The Markov Selection Model for concurrent speech
recognition

Paris Smaragdis®!, Bhiksha Raj"!

@ University of Illinois, Urbana Champaign, IL, USA
Adobe Systems Inc.
bCarnegie Mellon University, Pittsburgh, PA, USA

1. Introduction

Speech recognition of concurrent speakers is a significantly hard task. Al-
though contrived as a scenario, its solution can be of great use to noise-robust
speech recognition and can provide insight on how to deal with some of the
hardest problems in acoustic sensing. Current models for speech recognition
cannot be easily extended to deal with additive interference, and often need to
be complemented with a separation algorithm that preprocesses the data before
recognition takes place. This is often a risky combination since the output of a
separation algorithm is not guaranteed to be recognizable speech, at least not
by a speech recognition system.

A different temporally-sensitive approach characterizes the speech from all
concurrent sources (speakers) by HMMs. The sum of the speech is then char-
acterized by a factorial HMM, which is essentially a product of the HMMs
representing the individual sources. Inference can be run on this factorial HMM
to determine what was spoken by individual speakers. The problem of course
is computational complexity: the number of states in the factorial HMM is the
product of the states in the HMMs for individual sources, i.e. is polynomial in
the number of concurrent sources. The time taken for inference is polynomial
in twice the number of sources, requiring complicated variational methods to
make it tractable.

In this paper we introduce a Markov selection model coupled with a prob-
abilistic decomposition that allows us to recognize additive speech mixtures
in time that is linear in the number of concurrent sources. We make use of
speaker-dependent models, which when used on speech mixtures can obtain
reliable estimates of all the spoken utterances. In the following sections we de-
scribe an additive model which has been used in the past for source separation,
then describe how it can be incorporated into an HMM-based speech recognition
framework to form the proposed Markov selection model. Finally we present
results from experiments based on the ICSLP 2006 speech separation challenge
data (Cooke, 2006).

Preprint submitted to Elsevier March 15, 2011

2. Additive Models of Sounds

Recently we have seen wide use of non-negative factorization methods with
applications to source separation from single channel recordings (Raj and Smaragdis,
2005; Virtanen and Cemgil, 2009; Smaragdis, Shashanka, and Raj, 2009). In
this paper we will make use of such a model and adapt it for use in a speech
recognition system. Let us begin by reviewing how these models work and also
setup the notation used henceforth.

Many modern source separation methods use prior knowledge of the sources
in a mixture. A common scenario is one where for two speakers, speaker a and
speaker b, we have training recordings z%(¢) and z°(t), and a mixture m(t) =
y®(t) + y°(t). Our goal is then to use the information extracted from x%(t) and
2%(t) to estimate y®(¢) and y°(¢) by observing only m(t).

A very efficient and capable approach to perform this task is by using non-
negative spectrum factorization methods. Here we will use a probabilistic ver-
sion of these techniques which allows us to later incorporate it in a Markov
model. In this setting, we extract the spectral magnitude of the observed sig-
nals at regularly sampled analysis frames:

X(f) < || DFT(2(T (T — 1) + 1,...,T7))|l, (1)

where T is the size of the analysis frame we choose to use. Doing so we can
obtain X¢ and X!, the magnitude spectra for signals from speakers a and b. We
model magnitude spectra as histograms drawn from a mixture of multinomial
distributions. This leads to the following latent variable model:

M
X, (f) ~ Y P(fl2)Pr(2), (2)

where the symbol ~ represents drawing from a distribution, P(f|z) represents
the z'® component multinomial and P, (z) is the probability with which it is
mixed to produce X,, the magnitude spectrum vector for the 7** analysis frame.
M is the total number of component multinomials. The component multinomi-
als (which we will refer to as “multinomial bases”) P(f|z) for any speaker and
the corresponding mixture weights P, (z) for each spectral vector can now be
estimated using an Expectation-Maximization algorithm.

This is essentially a simplified pLSI model (Hoffmann, 1999), but looking
past its probabilistic formulation we note that P(f|z) is in fact a normalized
spectrum. The set of all multinomials can thus be viewed as a dictionary of
spectral bases, Equation 2 can be viewed as an algebraic decomposition and M
as the rank of this decomposition. P-(z) can be seen as weights that tell us
how to put the dictionary elements together to approximate the input at hand.
Thus Equation 2 can be written as:

X-(f) = X:(f) = g- Y P(f|2)Pr(2), (3)

where gr = > X-(f). The scalar g, ensures that the eventual approximation
is scaled appropriately to match the input. This can also be thought of as a
non-negative matrix factorization (Lee and Seung, 1999) in which P(f|z) and
P, (z) correspond to the two non-negative factors.

