL BR(()P(flZ) imputation. In our examples the spectrograms are from com-

g0 plex musical recordings with multiple, additive concutren

_ (/) ! - ;

Ny = Z P (11)  spectral patterns. Such data are particularly difficultnte i

rerp pute using conventional algorithms.

Si(f) = Sulf)if feFy

NP(f) if feF" (12) 6.1. Illustrative example

Pi(z) = Zf Pt(z|f)5t(f) (13) We first evaluate our proposed approach with an illustrative
> 2o P2 f)Se(f) example. The input data in this case consisted of a synthetic
S P (2| f)8e(f) piano recording of some isolated notes and subsequently of a
P(flz) = i v (14)  mixture of these notes. We removed a triangular time-fraque
Zf’ > Pe(2]f)Se(f) section of the part where the multiple notes took place. We

trained our model using the isolated note sections and using

_Note thatS;(f) are also the minimum mean-squared €Sy proposed model we learned 60 multinomial bases which
timates of the terms i8™. The above update rules thus also .« then used to impute the missing values. Figlire 3 shows
implicitly impute the missing values of the data. both the original spectrogram (with the missing region redrk

In some situations the multinomial basesf|z) may be by the dotted line) and the reconstructed spectrogram. As
avallable_, for instance when they have bger_1 Iea_rned separat 5 comparator we also show the complete spectrograms ob-
from regions of the data t_hat have no missing t_me-freqqenckined by imputation of the missing regions using SVD and K-
components. In such situations, only the mixture weight$,a5rest neighbors, two algorithms which are two commonly

Fi(z) need to be learned for any incomplete spectral vectofiseq models that often perform very well in imputation prob-

S in order to estimaté, (f). This can be achieved simply by |emg [3,[12]. SVD in particular also models the data addi-

iterations of Equatioris 1. MT.112 &nd 13. tively and may be expected to capture additive patterns.
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Fig. 3. Comparison of three data imputation approaches on

a simple problem. The missing data area is denoted by the

Fig. 2. Likelihood of observed datd’ (solid line) and com- dashed black line in all plots. The first plot from the left also
plete spectrogram® (dashed line) as a function of iteration the results from K-NN imputation, the second from SVD im-
putation, the third using our proposed model and the fosrth i

for the data in FigurEl6.
the ground truth.

The likelihood of the model for the observed data is guar-
We note that even in this simple problem the K-NN ap-

anteed to converge monotonically, and that has been vatidat
with multiple experiments. The model likelihood over both proach does a poor job of modeling all three notes and in-

the observed and the imputed data is not guaranteed to istead averages out the imputed data thus creating a visibly
crease all the time. However, after the first few iterationsand audibly incorrect reconstruction. The SVD imputation
and once the imputation becomes increasingly plausibée, ths more successful, appropriately borrowing elements 1o re
model likelihood always converges and does so monotonionstruct the coinciding notes. However this approachaann

cally. Figurd® shows the model’s likelihood convergenae tr guarantee that the the imputed output will be non-negative
jectory for the experiment in the next section. (as required for magnitude spectra) and can potentiallymet



negative values which must be either set to zero, or be recti- Ground Truth Missing Data Input
fied, resulting in musical noise. The proposed method prop-
erly layers elements of multiple notes to impute the missing
data and does not suffer from producing negative values. The
result is almost indistinguishable from the ground truth.
Although our approach s not as fast as the k-nearest neigh-
bors approach, it is an order of magnitude faster than the = B SEEiees | FEE Ly SEEL e,
SVD approach since each iteration involves the evaluation o |+~ i ' ;
a small number of inner products as opposed to the computa- —
tion of an entire SVD. The computation times for the above
example were 0.7 seconds for k-nearest neighbors, 90 sec-
onds for the SVD and 8 seconds for our proposed approach.
Simulations were run on an ordinary laptop computer.
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6.2. Real-world examples
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In this section we will consider some complex cases derived =
out of real-world recordings with challenging missing data

