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ABSTRACT

With the recent attention to audio processing in the time -
frequency domain we increasingly encounter the problem of
missing data. In this paper we present an approach that allows
for imputing missing values in the time-frequency domain of
audio signals. The presented approach is able to deal with
real-world polyphonic signals by performing imputation even
in the presence of complex mixtures. We show that this ap-
proach outperforms generic imputation approaches, and we
present a variety of situations that highlight its utility.

1. INTRODUCTION

In this paper we address the problem of estimating missing re-
gions of time-frequency representations of audio signals.The
problem of missing data in the time-frequency domain occurs
in several scenarios. The problem is common in speech pro-
cessing algorithms that employ computational auditory scene
analysis or related methods to mask out time-frequency com-
ponents for recognition, denoising or signal separation [1, 2].
An increasing number of audio processing tools allow inter-
active spectral editing of audio signals, which can often result
in the excision of time-frequency regions of sound. In yet
other scenarios, such as in signals that have passed througha
telephone or have encountered other linear or non-linear fil-
tering operations, excision of time-frequency regions of the
signal can occur naturally.

In a majority of these scenarios the goal is to resynthesize
the audio from the incomplete time-frequency characteriza-
tions. To do so, the “missing” regions of the time-frequency
representations must first be “filled in” somehow, in order to
effect the transform from the time-frequency representation to
a time-domain signal. In certain cases the missing values can
be set to zero and the resulting reconstructions do not suffer
heavily from perceptible artifacts. In most cases however a
moderate to severe distortion is easily noticeable. This distor-
tion can render speech recordings unintelligible, or severely
reduce the quality of a music recording thereby distracting
the listener.

Although existing generic imputation algorithms [3] can
be used to infer the values of the missing data they are of-
ten ill-suited for use with audio signals and result in audible
distortions. Other algorithms such as those in [1, 4] are suit-
able for imputation of missing time-frequency components in

speech, or in the case of [5] musical audio. However, these
algorithms typically exploit continuity in spectral structures
and are implicitly aided by the fact that the targeted record-
ings usually contain signals from either a single source (the
voice), or repetitions of constant-state fixed spectra. Gen-
eral audio or music recordings however include a variety of
sounds, many of which are concurrently active at any time,
and each of which has its own typical patterns, and are hence
much harder to model.

The algorithm proposed in this paper characterizes time-
frequency representations as histograms of draws from a mix-
ture model as proposed in [6]. Being a mixture, the model is
implicitly capable of representing multiple concurrent spec-
tral patterns. The process of imputing missing values then
becomes one of learning from incomplete data. Experimen-
tal evaluations show that the imputed spectral constructions
obtained with our algorithm result in distinctly better resyn-
thesized signals than those obtained from other common im-
putation methods.

2. MISSING DATA IN THE TIME-FREQUENCY
DOMAIN

Before we proceed, we briefly describe the time-frequency
representations used to characterize the signal, and present
some examples with missing data. We will assume that the
time-frequency representations are derived through short-time
Fourier transformation (STFT) of the signal [7]. The short-
time Fourier transform converts an audio signal into a se-
quence of vectors, each of which represents the Fourier spec-
trum of a short (typically 20-60ms wide) segment orframe
of the signal. The STFT of a signal can be inverted to the
original time-domain signal by an inverse short-time Fourier
transform. Being complex, the STFT of the signal has both
a magnitude and a phase. However most sound processing
algorithms for denoising, recognition, synthesis and editing
operate primarily on the magnitude since it is known to rep-
resent most of the perceptual information in the signal – the
phase contributes mainly to the perceived quality of the sig-
nal rather than its intelligibility. Recovery of full or partial
missing phase information can be done with good results us-
ing the technique in [8]. Since the phase reconstruction is
highly dependent on the magnitude values we will primarily
examine the reconstruction of the magnitudes of the missing
time-frequency terms in this paper.