There are two key observations we need to make in order to be able to extract
y®(t) and y°(t) from m(t). The first one is that in general it will hold that:

Mo (f) = Y2(f) + Y7 (). (4)

This means that the magnitude spectrogram of the mixture of the two sources
will be approximately equal to the sum of the magnitude spectrograms of the two
sources. Although due to phase cancellations we cannot achieve exact equality,
this assumption has been used with great success so far and it is largely correct
for most practical purposes.

The second observation is that the multinomial bases P*(f|z), that we can
estimate from X2, can describe Y% better than the bases P°(f|z) estimated
from X?, and vice versa, i.e.:

« M
Dk <g—:||ZPa(f|z)PT(z)> <

Dkr, <g—f|| ZPb(f|Z)Pr(2)>

and vice-versa. Where Dkr,(+) denotes the Kullback-Leibler divergence, P%(f|z)
and PY(f|z) are the dictionaries learned from z® and z°, and each P.(z) is
the optimal weight distribution for approximating Y* given each of the two
dictionaries.

These two observations then allow us to assume that the observed mixture
M, (f) can be explained well using both dictionaries P?(f|z) and P?(f|z):

(5)

M
M (f) ~ g, Pr (@) 3 P(f2)Pr(2)
: (6)
+9.P, ()Y PP(f12)PA(2),

for two optimally selected instances of Py (z). In addition to being well explained,
we would expect to see most of the energy of each speaker being represented by
the part of this summation that includes the multinomial bases for that speaker.

For both the dictionary learning and the weight estimation parts, we can
use the Expectation-Maximization algorithm to estimate any of the quantities
in the above equations. The update equations for any dictionary element P(f|z)

and its corresponding weight P, (z) for an input X, (f) are:

B Zf P.,.(Zlf)X‘r(f)
T RG] ’
PUfle) - > P(z|)X (f) (8)

2 PEINXA()

where: P (P
P(elf) = AU)
> Pr(2")P(f2")

The dictionary of multinomial bases for each of the sources may be learned
from separate training data. These can be used to decompose mixed recordings
(i.e. to find the mixture weights P7(z) for all bases). Once the decomposition
in Equation 6 is achieved, we can then recompose separately Y,2(f) and Y’(f)
and then invert them back to the time domain to obtain our separated estimates
of y(t) and y®(t). The performance of this approach can vary depending on
various details we do not present here, but in its better forms this has been shown
to achieve suppression of unwanted speakers up to 20dB or more (Smaragdis
et al., 2009).

However since the objective of this paper is to recognize as opposed to sep-
arate, it would be more beneficial to use direct recognition using this model as
opposed to separating and then recognizing. To do so we will incorporate this
model into a hidden Markov model structure as shown in the following section.

3. The Markov Selection Model

8.1. Model definition

In this section we will introduce an application of the model and the ob-
servations made in the previous section as applied on temporal data. A con-
ventional Hidden Markov Model is a doubly-stochastic model comprising an
underlying Markov chain and observation probability densities at each state in
the chain. The parameters characterizing the model are the initial state prob-
abilities TI = {P(s)Vs} representing the probabilities of beginning a Markov
chain at each state, a transition matric T = {P(s;|s;)Vs;,s;} that represents
the set of all transition probabilities between every pair of states, and a set of
state output distributions B = {P(x|s)Vs} representing the probability of gen-
erating observations from each of the states. The graphical model for the HMM
is shown in Figure 1.a.

The model we propose extends this conventional model as shown in Figure
1.b. Instead of states generating observations directly, they generate the labels
z; = {2z} of sets of multinomial bases that will produce observations. Thus,
the output distributions of the HMM are B = {P(z;|s)Vs}. To generate ob-
servations, the multinomial bases in zs; are “mixed” according to weights w,.
The vector of weights for all bases, w, which actually represents a multinomial
over z, is drawn from a distribution which, for this paper, we will assume is

(V)
\]

[
—

Y

<

@) (b) “-

Figure 1: (a) A graphical representation of a conventional HMM. The state at each time is
dependent on the state at the previous time and generates the observation. Dotted arrows
indicate injection of parameters. (b) The proposed Markov selection model. The state selects
the multinomial bases that generate the observation. The bases are “mired” by a weight w.
This additional dependence is highlighted by the dotted outline.

uniform. Only the bases selected by the state (and their weights, appropriately
normalized) are used to generate the final observation. Since the underlying
Markov process contributes to data generation primarily by selecting bases, we
refer to this as the Markov Selection Model. Figure 2 illustrates the generation
process with an example.