cases. We will first examine a more complex case of the above

example where we attempt to fill a large continuous gap irFig. 4. Example reconstruction of a gap filling experiment.
the spectrogram for a complex musical piece. The sectiomhe leftmost plot shows the actual data, the second plotshow
with the gap was a five second real piano recording of Bach'the input with the large gap removing about 15% of the data,
three-part piano invention #3 in D - BWV 8709]13]. The sizewe have zoomed into the region of the gap by not plot-
of the gap was 4.3 seconds by 3 kHz at its widest extenting some of the higher frequency content. the third plot is
We also used 10 seconds of data from another piano pie¢ke SVD reconstruction and the fourth plot is our proposed
(two-part invention #3 in D -BWV 774) which provided the method.

needed information to impute the missing data. We extracted

60 multinomial bases while training on both the complete and

the incomplete data. As a comparator, we also reconstructed

the spectrogram using a rank-60 SVD. The sampling rate wagong "Back in Black” by the band AC/DC and we trained on
14700Hz and the spectrum size was 1024 points The imputan eight second recording by the same band playing a differ-
tion results are shown in figuf& 4. One can find some visuant song ("Highway to Hell”). The sampling rate was once
inconsistencies using the SVD most noticeably in the rougheagain 14700Hz and the spectrum size was 1024 points. As
texture of the reconstructed area. In contrast our appn@ach a comparator we have also reconstructed the spectrogram us-
sults into visually more plausible results. We also invee t ing rank-120 SVD. The SVD clearly underperforms in both
spectrograms back to the time domain in order to perform #he audible and the visual reconstruction in this experimen
listening evaluation. In order to accurately compare tlie ar whereas our proposed method results in a plausible, althoug
facts caused by the imputation we used the phase values froas expected non-exact, reconstruction.

the original signal. The proposed method resulted in vilfua

inaudible reconstruction artifacts whereas the SVD apgroa . Finally we presenta very challenging case where the miss-
introduced audible noiBe ing data was evenly and randomly distributed across the in-

In the next example we attempt to perfobandwidth ex- put. For this test a smoothed random binary mask was ap-

pansion. Audio signals can often be bandlimited by havingpIieOI to an inpu'F sound so that about 60% of the data was
been passed through a restrictive channel, such as ateltephorre]m(_)ved;c The input Isound was bsarnplded as 22256222 a_nd
The spectral excision here is very systematic and consister{ '€ ime-frequency values were obtained using a point

We learn a set of 120 multinomial bases from other widebanaho{t't'm? 6Foour|?tr_ tran.sflorn;\. we model;ed the dﬁtgo"\gtc[)a
training data, and use these to infer the missing spectral coMixture o multinomials. As a comparator, a rank-

tent of the bandlimited signal. This presumes that theitngin was also l_Jsed to reconstruct t_he spectrogram. The resuits of
data is similar in nature to the testing data (i.e. if we need ¢ this experiment are shown in figuze 6.

resample piano music we should train on piano musw?). AN \We note that the SVD model results in grainier recon-
example of this is shown in figuid 5. We removed 80% Ofg¢,ction in the missing parts, whereas the proposed model
the upper frequencies of a ten second rock recording of thg,gits in a smoother output. Our proposed model results in

3The soundfiles for all the examples in the remainder of thitice are reconstructed audio signals of significantly improved gual

attached in the original PDF file of this paper. They can bgqtlaising any 1 N€ prqcessing artifacts are virtually imPEFQGPtible saithe
PDF reading software that allows the viewing of PDF attadfisie sound is carefully compared to the original input.
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Fig. 5. Example reconstruction of a bandwidth expansionFig. 6. Example reconstruction of a music signal with a bi-
In the leftmost plot the original signal is shown. The seconchary mask occluding roughly 60% of the samples. The left-
plot displays the bandlimited input we used where 80% ofmost plot shows the original signal, the second plot shoes th
the top frequencies were removed. The third plot is the SVDnasked input we used for the reconstruction, the third plot
reconstruction and the fourth plot is the reconstructiangis shows the reconstruction using the SVD and the fourth one
our model. shows the reconstruction using our model.
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