Figure 1a shows an example of the magnitude of the STFT
of a speech signal that is a mixture of a spoken utterance and
a phone ring. We will refer to matrix-like representations
of the magnitudes of STFTs of a signal, such as the one in
Figure 1a as “magnitude spectrograms”, or simply as “spec-
trograms” in this paper. Spectral magnitudes have the prop-
erty that when multiple sounds co-occur, the spectral magni-
tudes of the mixed signal are approximately (but not exactly)
equal to the sum of the spectral magnitudes of the compo-
nent sounds1. This is apparent in the spectrogram in Figure
1a which shows the distinctive spectral patterns of both the
speech and phone ring.
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Fig. 1. a. Magnitude spectrogram of a mixture of a spoken
utterance and a phone ring. The spectrogram clearly shows
the spectral patterns for both signals – the wavy lines and
the clouds of data are derived from the spoken word and the
phone ring is represented by the three horizontal, paralleland
thin lines. b. An incomplete spectrogram with missing re-
gions. In this example time-frequency components deemed
not to belong to the main speech signal have been erased by
an automatic algorithm.c. Another example of an incomplete
spectrogram. Here time-frequency regions dominated by the
phone ring have been manually edited out.

A spectrogram with “missing” data is one where some

1Although in theory this statement holds true for spectralpower when the
component signals are uncorrelated, in practice phase cancelations in finite
analysis windows make this true for spectral magnitudes raised to a power
that is closer to 1.0 than 2.0.

time-frequency components have been lost or erased due to
some reason. Figures 1b and 1c show examples of spectro-
grams with missing data. In these examples time-frequency
regions of the spectrogram have been erased to eliminate the
phone ring from the signal, automatically in one case and by
manual editing in the other. Missing data may also occur for
other reasons, such as systematic filtering etc. In order to re-
construct a time-domain signal from these incomplete spec-
trograms the values in the missing regions must be imputed
somehow. A simple technique is to simply floor these terms
to some threshold value; however time-domain signals recon-
structed from such spectrograms will often contain audible
and often unacceptable artefacts. A more principled approach
is required to reconstruct the missing regions in an acceptable
manner.

3. MODELING THE SPECTROGRAM

At the outset, we would like to specify the terminology and
notation we will use. We will denote the (magnitude) spec-
trogram of any signal asS. The spectrogram consists of a
sequence of (magnitude) spectral vectorsSt, 0 ≤ t < T ,
each of which in turn consists of a number of frequency com-
ponentsSt(f), 0 ≤ f < F . All of these terms, being magni-
tudes are non-negative.

In our model we viewS as a scaled version of a histogram
Ŝ comprising purely integer valued components, such that
S = C−1

Ŝ; however the scaling factorC cancels out of all
equations in our formulation and is thus not required to be
known. In the rest of the paper, we therefore treatS itself as a
histogram and do not explicitly invoke the scaling factor, be-
sides assuming that it is very large so that for anyŜt(f) such
thatSt(f) = C−1Ŝt(f) the following holds:

C−1Ŝt(f) ≈ C−1(Ŝt(f) + 1). (1)

4. MODEL DEFINITION

We model each spectral vectorSt as a scaled histogram of
draws from a mixture multinomial distribution. Per our model,
St is generated by repeated draws from a distributionPt(f),
wheref is a random variable over the frequencies{1, . . . , F},
andPt(f) is a mixture multinomial given by

Pt(f) =
∑

z

Pt(z)P (f |z) (2)

Herez represents the identity of the multinomial components
in the mixture. P (f |z) are the multinomial components or
“bases” that compose the mixture. Note that the component
multinomialsP (f |z) are not specific to any givenSt but are
the same at allt. P (f |z) are thus assumed to be characteristic
to the entire data set of whichS is representative. The only
parameter that is specific tot are the mixture weightsPt(z).

The model essentially characterizes the spectral vectors
themselves as additive combinations of histograms drawn from



each of the multinomial bases. Consequently, it is inherently
able to model complex sounds such as music that are addi-
tively composed by several component sounds. This is in
contrast to conventional models used for data imputatione.g.
[1, 2, 4], that model the spectral components as the outcome
of a single draw from a distribution (although the distribution
itself might be a mixture) and cannot model the additive na-
ture of the data.

The model of Equation 2 is nearly identical to the one-
sided model for Probabilistic Latent Semantic Analysis, in-
troduced by Hoffman [9], with the distinction that whereas
the original PLSA model characterizes random variables as
documents and words, we refer instead to time and frequen-
cies. Also, while the one-sided PLSA specifies a probability
distribution over documents, in our model we do not have a
similar probability distribution over the time variablet.