A key aspect of the above model is that the weights w, are not fixed but
are themselves drawn for every observation. Further, the draw of the weights
themselves is not dependent on the state in any manner, but is independent.
The actual probability of an observation depends on the mixture weights. Thus,
in order to compute the complete likelihood of an observation we must integrate
the product of the weight-dependent likelihood of the observation and the prob-
ability of drawing the mixture weight vector over the entire probability simplex
on which w resides.

We note that the primary use for this model is that of inferring the under-
lying state sequence given this model. To do so, it is sufficient to determine
the Markov-chain-independent a posteriori probabilities Pi,q(s|X) of the states
for each observation X, and utilize those for estimating the state sequence; the
actual observation probability P(X|s) is not required. Indeed, this observation
is also utilized in several approaches to HMM-based speech recognition systems
where the Markov-chain-independent a posteriori probabilities of states are ob-
tained through models such as Neural Networks (Bourlard and Morgan, 1998)
for inference of the underlying word sequence.

As a first step, instead of explicitly integrating over the space of all weights
to obtain the likelihood of the observation, we will use the Markov-chain-
independent a posteriori state probability for all inference and learning of Markov
chain parameters. Secondly, we will approximate the a posteriori state proba-

T

Figure 2: A two state left-to-right Markov model is shown at the top. Fach state selects one
pair of multinomial bases. The two bases that describe each state are shown left and right as
P(f|zi). The bottom of the figure displays the input X, (f) that this model can best describe.
The left part being best described as a mizture of P(f|z1) and P(f|z2) and the right part by
P(flz3) and P(f|za).

bility by the sum of a posteriori most likely mixture weights for the Multinomial
bases selected by any state. I.e. we use the approximation:

P(z|X;) = P(2|X;) = argmax P(2'|x) = P-(2) (10)
Pina(s|X) =Y P(z|X;) = > Pr(2) = Pr(z) (11)

where P (z) is the same value referred to in Equation 8. In other words, we
derive the mixture weights that maximize the likelihood of the portion of the
graph enclosed by the dashed outline in Figure 1.b. We do so without reference
to the Markov chain and utilize them to compute the markov-chain-independent
conditional probabilities for states, which will be used in the inference. This
effectively factors the observation dependency and the state dependency of the
model.

Thus, one of the advantages conferred by the approximation is that the
model of Figure 1.b gets factored in two parts. The first (enclosed by the dashed
outline in the figure) is essentially a pLSA model that obtains w,,; and thereby
P;(z). The second, given the P.(z) computed from the first part, is effectively
an HMM with P, (z,) as state output densities. Inference and learning can
run largely independently in the two components, with the pLSA component

employed to learn its parameters, while the HMM can use the standard Baum-
Welch training procedure (Rabiner and Juang, 1986) to learn the Markov chain
parameters II and T. The two components must however combine for learning
the multinomial bases P(f|z).

3.2. Parameter estimation

In order to train the distribution, we observe that the structure of Figure 1
comprises two conditionally independent structures: an upper doubly-stochastic
Markov process and a lower latent variable model, which are linked through
the variable z.. Given the conditional dependencies shown by the model, and
the assumption that P(s|X) &~ P:(zs), learning for the upper Markov chain is
strictly analogous to learning the parameters of an HMM with state emission
probability P(X|s) = Pr(zs). The parameters of this structure can hence be
learned using the Baum-Welch training procedure (Rabiner and Juang, 1986).

In the first step we compute the “emission” probability terms for each state.
Since this is locally also a maximum likelihood estimate we estimate an inter-
mediate value of the optimal weight vector by:

Fref) = z%jgj)(zﬁéf)v') (12)
5, P)X (f)

T PEIDX()

Note that the above estimation does not refer to the underlying Markov chain
or its states; all computations are local to the components within the dotted
outline of Figure 1.b. Once P, (z) has been obtained, we compute the posterior
state probability P(s|X;) = P-(zs) using Equation 11.

The forward backward algorithm can then be employed as in conventional
HMM. Forward probabilities «, backward probabilities § and state posteriors
are given by the recursions:

ar(s) =Y ar1(s) T o Pr(zs)

Pr(2) (13)

67'(5) = Z 5T+1(5/)TS,S/PT+1(ZS/)

C a(8)8.(s)
1) = S B

In the Maximization step we estimate both the transition probabilities of
the Markov chain and the dictionary elements.

The transition probabilities and initial state probabilities are estimated iden-
tically to the conventional Baum Welch procedure. The updated transition

(14)

probabilities are given by

N ar (8)Ts,5 Br41(s") Pra(zs)
'YT(S’ s) o 251752 aT(Sl)TShSQﬁTJrl (82)P‘r+1(z52) (15)

Tyy = 2, 7(5,8) (16)

> (s)

The updated initial state probabilitie P(s) of any state is simply the normalized
sum of v1(s) over all utterances in a training set.

To update the dictionary elements P(f|z,i) we use the state posteriors to
appropriately weigh Equation 8 and obtain:

S S W OP DX
PUR =5 e eGP G () a7)

Here “s: z € zs” represents the set of states which can select basis z. Update
rules for the initial state probabilities are the same as with traditional HMM
models.

)

8.3. Awoiding Local Optima

A common problem when using the above parameter estimation process is
that of local optima. As described in the previous section we essentially perform
two dependent estimation steps: that of the dictionary elements P(f|z) and that
of the temporal statistics T. These estimations are being refined in parallel and
proper convergence of both is essential. If we start with random values for the
initial estimates of P(F|z) then it is highly likely that one of the dictionary
elements that, say, belongs to the last state in the chain might best explain
data in the beginning of the input. If this happens, due to the nature of EM
training, these dictionary elements will increasingly adapt in every iteration to
explain the beginning as opposed to the end of the input. This will in turn
bias the estimation of the states and the temporal statistics and force the entire
model to quickly go through all the states in the first input frames and converge
to the last state for the majority of the input. One of the primary causes of this
problem is that adaptation of the dictionary elements is rather rapid, and once
near a local optimum it will tend to stay there and not backtrack to correct for
a mismatches in the state order.

Convergence to local optima is of course a well known problem when per-
forming optimization with EM and there are no good and efficient principled
approaches to address such issues. We can however alleviate this problem by
correcting some of the reasons why things can go wrong. As mentioned before
one of the problems in convergence arises due to the dictionary elements settling
on locally optimal values before the proper state transitions have a chance to
form. In order to address this issue we will slow down the adaptation of the
dictionary elements so that the implied state transitions settle on a plausible
path before the dictionary elements commit to describe specific sections of the
input. This can be easily achieved by imposing an “anti-sparsity” prior on the

mixture weights P, (z) of the dictionary elements. We do so by using a Dirichlet
prior over P, (z) with hyper-parameters «., all gradually transitioning from 1.5
to 1 during training. This simply implies that in every training iteration after
we estimate the new value of P;(z) we additionally perform the operation:

Ptau(z)* = Ptau(z) + (az - 1) (18)

and then subsequently normalize Py, (2)* so that it sums to 1 and use it as the
final estimate of P,(z) for the current iteration. Adding any positive constant
to the current estimate of P;(z) will keep any of its values from dropping to zero
and thus all dictionary elements will remain eligible to explain all parts of the
input sequence. By slowly decreasing the «, values so that we ultimately apply
no modification to Pr(z) we give a chance to the state path to form before the
dictionary elements latch on an implausible sequence.

It should be noted however that this is not a foolproof approach and there
often some experimentation needed to find the optimal values and decay rate
for a,. Currently this is still one of the weaknesses of this approach, and a good
candidate for revision in future research.

8.4. State Sequence Estimation

The procedure for computing the optimal state sequence, given all model
parameters, is straight forward. For each observation we compute the emis-
sion probability for each state through the EM estimation of Equations 13 and
Equation 11. The Viterbi algorithm can then be used to find the optimal state
sequence.

The two examples in Figure 4 illustrate the results obtained, both from the
learning and the state sequence estimation. For each example, a three-state
model of the proposed architecture is learned. We then obtain the optimal
state sequence for each data sequence using the model estimated from it. The
state segmentations obtained are shown in the bottom plots of Figure 4. As we
can observe, the segmentation obtained is intuitive — each of the states captures
a locally consistent region of the data.