4.1. Learning the model parameters

We can estimate the parameters of the generative model in
Equation 2 forS using the Expectation Maximization algo-
rithm [9]. In the expectation step of the EM algorithm at each
time t we estimate thea posteriori probabilities for the multi-
nomial bases conditioned on the observation of a frequencyf

as:

Pt(z|f) =
Pt(z)P (f |z)∑
z′ Pt(z′)P (f |z′)

(3)

In the maximization step we update the spectral-vector-specific
mixture weightsPt(z) and data-set characteristic multinomial
basesP (f |z) as:

Pt(z) =

∑
f Pt(z|f)St(f)

∑
z′

∑
f Pt(z′|f)St(f)

(4)

P (f |z) =

∑
t Pt(z|f)St(f)∑

f ′

∑
t Pt(z|f ′)St(f)

(5)

5. ESTIMATION WITH INCOMPLETE DATA

The algorithm of Section 4.1 assumes that the entire spec-
trogramS is available to learn model parameters. When the
spectrograms are incomplete, several of theSt(f) terms in
Equation 4 will be missing or otherwise unknown. Our ob-
jective in this paper is to estimate the missing components
on the data. Along the way we will also estimate the model
parameters themselves as necessary.

In the rest of the paper we use the following notation: we
will denote theobserved regions of any spectrogramS asSo

and themissing regions asSm. Within any spectral vector
St of S, we will represent the set of observed components as
So

t and the missing components asSm
t . So

t (f) andSm
t (f)

will refer to specific frequency components ofSo
t and Sm

t

respectively.Fo
t will refer to the set of frequencies for which

the values ofSt are known,i.e. the set of frequencies inSo
t .

Fm
t will similarly refer to the set of frequencies for which the

values ofSt are missing,i.e. the set of frequencies inSm
t .

5.1. The Conditional Distribution of Missing Terms

In the first step we obtain the conditional probability distri-
bution of the missing termsSm

t (f) given the observed terms
So

t and the probability distributionPt(f) from whichSt was
drawn. LetNo

t =
∑

f∈Fo

t

So
t (f). No

t is the total value
of all observed spectral frequencies at timet. Let Po,t =∑

f∈Fo

t

Pt(f) be the total probability of all observed frequen-
cies att. The probability distribution ofSm

t , given that the
frequencies inFo

t are known to have been drawn exactlyNo
t

times cumulatively is easily shown to be given by thenegative
multinomial distribution [10]:

P (Sm
t ) =

Γ(No
t +

∑
f∈Fm

t

Sm
t (f))

Γ(No
t )

∏
f∈Fm

t

Γ(Sm
t (f) + 1)

P
No

t

o,t

∏

f∈Fm

t

Pt(f)Sm

t
(f)

(6)
whereFm

t is the set of all frequency components inSm
t . The

expected value of any termSm
t (f) whose probability is spec-

ified by Equation 6 is given by2:

E[Sm
t (f)] = No

t

Pt(f)

Po,t

(7)

We now describe the actual learning procedures to estimate
model parameters and missing spectral components. We iden-
tify two situations, stated in order of increasing complexity
as (a) where the multinomial bases for the dataP (f |z) are
known a priori and only the mixture weightsPt(z) are un-
known, and (b) where none of the model parameters are known.
We address them in reverse order below to simplify the pre-
sentation.

5.2. Learning the Model Parameters from Incomplete Data

Let Λ be the set of all parametersPt(z) andP (f |z) of the
model defined by Equation 2. We derive a set of likelihood-
maximizing rules to estimateΛ fromS

o using the Expectation
Maximization algorithm as follows.

We denote the set of draws that resulted in the the gener-
ation ofS asz. Thecomplete data specification required by
EM is thus given by(So,Sm, z) = (S, z), whereSm andz

are unseen. The EM algorithm iteratively estimates the values
of Λ that maximizes the expected value of the log likelihood
of the complete data with respect to the unseen variables [11],
i.e. it optimizes:

Q(Λ, Λ̂) = E
Sm,z|So,Λ̂logP (So,Sm, z|Λ)

= E
Sm|So,Λ̂E

z|S,Λ̂logP (So,Sm, z|Λ) (8)

whereΛ̂ is the current estimate ofΛ. Since the draws that
compose any spectrumSt are independent of those that com-
pose any otherSt′ , Equation 8 simplifies to:.