4. Modeling mixtures of sounds

The main advantage of the proposed model becomes apparent when we use
it to analyze the sum of the output of two separate processes. Let X%(f) and
Xb(f) be two data sequences obtained separately from two sources that are
well modeled by the model of Section 3. Let the actual observation X, (f) =
X(f)+ XL (f). Then it is relatively straightforward to show that the statistical
model for X, (f) is given by Figure 3. As before, each of the two sources follows
its own independent Markov chain. The state output distributions for each
source are selector functions, as in the case of the single source. The primary
difference lies in the manner in which the summed data are generated. An
independent process now draws a mixture weight vector that includes mixture
weights for all bases of both sources. The final observation is obtained by the

(V)
\]

|
—_

Y

(V)
\]

(V)
\]

A

(V)
\]

|
[EY

N
\]
A
s
¥
N
\]

Figure 3: Model for producing a mixture of two sources. Each source follows its own Markov
chain. Each source’s state selects some subset of multinomial bases. The mixture weights for

all bases (including both sources) are independently drawn. The final observation is generated
by the weighted mixture of bases selected by both sources.

mixing of the bases selected by the states of both of the sources using the drawn
mixture weights.

The problem of estimating the state sequences for the individual sources
is now easily solved. Using the same approximation we use in Section 3.1 we
first compute the optimal weights for all bases using iterations of Equation
13. The iterations compute the Pr(z) for all bases from all sources. Once these
are computed, the Markov-chain-independent a posteriori state probabilities for
each of the states of the Markov models for both sources are computed using
Equation 11 as follows:

Pls|X) = 3 Pr2) (19)

ZE€Zs

where Xf(i) is the i*" source at time step 7, s is any state in the Markov model
for the i*® source and z, is the set of bases selected by the state.

Remarkably, the model permits us compute the state emission probabilities
for the individual sources, given only the sum of their outputs. The optimal
state sequences for the individual source can now be independently obtained
by the Viterbi algorithm. As a result, the complexity of this process, given
K sources, each modeled by N states is O(K N?), equivalent to performing K
independent Viterbi decodes. This is in contrast to conventional factorial ap-
proach to modeling the mixture of multiple sources, where the resulting model
has NX states and Viterbi estimation of the optimal state sequence requires
O(N?K) operations necessitating complex variational approximations to sim-
plify the problem.

Figure 5 illustrates the proposed procedure. The top plot is a “mixed” data
sequence composed as a sum of the two sequences in Figure 4. Ordinarily in this
situation we would have to use a factorial Markov model which would consider all
twelve possible combinations between both models’ states, and then obtain the
most likely state paths using a 2-d Viterbi search. Using the proposed approach
we obtain the individual emission scores for the states of the individual HMMs
for every time instant and obtain the optimal state sequence independently for

10

Series 1 Series 2

10 20 30 40 10 20 30 40
T T
State estimate for HMM 1 State estimate for HMM 2
3t COOBORRCInARGY 4 B 4
3 CURERIRRERD
Q Q
T 2 CHPDID I
%) %)
2 CRIBRRIRED
1GBEBRCRBRBERIRD
1 GERRIIIIieD
10 20 30 40 10 20 30 40
T T

Figure 4: Two input patterns (top figures) and their corresponding state sequences (bottom
figures) as discovered by the proposed model.

both sources. The obtained state sequences are shown in the bottom plots of
Figure 5. We note that they are identical to the state sequences obtained from
the isolated sequences in Figure 4. Multiple runs over various inputs provide
similar results with only occasional and minor differences between the states
extracted from the isolated sequences and their sum.

5. Recognizing Mixtures of Speakers

In this section we present two experiments that demonstrate the use of this
model in speech recognition applications. We present a small experiment that
performs digit recognition on simultaneous digit speaking by the same speaker,
and a larger experiment based on the speech separation challenge data (Cooke,
2006).

5.1. A small scale experiment

In this experiment we use digit data from the speech separation challenge
corpus to illustrate the ability of this model to discover sequences from speech

11

Sum of series 1 and 2

State estimate for HMM 1 State estimate for HMM 2
3 COOBORRCIRIARGY 4 B 4
3 CURERIRRERD
Q Q
T 2 CHPDID I
%) %)
2 CRIBRRIRED
1GBEBRCRBRBERIRD
plGrrrrnaaazo)
10 20 30 40 10 20 30 40
T T

Figure 5: Sum of the patterns in Figure 4 and the extracted state sequences as computed by
the models learned on the isolated patterns.

mixtures. In this experiment we chose ten utterances of five different digits
from one speaker and we trained an instance of the proposed Markov model for
each digit. For simplicity we used four states for all digits and three frequency
distributions for each state. As an input we used pre-emphasized magnitude
spectra from roughly 45ms windows. We then used an additional unknown
utterance of each digit to construct a set of sound mixtures containing one
digit each. We analyzed these mixtures using the pre-learned digit models and
examined their estimated likelihoods in order to discover which utterances were
spoken in the mixture. A representative example of these results is shown for
four mixture cases in Figure 6. The log likelihoods of the spoken digits were
significantly higher than the non-spoken digits and from them we can easily
deduce the contents of the recording.

In the next section we generalize this idea to a much larger and more thor-
ough experiment.

5.2. A large scale experiment

In this section we describe an experiment using the speaker separation chal-
lenge data set (Cooke, 2006). We present results on both the task set forth for

12

1+2 mix 2+3 mix 3+4 mix 4+5 mix
0
u LI] UL
o] Y

-100

Log likelihood

-150

12345 12345 12345 12345
Digit Digit Digit Digit

Figure 6: Estimated model log likelihoods evaluated on miztures of digits. Fach subplot con-
tains the log likelithoods of each digit model for a different digit mixture as denoted above each
plot. As shown here the two highest log likelihoods coincide with the digits that were spoken
in that mizture, thereby providing us with the digit recognition.

this challenge, but also for full word recognition. The data in this challenge
were composed of mixture recordings of two speakers simultaneously uttering
sentences of a predefined structure. In the first case we evaluate the task is to
identify a specific word in the sentence uttered by the primary speaker, whereas
in the second case we attempt to recognize all words for both utterances.

The features we used were magnitude spectral features. We used a time
frame of about 30ms, and a frame advance of 15ms. The magnitude spectra were
preemphasized so that the higher frequency content was more pronounced. We
trained the proposed model for each word and each speaker using the number of
states guidelines provided by the dataset documentation. We used one frequency
distribution per state and trained each model for 500 iterations. The resulting
models from each speaker were then combined to form a larger Markov model
which can model an entire target sentence with equiprobable jumps between
all candidate words at each section. For each mixture sentence the speaker
identities were provided in advance and the two Markov models describing all
the possible utterances were used to estimate the most likely state sequence
for each speaker as described in the previous section. The results of these
simulations are shown in tables 1, for the proposed task in the challenge, and
2 for the word recognition rates for both of the simultaneous utterances. The
SNR column describes the amplitude difference between the primary and the
secondary speakers. As expected the louder the primary speaker is the better
results we achieve. The “Same speaker” column shows the results when the
two utterances were recorded from the same speaker. This is the worst case
scenario since the dictionary elements in our model will have maximal overlap
and the state posterior probabilities will be unreliable. We clearly see that
in this case the results are the lowest we obtain. The “Same gender” column
describes the results when the two speakers were of the same gender. This is
a somewhat better situation since the will be less overlap between the state
dictionary elements and the results reflect that by being higher. Finally the
even better case is when the two speakers are of different gender, in which case

13

there is a high likelihood that dictionary elements will not overlap significantly,
thus we obtain the best results. The final two columns present the average
results of our proposed model and for a baseline comparison, the “GMM Avg.”
label presents the average results we obtained using the same representation
and a Gaussian state HMM, while treating the secondary speaker as noise.

The overall results we obtain rank high in terms of previously achieved results
for this task (Cooke, 2006), and come at a significantly lower computational cost
than other approaches due to the efficient decoding scheme we introduce.