Q(Λ, Λ̂) =
∑

t

ESm

t
|So

t
,Λ̂Ezt|St,Λ̂

logP (So
t Sm

t , zt|Λ) (9)

2To be precise Equations 6 and 7 must actually be specified in terms of
C−1

N
o

t
+1; however, given the assumption in Equation 1, Equation 7, which

is the primary equation of interest remains valid.



wherezt is the set of draws that composedSt. Optimizing
Equation 9 with respect toΛ, and invoking Equation 7 leads
us to the following update rules:

Pt(z|f) =
Pt(z)P (f |z)∑
z′ Pt(z′)P (f |z′)

(10)

Nt =
∑

f∈Fo

t

So
t (f)

Pt(f)
(11)

S̄t(f) = St(f) if f ∈ Fo
t

NtPt(f) if f ∈ Fm
t (12)

Pt(z) =

∑
f Pt(z|f)S̄t(f)

∑
z′

∑
f Pt(z′|f)S̄t(f)

(13)

P (f |z) =

∑
t Pt(z|f)S̄t(f)∑

f ′

∑
t Pt(z|f ′)S̄t(f)

(14)

Note thatS̄t(f) are also the minimum mean-squared es-
timates of the terms inSm. The above update rules thus also
implicitly impute the missing values of the data.

In some situations the multinomial basesP (f |z) may be
available, for instance when they have been learned separately
from regions of the data that have no missing time-frequency
components. In such situations, only the mixture weights
Pt(z) need to be learned for any incomplete spectral vector
St in order to estimatēSt(f). This can be achieved simply by
iterations of Equations 10, 11, 12 and 13.

0 5 10 15 20 25 30 35 40 45 50
−9.8

−9.7

−9.6

−9.5

−9.4

−9.3

−9.2

−9.1

−9

−8.9
Model likelihoods over training iterations

Iteration #

Li
ke

lih
oo

ds

 

 

Likelihood over observed data
Likelihood over all data

Fig. 2. Likelihood of observed dataSo (solid line) and com-
plete spectrogramS (dashed line) as a function of iteration
for the data in Figure 6.

The likelihood of the model for the observed data is guar-
anteed to converge monotonically, and that has been validated
with multiple experiments. The model likelihood over both
the observed and the imputed data is not guaranteed to in-
crease all the time. However, after the first few iterations
and once the imputation becomes increasingly plausible, the
model likelihood always converges and does so monotoni-
cally. Figure 2 shows the model’s likelihood convergence tra-
jectory for the experiment in the next section.

6. EXPERIMENTAL EVALUATION

In this section we will evaluate the algorithms of Section 5 on
several examples of spectrograms with missing time-frequency
regions, showing both their convergence and effectivenessat
imputation. In our examples the spectrograms are from com-
plex musical recordings with multiple, additive concurrent
spectral patterns. Such data are particularly difficult to im-
pute using conventional algorithms.

6.1. Illustrative example

We first evaluate our proposed approach with an illustrative
example. The input data in this case consisted of a synthetic
piano recording of some isolated notes and subsequently of a
mixture of these notes. We removed a triangular time-frequency
section of the part where the multiple notes took place. We
trained our model using the isolated note sections and using
the proposed model we learned 60 multinomial bases which
we then used to impute the missing values. Figure 3 shows
both the original spectrogram (with the missing region marked
by the dotted line) and the reconstructed spectrogram. As
a comparator we also show the complete spectrograms ob-
tained by imputation of the missing regions using SVD and K-
nearest neighbors, two algorithms which are two commonly
used models that often perform very well in imputation prob-
lems [3, 12]. SVD in particular also models the data addi-
tively and may be expected to capture additive patterns.

K−NN SVD Proposed model Ground Truth

Fig. 3. Comparison of three data imputation approaches on
a simple problem. The missing data area is denoted by the
dashed black line in all plots. The first plot from the left shows
the results from K-NN imputation, the second from SVD im-
putation, the third using our proposed model and the fourth is
the ground truth.

We note that even in this simple problem the K-NN ap-
proach does a poor job of modeling all three notes and in-
stead averages out the imputed data thus creating a visibly
and audibly incorrect reconstruction. The SVD imputation
is more successful, appropriately borrowing elements to re-
construct the coinciding notes. However this approach cannot
guarantee that the the imputed output will be non-negative
(as required for magnitude spectra) and can potentially return



negative values which must be either set to zero, or be recti-
fied, resulting in musical noise. The proposed method prop-
erly layers elements of multiple notes to impute the missing
data and does not suffer from producing negative values. The
result is almost indistinguishable from the ground truth.

Although our approach is not as fast as the k-nearest neigh-
bors approach, it is an order of magnitude faster than the
SVD approach since each iteration involves the evaluation of
a small number of inner products as opposed to the computa-
tion of an entire SVD. The computation times for the above
example were 0.7 seconds for k-nearest neighbors, 90 sec-
onds for the SVD and 8 seconds for our proposed approach.
Simulations were run on an ordinary laptop computer.

6.2. Real-world examples

In this section we will consider some complex cases derived
out of real-world recordings with challenging missing data
cases. We will first examine a more complex case of the above
example where we attempt to fill a large continuous gap in
the spectrogram for a complex musical piece. The section
with the gap was a five second real piano recording of Bach’s
three-part piano invention #3 in D - BWV 879 [13]. The size
of the gap was 4.3 seconds by 3 kHz at its widest extent.
We also used 10 seconds of data from another piano piece
(two-part invention #3 in D -BWV 774) which provided the
needed information to impute the missing data. We extracted
60 multinomial bases while training on both the complete and
the incomplete data. As a comparator, we also reconstructed
the spectrogram using a rank-60 SVD. The sampling rate was
14700Hz and the spectrum size was 1024 points The imputa-
tion results are shown in figure 4. One can find some visual
inconsistencies using the SVD most noticeably in the rougher
texture of the reconstructed area. In contrast our approachre-
sults into visually more plausible results. We also invert the
spectrograms back to the time domain in order to perform a
listening evaluation. In order to accurately compare the arti-
facts caused by the imputation we used the phase values from
the original signal. The proposed method resulted in virtually
inaudible reconstruction artifacts whereas the SVD approach
introduced audible noise3.

In the next example we attempt to performbandwidth ex-
pansion. Audio signals can often be bandlimited by having
been passed through a restrictive channel, such as a telephone.
The spectral excision here is very systematic and consistent.
We learn a set of 120 multinomial bases from other wideband
training data, and use these to infer the missing spectral con-
tent of the bandlimited signal. This presumes that the training
data is similar in nature to the testing data (i.e. if we need to
resample piano music we should train on piano music). An
example of this is shown in figure 5. We removed 80% of
the upper frequencies of a ten second rock recording of the

3The soundfiles for all the examples in the remainder of this section are
attached in the original PDF file of this paper. They can be played using any
PDF reading software that allows the viewing of PDF attachments.

Ground Truth Missing Data Input

SVD Imputation Proposed Imputation

Fig. 4. Example reconstruction of a gap filling experiment.
The leftmost plot shows the actual data, the second plot shows
the input with the large gap removing about 15% of the data,
we have zoomed into the region of the gap by not plot-
ting some of the higher frequency content. the third plot is
the SVD reconstruction and the fourth plot is our proposed
method.

song ”Back in Black” by the band AC/DC and we trained on
an eight second recording by the same band playing a differ-
ent song (”Highway to Hell”). The sampling rate was once
again 14700Hz and the spectrum size was 1024 points. As
a comparator we have also reconstructed the spectrogram us-
ing rank-120 SVD. The SVD clearly underperforms in both
the audible and the visual reconstruction in this experiment,
whereas our proposed method results in a plausible, although
as expected non-exact, reconstruction.

Finally we present a very challenging case where the miss-
ing data was evenly and randomly distributed across the in-
put. For this test a smoothed random binary mask was ap-
plied to an input sound so that about 60% of the data was
removed. The input sound was sampled as 22050Hz and
the time-frequency values were obtained using a 1024 point
short-time Fourier transform. We modeled the data with a
mixture of 60 multinomials. As a comparator, a rank-60 SVD
was also used to reconstruct the spectrogram. The results of
this experiment are shown in figure 6.

We note that the SVD model results in grainier recon-
struction in the missing parts, whereas the proposed model
results in a smoother output. Our proposed model results in
reconstructed audio signals of significantly improved quality.
The processing artifacts are virtually imperceptible unless the
sound is carefully compared to the original input.
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Ground Truth Missing Data Input
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Fig. 5. Example reconstruction of a bandwidth expansion.
In the leftmost plot the original signal is shown. The second
plot displays the bandlimited input we used where 80% of
the top frequencies were removed. The third plot is the SVD
reconstruction and the fourth plot is the reconstruction using
our model.

7. CONCLUSIONS

In this paper we presented a data imputation approach that is
best suited for non-negativedata, and presented its application
in restoring sounds with missing time-frequency components.
We showed how interpreting time-frequency distributions as
histograms or counts data, we can decompose them in a man-
ner which is more appropriate than generic techniques based
on the SVD and K-NN methods.
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