SNR | Same Same Diff Avg. | GHMM
speaker | gender | gender Avg.
6dB | 58.1% | 68.3% | 69.8% | 65.2% | 48.0%
3dB | 46.4% | 64.2% | 64.7% | 58.0% | 37.2%
0dB | 32.7% | 53.9% | 60.5% | 48.6% | 29.4%
-3dB | 21.7% | 44.8% | 53.0% | 39.3% | 20.8%
-6dB | 13.6% | 36.0% | 45.7% | 31.2% | 15.5%
-9dB | 8.7% 31.5% | 37.0% | 256.2% | 12.3%

Table 1: Detailed task results using the proposed model

SNR Same Same Diff Avg.
speaker gender gender
Clean N/A N/A N/A 88%

6dB | 68%|32% | 80%|59% | 83%|70% | 7T7%|53%
3dB | 57%|42% | 77%|67% | 80%|76% | T1%|61%
0dB | 46%|53% | 68%|75% | 76%|80% | 63%|69%
-3dB | 35%|65% | 61%|80% | T1%|84% | 55%]|76%
6dB | 26%|74% | 53%|84% | 64%|86% | 47%|81%
9dB | 21%|80% | 48%|87% | 57%|87% | 41%|84%

Table 2: Owverall word recognition results using the proposed model. Left percentages are
denoting the correct recognition rate for the primary speaker’s words, right percentages do so
for the secondary speaker.

An interesting point to make here is that the representation that we used is
balancing a tradeoff between mixture modeling and recognition. The fine fre-
quency resolution and linear amplitude scale that we use aid in discriminating
the two speakers and facilitates the additivity assumption, but it also impedes
recognition since it highlights pitch and amplitude variances. In contrast to
that, a speech recognition system would use a lower frequency resolution that
conceals pitch information but maintains spectral shape, and would also use
that representation in the log amplitude domain so that subtle amplitude pat-
terns can be easier to detect. Selecting the proper representation is a process
that involves trading off the ability to discriminate sources and the ability to
recognize, something which is application dependent.

Once the state transitions have been estimated from a mixture, it is also

14

trivial to perform separation of the constituent sources. Since this operation is
out of the scope of this paper we defer the presentation of this experiment to
future publications.

6. Conclusions

In this paper we introduced the Markov Selection Model, a new statistical
model which combines models used for source separation with a Markov struc-
ture. We demonstrate how this model can learn and recognize sequences, but
also perform recognition and state estimation even when presented mixed mixed
signals. Superficially this model is similar to the one in (Ozerov, Févotte, and
Charbit, 2009), but at closer inspection provides a more extensive basis model
and is substantially different in estimation and inference. We formulate this
model in such a way that so that it allows us to perform state estimation on
mixed sequences with linear complexity in the number of sources. This is a
significant computational improvement as compared to similarly employed fac-
torial Markov models, and one that doesn’t sacrifice performance by a noticeable
amount. This structure can also be represented as a Conditional Random Field,
which can result in additional structural possibilities and a more straightforward
inference formulation, and it can also be used for solving source separation and
denoising problems. We anticipate to address these possibilities in future work.

Acknowledgements

The authors acknowledge Gautham Mysore’s help in the preparation of this
manuscript.

Bibliography
References

Bourlard, H., Morgan, N., 1998. Hybrid HMM/ANN systems for speech recog-
nition: Overview and new research directions. Lecture Notes in Computer
Science 1387, 389-417.

Cooke, M., 2006. Speech separation challenge. http://www.dcs.shef.ac.uk/
~martin/SpeechSeparationChallenge.htm.

Hoffmann, T., 1999. Probabilistic latent semantic indexing. In: ACM SIGIR
Special Interest Group on Information Retrieval Conference.

Lee, D. D., Seung, H. S., 1999. Learning the parts of objects by non-negative
matrix factorization. Nature 401.

Ozerov, A., Févotte, C., Charbit, M., 2009. Factorial scaled hidden markov
model for polyphonic audio representation and source separation. In: IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics (WAS-
PAA).

15

Rabiner, L. R., Juang, B. H., 1986. An introduction to hidden markov models.
IEEE Acoustics, Speech and Signal Processing (ASSP) Magazine 3 (1), 4-16.

Raj, B., Smaragdis, P., 2005. Latent variable decomposition of spectrograms
for single channel speaker separation. In: IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA).

Smaragdis, P., Shashanka, M., Raj, B., 2009. A sparse non-parametric approach
for single channel separation of known sounds. In: Neural Information Pro-
cessing Systems (NIPS).

Virtanen, T., Cemgil, A. T., 2009. Mixtures of gamma priors for non-negative
matrix factorization based speech separation. In: 8th International Confer-
ence on Independent Component Analysis and Signal Separation (ICA).

16

